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1. Introduction

We consider the fractional in time and space shallow-water system ∂
α,ψ
0|t η + ∂

β,ψ
0|x (ηu) = 0, t > 0, 0 < x < L,

1
2

[
1

ψ′(t)∂t(ηu) + ∂
α,ψ
0|t (ηu)

]
+ ∂

β,ψ
0|x (ηu2) + ∂

β,ψ
0|x (η

2) = 0, t > 0, 0 < x < L
(1)

with
(u(0, ·), η(0, ·)) = (u0, η0) (2)

and
η(·, 0) = η(·, L) ≡ 0; (3)

here η = η(t, x), u = u(t, x), L > 0, 0 < α, β < 1, ψ ∈ C1([0, ∞)), limx→∞ ψ(x) = +∞, ψ′(x) > 0,
x ≥ 0, ∂

α,ψ
0|t is the ψ-Caputo derivative in time of fractional order α and ∂

β,ψ
0|x is the ψ-Caputo derivative

in space of fractional order β. Using the test function method [1], we get sufficient criteria for which
problem (1)–(2)–(3) has no global solutions in time.

The considered problem is a fractional version of the shallow-water system{
∂tη + ∂x(ηu) = 0, t > 0, 0 < x < L,
∂t(ηu) + ∂x(ηu2) + ∂x(η2) = 0, t > 0, 0 < x < L,

(4)

which models the motion of an incompressible fluid in a gravitational field when the fluid height
above the channel bottom is small with respect to the characteristic flow length. Here u is the velocity
of the fluid particle and η is the height of the fluid above the horizontal flat bottom [2–4].
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In [2], Korpusov and Yushkov derived sufficient criteria for the non-existence of global in time
solutions of problem (4) under different types of boundary conditions. In particular, under the
boundary conditions (3), they proved that if for some 0 < T0 < ∞, the problem admits a solution
(u, η) ∈ C1([0, T0]× [0, L])× C1([0, T0]× [0, L]), and

∫ L

0
xη0(x)u0(x) dx > 0,

then there exist no solutions on intervals larger than [0, T∞], where

T∞ =
L2
∫ L

0 η0(x) dx∫ L
0 xη0(x)u0(x) dx

.

It was shown in many published works that the theory of fractional calculus provides useful
tools for modeling various phenomena from physics (see e.g., [5–8]). Specifically, it was found that
fractional order models of many real-world phenomena are more adequate than the classical integer
order models. This fact motivated researchers to take an interest in the study of fractional in time
and/or space evolution equations. In particular, the study of analytic and numerical solutions of
fractional shallow-water equations was investigated by many authors (see e.g., [5,9–12]). For the
study of existence and non-existence of global solutions for fractional in time and/or space evolution
equations, we refer to [13–15] and references therein.

Motivated by the above contributions, the study of the absence of global in time solutions for
problem (1)–(2)–(3) is investigated in this work. In the considered problem, we use ψ-Caputo fractional
derivative (in time and space) [16], which depends of a function ψ ∈ C1([0, ∞)). In the special case
ψ(t) = t, the considered fractional operator reduces to Caputo fractional derivative. Let us mention
that in this paper we are concerned essentially with the mathematical study of problem (1)–(2)–(3).
For the physical interpretation of this model, we are not able to check if it is more adequate than the
standard model (4)–(2)–(3). For a such study, some physical experiments and numerical simulations
are needed; this is not the goal of this paper. Nevertheless, let us notice that Tao in [17] proposed a
possible scenario for obtaining blowing-up solutions of the Navier–Stokes system; he showed that it is
possible for a body of fluid to form a sort of computer, which can build a self—replicating fluid robot
that keeps transferring its energy to smaller and smaller copies of itself until the fluid “blows up.” He
tried to devise a system that would incorporate a delay at each step—a sort of timer that would push
the energy cleanly from one size scale to the next at just the right moment (according to Erica Klarreich,
A Fluid New Path in Grand Math Challenge, Quantamagazine, 24 February 2014). From here, one can
speculate any form of delay in time or space for fluid dynamical systems.

In Section 2, we provide some preliminary results that will be needed afterwards. A key lemma
is established in Section 3. In the next section, we present and establish our principal results.
Specifically, we first establish a mass conservation law for problem (1)–(2)–(3). Next, we obtain
sufficient criteria for which the considered problem has no global in time solutions.

2. Preliminaries

Let c1, c2 ∈ R, c1 < c2, R ∈ L1(c1, c2) and µ > 0. The Riemann-Liouville fractional integrals of
order µ ofR are given by (see e.g., [18])

Iµ
c1R(x) = [Γ(µ)]−1

∫ x

c1

(x− σ)µ−1R(σ) dσ

and
Iµ
c2R(x) = [Γ(µ)]−1

∫ c2

x
(σ− x)µ−1R(σ) dσ,

for a.e. x ∈ [c1, c2], where Γ denotes the gamma function.
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Let ψ be a C1 function in [0, ∞) satisfying

lim
x→∞

ψ(x) = +∞ and ψ′(x) > 0, x ≥ 0.

Please note that under the above conditions, the function ψ : [0, ∞)→ [ψ(0), ∞) is bijective. Let
τ > 0 andR ∈ L1((0, τ), ψ′(σ) dσ), i.e.,∫ τ

0
|R(σ)|ψ′(σ) dσ < ∞.

The ψ-fractional integrals of order µ ofR are given by (see [16])

Iµ,ψ
0 R(x) = [Γ(µ)]−1

∫ x

0
(ψ(x)− ψ(σ))µ−1ψ′(σ)R(σ) dσ

and
Iµ,ψ
τ R(x) = [Γ(µ)]−1

∫ τ

x
(ψ(σ)− ψ(x))µ−1ψ′(σ)R(σ) dσ, (5)

for a.e. x ∈ [0, τ].
IfR ∈ C([0, τ]), then Iµ,ψ

0 R, Iµ,ψ
τ R ∈ C([0, τ]) and Iµ,ψ

0 R(0) = Iµ,ψ
τ R(τ) = 0.

Lemma 1. ForR ∈ L1((0, τ), ψ′(σ) dσ), it holds(
Iµ,ψ
0 R

)
(x) =

(
Iµ

ψ(0)R ◦ ψ−1
)
(ψ(x)), a.e. x ∈ [0, τ] (6)

and (
Iµ,ψ
τ R

)
(x) =

(
Iµ

ψ(τ)
R ◦ ψ−1

)
(ψ(x)), a.e. x ∈ [0, τ], (7)

where ◦ stands for the composition of mappings.

Proof. For a.e. x ∈ [0, τ], one has(
Iµ,ψ
0 R

)
(x) = [Γ(µ)]−1

∫ x

0
(ψ(x)− ψ(σ))µ−1ψ′(σ)R(σ) dσ

= [Γ(µ)]−1
∫ ψ(x)

ψ(0)
(ψ(x)− t)µ−1R

(
ψ−1(t)

)
dt

=
(

Iµ

ψ(0)R ◦ ψ−1
)
(ψ(x)),

which proves (6). Proceeding as above, one obtains (7).

Lemma 2 (see e.g., [18]). Let (R,S) ∈ L1(a, b)× C([a, b]). Then

∫ b

a
R(t)

(
Iµ
a S
)
(t) dt =

∫ b

a
S(t)

(
Iµ
bR
)
(t) dt.

Lemma 3. Let (R,S) ∈ L1((0, τ), ψ′(σ) dσ)× C([0, τ]). Then∫ τ

0
R(σ)

(
Iµ,ψ
0 S

)
(σ)ψ′(σ) dσ =

∫ τ

0
S(σ)

(
Iµ,ψ
τ R

)
(σ)ψ′(σ) dσ.
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Proof. Using (6), one obtains∫ τ

0
R(σ)

(
Iµ,ψ
0 S

)
(σ)ψ′(σ) dσ =

∫ τ

0
R(σ)

(
Iµ

ψ(0)S ◦ ψ−1
)
(ψ(σ))ψ′(σ) dσ

=
∫ ψ(τ)

ψ(0)
R(ψ−1(t))

(
Iµ

ψ(0)S ◦ ψ−1
)
(t) dt.

Next, using Lemma 2, one deduces that

∫ τ

0
R(σ)

(
Iµ,ψ
0 S

)
(σ)ψ′(σ) dσ =

∫ ψ(τ)

ψ(0)
S ◦ ψ−1(t)

(
Iµ

ψ(τ)
R ◦ ψ−1

)
(t) dt.

Hence, by (7), the desired result follows.

LetR ∈ C1([0, τ]) and 0 < θ < 1. The ψ-Caputo fractional derivative of order θ ofR is given by
(see [16]) (

∂
θ,ψ
0|xR

)
(x) =

(
I1−θ,ψ
0

R′
ψ′

)
(x), 0 ≤ x ≤ τ, (8)

i.e., (
∂

θ,ψ
0|xR

)
(x) = [Γ(1− θ)]−1

∫ x

0
(ψ(x)− ψ(σ))−θR′(σ) dσ.

Lemma 4 (see [16]). LetR ∈ C1([0, τ]) and 0 < θ < 1. One has

Iθ,ψ
0

(
∂

θ,ψ
0|xR

)
(x) = R(x)−R(0), 0 ≤ x ≤ τ.

3. A Key Lemma

The following lemma will be useful for proving our principal result.

Lemma 5. Let 0 < θ < 1 and a > 0. Suppose that for some 0 < T0 < ∞, J ∈ C1([0, T0]) is a function
satisfying J(0) > 0 and

1
ψ′(t)

J′(t) +
(

∂
θ,ψ
0|t J

)
(t) ≥ aJ2(t), 0 < t < T0. (9)

Let
T∞ := sup

{
τ > 0 : J ∈ C1([0, τ)) satisfies (9) for all 0 < t < τ

}
.

Then
T0 ≤ T∞ ≤ ψ−1 (ψ(0) + M(a, θ)) < ∞, (10)

where
M(a, θ) = sup{X > 0 : f (X) ≤ 0} < ∞, f (X) = BX2−θ + CX−DX2−2θ − 1 (11)

and
B =

a
Γ(4− θ)

J(0), C = a
2

J(0), D =
1

(3− 2θ)Γ(3− θ)2 .

Proof. First, since f (0) = −1 < 0 and f is continuous, {X > 0 : f (X) ≤ 0} 6= ∅. Furthermore, since
B > 0 (because J(0) > 0), on has lim

X→+∞
f (X) = +∞. Hence, one deduces that 0 < M(a, θ) < ∞.

Next, let τ > 0 be such that J ∈ C1([0, τ)) satisfies (9) for all 0 < t < τ. Then, for all 0 < T < τ,
J ∈ C1([0, T]) satisfies (9) for all 0 < t < T. Fix 0 < T < τ and introduce the function

ϕ(t) = κ(0)−2κ(t)2ψ′(t) := Z(t)ψ′(t), (12)
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for all 0 ≤ t ≤ T, where
κ(t) = ψ(T)− ψ(t).

Using (9), one obtains

a
∫ T

0
J2(t)ϕ(t) dt ≤

∫ T

0

(
∂

θ,ψ
0|t J

)
(t)ϕ(t) dt +

∫ T

0
J′(t)Z(t) dt. (13)

On the other hand, using (8) and Lemma 3, one has

∫ T

0

(
∂

θ,ψ
0|t J

)
(t)ϕ(t) dt =

∫ T

0

(
I1−θ,ψ
0

J′

ψ′

)
(t)ϕ(t) dt

=
∫ T

0
J′(t)

(
I1−θ,ψ
T Z

)
(t) dt.

Integrating by parts, it holds

∫ T

0

(
∂

θ,ψ
0|t J

)
(t)ϕ(t) dt = J(T)

(
I1−θ,ψ
T Z

)
(T)− J(0)

(
I1−θ,ψ
T Z

)
(0)−

∫ T

0
J(t)

(
I1−θ,ψ
T Z

)′
(t) dt. (14)

Using (5), an elementary calculation gives us that(
I1−θ,ψ
T Z

)
(t) =

2
Γ(4− θ)

κ(0)−2κ(t)3−θ (15)

and (
I1−θ,ψ
T Z

)′
(t) = − 2

Γ(3− θ)
κ(0)−2κ(t)2−θψ′(t), (16)

for all 0 ≤ t ≤ T. Using (14) and (15), one deduces that

∫ T

0

(
∂

θ,ψ
0|t J

)
(t)ϕ(t) dt = − 2

Γ(4− θ)
κ(0)1−θ J(0)−

∫ T

0
J(t)

(
I1−θ,ψ
T Z

)′
(t) dt. (17)

Again, integrating by parts, it holds

∫ T

0
J′(t)Z(t) dt = −J(0)−

∫ T

0
J(t)Z ′(t) dt. (18)

Hence, it follows from (13), (17) and (18) that

AJ(0) + a
∫ T

0
J2(t)ϕ(t) dt ≤

∫ T

0
|J(t)|

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣ dt +

∫ T

0
|J(t)||Z ′(t)| dt, (19)

where
A =

2
Γ(4− θ)

κ(0)1−θ + 1.

On the other hand, by Young’s inequality with parameter a
2 > 0, one has

∫ T
0 |J(t)|

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣ dt =

∫ T
0

√
aϕ(t)|J(t)|

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣√

aϕ(t)
dt

≤ a
2

∫ T
0 J2(t)ϕ(t) dt + 1

2a
∫ T

0

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t) dt.

(20)
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Similarly, one gets

∫ T

0
|J(t)||Z ′(t)| dt ≤ a

2

∫ T

0
J2(t)ϕ(t) dt +

1
2a

∫ T

0

|Z ′(t)|2
ϕ(t)

dt. (21)

Combining (19)–(21), it comes that

2aAJ(0) ≤
∫ T

0

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t)
dt +

∫ T

0

|Z ′(t)|2
ϕ(t)

dt. (22)

Furthermore, using (12) and (16), one obtains∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t)
=

[
2

Γ(3− θ)

]2
κ(0)−2κ(t)2−2θψ′(t),

for all 0 < t < T, which yields

∫ T

0

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t)
dt =

1
(3− 2θ)

[
2

Γ(3− θ)

]2
κ(0)1−2θ . (23)

Similar calculations yield ∫ T

0

|Z ′(t)|2
ϕ(t)

dt = 4κ(0)−1. (24)

It follows from (22)–(24) that

2aAJ(0) ≤ 1
(3− 2θ)

[
2

Γ(3− θ)

]2
κ(0)1−2θ + 4κ(0)−1,

which yields
f (κ(0)) ≤ 0.

Therefore, one deduces that
κ(0) ≤ M(a, θ).

Hence, it holds
T ≤ ψ−1 (ψ(0) + M(a, θ)) , for all 0 < T < τ,

which implies that
τ ≤ ψ−1 (ψ(0) + M(a, θ)) ,

and (10) follows.

Remark 1. Taking ψ(t) = t and the limit as θ → 1−, (9) reduces to

J′(t) ≥ a
2

J2(t), 0 < t < T0.

Hence, under the assumptions of Lemma 5, passing to the limit as θ → 1− in (10), it holds

T0 ≤ T∞ ≤
2

aJ(0)
,

which is the same estimate as in ([19], Corollary 1).
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4. Non-Existence of Global in Time Solutions for Problem (1)–(2)–(3)

We assume that

(i) 0 < α, β < 1, L > 0.
(ii) ψ ∈ C1([0, ∞)), limx→∞ ψ(x) = +∞, ψ′(x) > 0, x ≥ 0.
(iii) η0, u0 ∈ C1([0, L]).

We first establish the following mass conservation law.

Proposition 1. Suppose that for some 0 < T0 < ∞, (η, u) ∈ C1([0, T0] × [0, L]) × C1([0, T0] × [0, L]),
η ≥ 0, is a solution of problem (1)–(2)–(3). Then

∫ L

0
KL(x)β−1η(t, x)ψ′(x) dx =

∫ L

0
KL(x)β−1η0(x)ψ′(x) dx := m0, 0 ≤ t ≤ T0, (25)

where
KL(x) = ψ(L)− ψ(x). (26)

Proof. From the first equation in (1), one has

−∂
α,ψ
0|t η(t, x) = ∂

β,ψ
0|x (ηu)(t, x), (t, x) ∈ (0, T0]× (0, L),

whereupon
−∂

α,ψ
0|t

(
Iβ,ψ
0 η(t, ·)

)
(L) =

(
Iβ,ψ
0 ∂

β,ψ
0|x (ηu)(t, ·)

)
(L).

Using Lemma 4 and the boundary conditions (3), one obtains(
Iβ,ψ
0 ∂

β,ψ
0|x (ηu)(t, ·)

)
(L) = η(t, L)u(t, L)− η(t, 0)u(t, 0) = 0.

Hence, it holds
∂

α,ψ
0|t

(
Iβ,ψ
0 η(t, ·)

)
(L) = 0,

i.e.,

∂
α,ψ
0|t

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx = 0,

which implies that

Iα,ψ
0 ∂

α,ψ
0|t

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx = 0.

Again, using Lemma 4, one deduces that

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx−

∫ L

0
KL(x)β−1ψ′(x)η(0, x) dx = 0,

which yields (25).

Our principal result is the following.

Theorem 1. Suppose that for some 0 < T0 < ∞, (η, u) ∈ C1(Q)× C1(Q), Q = [0, T0]× [0, L], η ≥ 0, is a
solution of problem (1)–(2)–(3). Let

Tmax := sup
{

τ > 0 : (η, u) ∈ C1([0, τ)× [0, L])× C1([0, τ)× [0, L]) is a solution of (1)− (2)− (3)
}

.

If

J(0) :=
∫ L

0
η0(x)u0(x)KL(x)

β
2−1ψ′(x) dx > 0, (27)
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where KL is given by (26), then

T0 ≤ Tmax ≤ ψ−1 (ψ(0) + M(a, α)) < ∞, (28)

where M(a, α) is given by (11) (with θ = α),

a = 2
Γ
(

1 + β
2

)
Γ
(

1− β
2

) KL(0)−
β
2

m0

and m0 is given by (25).

Proof. We introduce the function

ϕ(x) = KL(x)
β
2−1ψ′(x), 0 ≤ x < L. (29)

Multiplying the second equation in (1) by ϕ(x) and integrating over (0, L), one obtains

1
2

∫ L

0
ϕ(x)

1
ψ′(t)

∂t(ηu)(t, x) dx +
1
2

∫ L

0
ϕ(x)∂α,ψ

0|t (ηu)(t, x) dx +
∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx

+
∫ L

0
ϕ(x)∂β,ψ

0|x (η
2)(t, x) dx = 0, 0 < t < T0,

which yields

1
2ψ′(t) J′(t) + 1

2

(
∂

α,ψ
0|t J

)
(t) = −

∫ L
0 ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx−
∫ L

0 ϕ(x)∂β,ψ
0|x (η

2)(t, x) dx, 0 < t < T0, (30)

where

J(t) =
∫ L

0
ϕ(x)(ηu)(t, x) dx, 0 ≤ t ≤ T0.

On the other hand, using (8), one has

∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx =
∫ L

0

(
I1−β,ψ
0

∂x(ηu2)(t, ·)
ψ′

)
(x)

ϕ(x)
ψ′(x)

ψ′(x) dx.

Hence, by Lemma 3, one obtains

∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx =
∫ L

0

∂x(ηu2)(t, x)
ψ′(x)

(
I1−β,ψ
L

ϕ

ψ′

)
(x)ψ′(x) dx

=
∫ L

0
∂x(ηu2)(t, x)

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx.

Next, using an integration by parts and the boundary conditions (3), one deduces that

∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx = −
∫ L

0
η(t, x)u2(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx. (31)

Similarly, one has

∫ L

0
ϕ(x)∂β,ψ

0|x (η
2)(t, x) dx = −

∫ L

0
η2(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx. (32)

It follows from (30)–(32) that

1
2ψ′(t) J′(t) + 1

2

(
∂

α,ψ
0|t J

)
(t) =

∫ L
0 (ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x) dx +

∫ L
0 η2(t, x)∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x) dx. (33)
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Next, using (29), for x ∈ (0, L), an elementary calculation gives us that

(
I1−β,ψ
L

ϕ

ψ′

)
(x) =

Γ
(

β
2

)
Γ
(

1− β
2

)KL(x)−
β
2 .

Hence, it holds

∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) =

Γ
(

1 + β
2

)
Γ
(

1− β
2

)KL(x)−
β
2−1ψ′(x) > 0, 0 < x < L. (34)

It follows from (33) and (34) that

1
2ψ′(t)

J′(t) +
1
2

(
∂

α,ψ
0|t J

)
(t) ≥

∫ L

0
(ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx. (35)

On one hand, by Hölder’s inequality, one has

J2(t)

≤
(∫ L

0
η(t, x)|u(t, x)|ϕ(x), dx

)2

=

∫ L

0

√
η(t, x)|u(t, x)|

√
∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x)

√√√√ η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ(x) dx


2

≤
(∫ L

0
(ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx

)∫ L

0

η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ2(x) dx

 .

(36)

On the other hand, using (29) and (34), one obtains

∫ L

0

η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ2(x) dx

=
Γ
(

1− β
2

)
Γ
(

1 + β
2

) ∫ L

0
KL(x)β−1ψ′(x)η(t, x)KL(x)

β
2 dx

≤
Γ
(

1− β
2

)
Γ
(

1 + β
2

)KL(0)
β
2

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx.

Furthermore, using the mass conservation law (25), one deduces that

∫ L

0

η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ2(x) dx ≤
Γ
(

1− β
2

)
Γ
(

1 + β
2

)KL(0)
β
2 m0. (37)

Next, (36) and (37) yield

∫ L

0
(ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx ≥

Γ
(

1 + β
2

)
Γ
(

1− β
2

) KL(0)−
β
2

m0
J2(t), 0 < t < T. (38)
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It follows from (35) and (38) that

1
ψ′(t)

J′(t) +
(

∂
α,ψ
0|t J

)
(t) ≥ 2

Γ
(

1 + β
2

)
Γ
(

1− β
2

) KL(0)−
β
2

m0
J2(t), 0 < t < T0.

Hence, using (27) and Lemma 5, the estimate (28) follows.

Example 1. Consider the system
CDα

0|tη + CDβ

0|x(ηu) = 0, t > 0, 0 < x < L,
1
2

[
∂t(ηu) + CDα

0|t(ηu)
]
+ CDβ

0|x(ηu2) + CDβ

0|x(η
2) = 0, t > 0, 0 < x < L

(39)

under the initial and boundary conditions (2) and (3). Here CDα
0|t is the Caputo derivative in time of fractional

order 0 < α < 1 and CDβ

0|x is the Caputo derivative in space of fractional order 0 < β < 1. System (39) is a

special case of (1) with ψ(s) = s. Hence, by Theorem 1, one deduces that if (η, u) ∈ C1([0, T0]× [0, L])×
C1([0, T0]× [0, L]) is a solution of problem (39)–(2)–(3) for some 0 < T0 < ∞, and

J(0) :=
∫ L

0
η0(x)u0(x)(L− x)

β
2−1 dx > 0,

then
T0 ≤ Tmax ≤ M(a, α) < ∞,

where M(a, α) is given by (11) (with θ = α) and

a = 2
Γ
(

1 + β
2

)
Γ
(

1− β
2

) L
−β
2

(∫ L

0
(L− x)β−1η0(x) dx

)−1

.

5. Conclusions

A fractional in time and space shallow-water system is investigated in this paper. The considered
fractional derivative depends of a function ψ ∈ C1([0, ∞)), and generalizes Caputo fractional
derivative, which corresponds to the case ψ(t) = t. Using the test function method, it is shown
that under certain conditions imposed on the initial data, the system admits no global in time solutions.
Furthermore, an upper bound of the lifespan is obtained.
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