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Abstract: A robust linear quadratic analog tracker (LQAT) consisting of proportional-integral-
derivative (PID) controller, sliding mode control (SMC), and perturbation estimator is proposed for
a class of nonlinear systems with unknown nonlinear perturbation and direct feed-through term.
Since the derivative type (D-type) controller is very sensitive to the state varying, a new D-type
controller design algorithm is developed to avoid an unreasonable large value of the controller
gain. Moreover, the boundary of D-type controller is discussed. To cope with the unknown
perturbation effect, SMC is utilized. Based on the fast response of SMC controlled systems, the
proposed perturbation estimator can estimate unknown nonlinear perturbation and improve the
tracking performance. Furthermore, in order to tune the PID controller gains in the designed tracker,
the nonlinear perturbation is eliminated by the SMC-based perturbation estimator first, then a
hybrid Taguchi real coded DNA (HTRDNA) algorithm is newly proposed for the PID controller
optimization. Compared with traditional DNA, a new HTRDNA is developed to improve the
convergence performance and effectiveness. Numerical simulations are given to demonstrate the
performance of the proposed method.

Keywords: PID controller; sliding mode control; hybrid Taguchi real coded DNA algorithm;
perturbation estimator

1. Introduction

As well known, the PID controller is one of the popular control strategies and widely adopted
to control engineering due to its simple structure and robust feature [1–3]. Hence, the PID controller
has been widely implemented in many industrial applications. For tuning the PID controller
gains, the traditional method Ziegler–Nichols rule is developed, but it is difficult to adjust the
optimal or near optimal PID controller gains when the controlled system is with nonlinearity
and high order dimension [3,4]. Paper [5] proposes the closed-loop controlled system by using
a state-derivative feedback controller, and it illustrates the difficulty of calculating the controller based
on the state-feedback control approach; hence, this paper transforms the single input single output
(SISO) system into Frobenius canonical form and the pole-placement method is employed to cope with
the state-derivative feedback control problem. Research work [6] processes the state-derivative feedback
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controller design by transforming the state-derivative feedback control problem to state-feedback
control problem, but the limitation is that the system matrix A is invertible. Recently, the linear matrix
inequality (LMI) approach is adopted to achieve the PID controller design. For example, the work
in [7] deals with the PID controller design for the controlled system without a direct feed-through term
and the output variable transformation method is adopted, but if the controlled system is with a direct
feed-through term, the PID controller will become difficult to design. The authors of [8] discussed the
robust PID controller for the linear uncertain system by LMI and D-stability approach. The singular
system structure is used to calculate the PD controller with the H∞ performance [9]; the H∞ PD/PI
controller design is presented in [10]. Compared with the literature in [9,10], the proposed design
algorithm of PID controller is without additional singular structure. However, this paper discusses
the PID-type controller in detail. For instance, the D-type controller is discussed to be bounded by a
selected parameter, and the parameter is bounded in a range (0, 1); hence, the D-type controller can
avoid unreasonable gain value (large gain value) through a simple proposed method.

The Laplace transform method and the final-value theorem are employed to design the tracking
controller [11,12]. To shape the tracking performance, the literature in [13,14] designed the augmented
state for PID filter then the controlled system is transformed to the augmented controlled system with a
direct feed-through term. Moreover, the disturbance observer and functional observer are developed to
measure the external disturbance [13–15]. However, the proposed design approaches [13,14] cannot be
directly applied to the systems with a direct feed-through term and unknown nonlinear perturbation;
hence, the PID controller is worth being developed, especially if the controlled system is with nonlinear
perturbations and direct feed-through term. With the design of the PI-type controller, the controlled
system has the augmented structure, and this structure may result in an uncontrollable augmented
controlled system. In paper [16], the authors present a method which is placed in the closed-loop
system eigenvalues on the left of the negative vertical that lies by the selected non-positive constant;
hence, the proposed method is utilized to overcome the uncontrollable issue in this paper. Since
the forward gain cannot be designed by using the traditional LQAT approach due to the method
in [16], therefore, the final-value theorem can be adopted to overcome this problem by discussing the
final-value theorem for the proposed robust tracker design in this paper.

SMC is inherently robust to external disturbance and nonlinear system and with fast response.
In [17], the adaptive robust PID controller with SMC is proposed for the uncertain chaotic system.
In [18], the fuzzy sliding mode control is designed for induction machine. The work in [19] designs
an adaptive integral SMC for the system with uncertainty and applies the controller to the vertical
take-off and landing (VTOL) aircraft system. Therefore, the SMC can be successfully utilized in many
applications. Suppressing disturbance is the main target of SMC, but it cannot eliminate disturbance
completely. Some researches utilize the disturbance estimators to overcome external disturbance [20,21];
the papers develop SMC to integrate with the disturbance estimator for the controlled system with
undesired disturbance [22–25]. The authors of [25] propose the observer-based SMC for the controlled
system with external disturbances. A robust SMC and disturbance observer via the augmented state for
the multi-axis coordinated motion system is studied [26]. However, in our knowledge, the SMC-based
LQAT integrated with PID controller has not been well discussed, especially if the controlled system
is with a direct feed-through term. To deal with the external perturbation, this paper develops the
perturbation estimator design based on the SMC due to its fast response.

The three PID controller gains must be determined properly; otherwise, it might result in
undesirable performance. In the works of [27,28], the authors developed an optimization method
for the PID controller design subjected to the expected performance index though the frequency
response. In the work of [29], the authors proposed a methodology for designing the controller and
the loop shaping with the standard performance such as H2 and H∞ performance. However, these
proposed methodologies do not take the disturbance estimator into account [27–29]. To improve the
tracking performance and control force, the disturbance estimator is adopted to the proposed controller.
Recently, many popular heuristic algorithms have been applied in optimization problems. Particle
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swarm optimization (PSO) [3,4,30], DNA algorithm [31,32], and genetic algorithm (GA) [33–38] are
stochastic searching methods for solving optimal problems. For example, some works in [33–38] based
on the GA method integrated their research to the proposed controller and parameters optimization;
in papers [31,32], the DNA algorithm is proposed for the PID controller optimization, and the difference
between GA and DNA algorithms is the mutation operator which is not only with the same mutation
operator but also consists of enzyme and virus, whereby the different PID structure can exchange
their information. On the other hand, the Taguchi method is a low cost and high effective method for
quality engineering [39,40]. Compared with full factorial experiments, the Taguchi method is a simple
experimental design method that is less experiment. It emphasizes and focuses on the improvement
of product quality not through testing but through design. Some papers apply the Taguchi method
to improve the performance of GA [33,34]. Paper [33] mentions that the hybrid Taguchi–genetic
algorithm (HTGA) has a quick convergent. Among the above methods, the DNA algorithm is a
multiple functional method which is not only adjusted to the parameters but also changed the PID
structure to find the optimal or near-optimal solution. Thus, this paper utilizes the advantage of
Taguchi method to enhance the efficiency for our proposed algorithm.

Based on the above description, this paper aims to design a robust LQAT consisting of PID
controller, SMC, and perturbation estimator for a class of nonlinear systems with unknown nonlinear
perturbation, and the proposed HTRDNA algorithm is designed for the PID controller optimization.
To avoid unreasonable gain value in the controller, a simple algorithm for D-type controller design is
studied. Due to the SMC fast response, the perturbation estimator is proposed based on SMC. Since
the undesirable nonlinear perturbation is eliminated by the SMC-based perturbation estimator first, it
becomes easy to optimize the PID controller with the new design procedure of HTRDNA algorithm
proposed in this paper.

This paper is organized as follows. Section 2 presents the whole derivation for the robust tracker
design. Section 3 proposes the design procedure of HTRDNA algorithm. The illustrative examples
demonstrate the feasibility and validity of the proposed approaches in Section 4 and a conclusion is
given in Section 5.

Notations: wT is used to denote the transpose for the matrix w, w† denotes the matrix generalized
inverse for the matrix w and ‖ w ‖ denotes the Euclidean norm of the matrix w or vector w. | w |
represents the absolute value of w. In is the n × n identity matrix. sign(s) is the sign function of s,
if s > 0, sign(s) = 1; if s < 0, sign(s) = −1; if s = 0, sign(s) = 0.

2. Robust Tracker and Perturbation Estimator Design

For a class of nonlinear systems with a direct feed-through term, the robust tracker and perturbation
estimator are proposed. In real engineering systems, there are many controlled systems with nonlinear
vector and disturbances such as the chaotic systems and robotic systems. To cope with these undesired
perturbations, the SMC-based perturbation estimator is proposed. Now, consider a class of nonlinear
time-invariant system described by

.
x(t) = Ax(t) + B(u(t) + g(x, t) + d(x, t)), (1)

y(t) = Cx(t) + Du(t), (2)

where A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, and D ∈ <p×m denote the system matrices. The pair (A, B) is
controllable. In order to deal with the LQAT problem, the condition m ≥ p has to satisfy. x(t) ∈ <n is the
state vector, u(t) ∈ <m is the control input, g(x, t) ∈ <m is the system nonlinear vector, and y(t) ∈ <p

is the measurable output of the system. d(x, t) ∈ <m is the unknown nonlinear perturbation at time t.
Notices that the proposed approach still works for the special case where y(t) = Cx(t) (such as chaotic
systems). Moreover, u(t) = u∗(t) + KD

.
x(t) where the gain KD is D-type controller gain.
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In [5,8], the closed-loop controlled system of D-type controller is discussed. Therefore, the linear
transformation can be founded. To merge the derivative term

.
x(t) in (1), theoretically it can be written to

(In − BKD)
.
x(t) = Ax(t) + B(u∗(t) + g(x, t) + d(x, t)). (3)

After being transformed, (1) can be rewritten to the following state space equation

.
x(t) = Apidx(t) + Bpid

(
u∗(t) + dg(x, t)

)
, (4)

y(t) = Cpidx(t) + Dpid1u∗(t) + Dpid2dg(x, t), (5)

where M = In − BKD, Apid = M−1A, Bpid = M−1B, Cpid = C + DKDM−1A, Dpid1 = D + DKDM−1B,
Dpid2 = DKDM−1B, and dg(x, t) = g(x, t) + d(x, t).

To avoid the D-type controller KD with unreasonable values, the gain should be discussed and
selected properly. In order to keep the original system feature, let the matrix M be M = In − BKD ≥

αIn > 0 where parameter α is positive definite so that the transformed system can remain its stability.
Therefore, a simple D-type controller algorithm is proposed. Since the rank of BKD is m so that
In − BKD only m poles can be placed, some methods can be utilized to deal with this problem such
as pole-placement and LMI approach. To implement minimal parameters, one solution of KD can be
obtained by

KD = (1− α)B†, (6)

then, the matrix M is equivalent to

M = In − (1− α)BB† > 0, (7)

which implies
In > (1− α)BB†. (8)

To find out the range of α, we take 2 norm for both sides of (8)

‖In‖ > (1− α)‖BB†‖ = (1− α), (9)

and the parameter α has the range 0 < α ≤ 1. Moreover, for the requirement of the transformed matrix
M being invertible. In (7)–(9), we assume that the rank of B is m, and BB† is positive definite so that KD

should be a reasonable matrix with 0 < α ≤ 1. From Equation (9), the system matrix B and B† can be
described in the singular value decomposition (SVD) form as

B = Ur

∑
r

VT
r and B† = Vr

∑
−1

r
UT

r ,

where Ur ∈ <
n×r is a unitary matrix,

∑
r ∈ <

r×r is the matrix with r singular values, and Vr ∈ <
r×m is a

unitary matrix. One has
‖BB†‖ = ‖Ur

∑
r VT

r Vr
∑
−1
r UT

r ‖

= ‖UrIrUT
r ‖ = 1.

For the above calculation, the inverse of matrix M exists, thus, we can ensure that the transformed
matrix is invertible for the linear transformation in our proposed method.

Remark 1. If the D-type controller (6) satisfies the above design algorithm, then invertible matrix M can be
computed. Since the D-type controller is sensitive to the system states varying, the gain should be selected
properly. If the gain KD is with the high gain property, then the Kp and KI gains (to be appear later) will be
unreasonable large. Therefore, a simple D-type controller algorithm is important.
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To construct an augmented matrix with PI-type controller. Let

η(t) =
[

x(t)∫
ey(t)dt

]
to be the new state variable in the modified state space equation, where

ey(t) = y(t) − r(t) (10)

denotes the tracking error and r(t) is the reference trajectory. In light of the new state variable, the
system in (4) and (5) can be arranged to the new state-space equation described as

.
η(t) = Apidη(t) + Bpid1u∗(t) + Bpid2dg(x, t) − rpid(t), (11)

y(t) = Cpidη(t) + Dpid1u∗(t) + Dpid2dg(x, t), (12)

where Apid =

[
Apid 0
Cpid 0

]
, Bpid1 =

[
Bpid

Dpid1

]
, Bpid2 =

[
Bpid

Dpid2

]
, Cpid =

[
Cpid 0

]
, Dpid1 = Dpid1,

Dpid2 = Dpid2 and rpid(t) =
[

0
r(t)

]
. We give a sliding surface as

s(t) = Csη(t) −
∫ t

0

(
CsApidη(t) −Kη(t) + u(t)

)
dt, (13)

where
Cs =

[
Bpid

† 0
]
, (14)

the equivalent control u∗eq(t) in the sliding manifold
( .
s(t) = 0

)
is obtained by

u∗eq(t) = −Kη(t) + u(t) − dg(x, t). (15)

We lack of the information of perturbation dg(x, t); hence, the underdetermined estimation of
dg(x, t) named by d̂g(t) will be design first, then the PI-type controller gain K and control law u(t) will
be discussed in detail later, respectively.

Lemma 1. In the works [15,21], the authors indicate that the perturbation is assumed to be slowly time-varying;
therefore, the derivative of perturbation equal is (near) to zero. Generally, it is reasonable to suppose that

.
dg(x, t) = 0, (16)

when the perturbation is slowly time-varying and changes slightly relative to the observer dynamics with high
gain property.

Give the perturbation estimator as

d̂g(t) = ko

(
s(t) +

∫
(γs(t) + σsat(s(t)))dt

)
, (17)

where ko is the positive parameter for the perturbation estimator. In the control law (15), the nonlinear
perturbation dg(x, t) is unknown so that the control law cannot be achieved. Therefore, the perturbation
estimator (17) can be utilized to replace the unknown nonlinear perturbation dg(x, t). Now, the SMC
controller u±(t) and SMC-based control law can be designed by

u±(t) = −γs(t) − σsat(s(t)), (18)
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u∗(t) = −Kη(t) − d̂g(t) + u±(t) + u(t), (19)

where γ and σ denote arbitrary nonnegative value so that the trajectories of SMC converge to the
sliding manifold and the unknown nonlinear perturbation is estimated consequently.

Theorem 1. The estimation in (17) leads to the error between the external perturbation and the estimated
perturbation converge to zero closely, which implies

d̃g(t) = dg(x, t) − d̂g(t) ≈ 0. (20)

Proof. See Appendix A. �

Remark 2. To avoid the undesired chattering phenomenon in the SMC, the sign function can be replaced by a
smooth and continuous saturation function [41].

sat(s(t)) =
[

s1(t)
|s1(t)|+δ1

· · ·
si(t)
|si(t)|+δi

]T
, (21)

where δi is an arbitrary small positive constant. If δi equals to zero, the saturation function sat(s(t)) is
equivalent to the sign function sign(s(t)). While the controlled system with direct feed-though term, the
undesired chattering phenomenon affects the controlled system output directly. Hence, the saturation function
should be smooth enough; in other words, the parameter δi should be selected properly. Therefore, the undesired
chattering phenomenon can be avoided, especially if the controlled system has direct feed-though term.

According to Theorem 1, the sliding manifold is reached and substituting (19) and (20) into (11)
and (12), one has

.
η(t) = Apidcη(t) + Bpid1u(t) − Bpid3d̂g(t) − rpid(t), (22)

y(t) = Cpidcη(t) + Dpid1u(t) −Dd̂g(t), (23)

where Apidc = Apid − Bpid1K, Cpidc = Cpid −Dpid1K, Bpid3 =

[
0n×m

D

]
and d̃g(t) = dg(x, t) − d̂g(t).

Lemma 2. [16] Let
(
Apid, Bpid1

)
be the pair of the given open-loop system and h ≥ 0 represent the prescribed

degree of relative stability. The eigenvalues of the closed-loop system Apid − Bpid1

(
R−1Bpid1

TP
)

lie on the left of
the −h vertical line with the matrix P being the solution of the Riccati equation(

Apid + hIn
)T

P + P
(
Apid + hIn

)
− PBpid1R−1Bpid1

TP + Q = 0, (24)

where the matrix In is an identity matrix.

In order to track the reference trajectory, the linear quadratic method is applied to the tracker
design. The PI controller gain K can be described as

K =
[

KP KI
]
= Rc

−1
(
Bpid1

TP + NT
)
,

where Rc = R + Dpid1
TQDpid1, N = Cpid

TQDpid1, KP ∈ <
m×n, and KI ∈ <

m×p. To design the controller
gain K consisting of KP and KI, we temporarily do not take the perturbation estimator d̂g(x, t) and the
control law u(t) into consideration in (22) and (23). Both the d̂g(x, t) and u(t) will be discussed based
on the final-value theorem in detail.
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Let the quadratic performance index for the output tracking problem be defined as

J =
1
2

∫ t f

0

{
[y(τ) − r(τ)]TQ[y(τ) − r(τ)] + u∗T(τ)Ru∗(τ)

}
dτ, (25)

where t f denotes the final time, as well as Q = 10qIp ∈ <
p×p with q ≥ 0 and R = Im ∈ <

m×m are
the appropriate weighting matrices. Consider the performance index in (25), to calculate the lower
value for the controlled system output y(t); hence, we obtain r(t) = 0 (r(τ) = 0) first, then utilize
the final-value theorem to minimize the performance index [11]. Thus, consider Lemma 2 and (25),
the algebraic Riccati equation is given by(

Apid + hIn
)T

P + P
(
Apid + hIn

)
−

(
Bpid1

TP + NT
)T

R−1
(
Bpid1

TP + NT
)
+ Cpid

TQCpid = 0. (26)

Solving the matrix P from the algebraic Riccati equation then the control gain K can be constructed.
Notice that the PI gains in K are determined based on the linear model

(
Apid, Bpid1, Cpid, Dpid1

)
first,

then take the perturbation estimator d̂g(t) into consideration to determine the control law u(t) in (22)
and (23), based on the final-value theorem which will be discussed in detail later.

Finally, it is desirable to determine the u(t) term in (19). Since Lemma 2 is utilized, then the
traditional LQAT cannot be adopted to design the control law u(t). Therefore, the final-value theorem
can be utilized to find out the control law u(t). Since, the PI controller gain K has been chosen, the
sliding mode is reached and d̃(t) is convergence then the control law u(t) can be calculated by the
final-value theorem.

Theorem 2. The u(t) term is determined based on the integration-term-free augmented system in (22) and (23),

where u(t) =
[
Cpidc(−Apidc)

−1B + Dpid1

]†{
r(t) + Dd̂g(t)

}
.

Proof. See Appendix B. �

Finally, based on Theorem 2, the desire control law can be described as

u(t) = −Kη(t) − d̂g(t) + u±(t) + u(t) + KD
.
x . (27)

Remark 3. If the α equals to 1, the PID-type controller reduces to the PI-type controller. The control law in (27)
is utilized to minimize the tracking performance in (25). Therefore, the controlled system output y(t) can track
the reference trajectory r(t) and the tracking error can be minimized.

3. Introduction of DNA Algorithm and Taguchi Method

3.1. DNA Algorithm

The following statements demonstrate the detailed information of DNA algorithm [31,32] operators.
A. Definition of cost function: This step defines a cost function to calculate the cost value of each

individual, retain excellent chromosomes, and eliminate adverse chromosomes.
B. Reproduction: Similar to cell division, reproduction is focused on survival of the fittest. Hence,

the worse chromosomes will decrease in every generation. Roulette wheel selection is one common
technique to implement the proportional selection. Another way to reproduce the better population is
the tournament selection. Compared with the roulette wheel selection, the tournament selection only
requires the better cost values of the chromosome.

C. Crossover: After reproduction, the chromosomes mate with each other to execute the crossover
operator. Crossover exchanges information between two individuals and generates two offspring.
The crossover probability pc can be decided to our demand where pc > 0.
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D. Mutation: In natural biological system, creatures mutate by themselves in order to adapt to
the external environment. Each chromosome undergoes mutation with a fixed probability pm where
pm > 0. Generally, pm is set to be much lower than pc in order to prevent from being unable to converge.

E. Enzyme/Virus: Enzyme and virus operators are similar to mutation operator, but the most
different part is to change structure of the chromosome instead of value of the chromosome. Enzyme
operator loses part of segments in chromosome; on the other hand, the virus operator increases
an additional part of chromosome. Each chromosome undergoes enzyme and virus with positive
probabilities pe and pv, respectively.

F. Termination criteria: This step provides two methods to establish a termination criterion. One is
the pre-specified iteration number. Another one is reaching the tolerable error representing the
algorithm that converges to the optimal solution or approaching optimal solution.

3.2. Taguchi Method

Taguchi method is a powerful and functional tool in optimization for quality [33,34,39,40]. Taguchi
method uses less combination of experiments to obtain the useful information and searches the
tendency of optimization to prevent from the cause of sensitive variation. The primary tools of the
Taguchi method are the orthogonal array and the signal-to-noise ratio (SNR).

A. Orthogonal array: An orthogonal array can use fewer experiments than full factorial experiments.
The normal expression of two-level orthogonal arrays is

LNt(2
Nt−1), (28)

where Nt = 2kt denotes number of experimental runs, kt denotes a positive integer which is greater
than one, 2 denotes number of levels for each factor, and Nt − 1 denotes number of columns in the
orthogonal array.

B. SNR: Two criteria are used to determine SNR, i.e., smaller is better or larger is better. In the
case of the smaller is better characteristic, let two sets of data be described by [z1 , z2 , . . . , zns ] and
[z1 , z2 , . . . , zns ]. The mean squared deviations from the target value of the quality characteristic are
described by

S1 =
1
ns

ns∑
is=1

zis
2 (29)

and

S2 =
1
ns

ns∑
is=1

zis
2. (30)

In order to shift the mean squared deviation to a suitable situation, utilize the transformation and
describe the ratio in decibels

S1 = −10 log

 1
ns

ns∑
is=1

zis
2

 (31)

and

S2 = −10 log

 1
ns

ns∑
is=1

zis
2

. (32)

After calculating, the SNRs will be compared to decide the better level. Therefore, we can
determine the better levels for each factor in less experiment. In the case of larger is better characteristic
can refer to the literature [34].
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4. Hybrid Taguchi and Real Coded DNA Algorithm

In this section, we are going to take advantage of DNA algorithm and Taguchi method in real
coded scheme and combine with the controller design mentioned previously to select a suitable tracking
controller. The detailed steps are described in Figure 1 and illustrated in the following statements.

Step 1: Coding strategy: Define a set of chromosomes including the PID gain matrices KP, KI, KD in
the block vector form as follows

C =
[

KP KI KD
]
. (33)

The previously mentioned controllers can be composed of P controller, PI controller, PD controller,
and PID controller. Therefore, definitions of various controller variables are Ci

P =
[

Ki
P 0 0

]
,

Ci
PI =

[
Ki

P Ki
I 0

]
, Ci

PD =
[

Ki
P 0 Ki

D

]
, and Ci

PID =
[

Ki
P Ki

I Ki
D

]
, where i denotes the i th

chromosome in the whole group.
Step 2: Initialization: Before we search a solution to approximate the optimal solution, we need

to generate T chromosomes for the population, which is called primitive group. To determine the
different gain values in every chromosome, we select the parameters α in [0.3, 1] and q in [0, q] (for
example q = 2) randomly to create four optimal chromosomes for each type controller, and select
a gain matrix βI ∈ <

m×m randomly to multiply the optimal chromosomes for other chromosomes
until the population is reached. Each component of βI is given a range by [0, 1]. Generally, the size of
the primitive group depends on the problem complexity; in other words, the more complicated the
problem, the larger the primitive group we need. In the experiment, we generate T/4 chromosomes for
each type of controller.

Step 3: Reproduction: Tournament selection can be adopted to find the lower cost value for the
next population.

Step 4: Crossover: The offspring chromosome has the partial characteristic from the parents after
crossover. Refer to [31,34,35], a real coded crossover operator is defined and rewritten as follows

Co f f spring1 = βcCparent1 + (1− βc)Cparent2, (34)

where Cparent1 and Cparent2 represent different chromosomes. The parameter βc is randomly selected
and defined in a range [0, 1]. The crossover operator is allowed to mate with identical type controllers
in the mating pool. For instance, a PI-type controller parameter Ci

PI only mates with the same feature
chromosome.

Step 5: Choosing a proper orthogonal array: Determine the number of factors and levels to construct a
suitable orthogonal array L4(23) for the problem demand. In the simulation, we choose three factors to
make an experiment and the factors are the PID parameters. A two-level orthogonal array is studied.

Step 6: Selecting chromosomes and Taguchi experiments: This step can do ρ runs to generate ρ
better chromosomes into every generation. Select a best chromosome and randomly choose another
chromosome from the population. Both chromosomes are obtained to execute Taguchi method and
find the better solution. In each generation, both chromosomes can be the same type of controllers
or different type controllers. For example, both chromosomes C1(P1, I1, D1) and C2(P2, I2, D2) are the
levels to be selected and each PID parameter is the factor in the orthogonal array. In this paper, the
orthogonal array selects L4(23). The P1, I1 and D1 are represented level 1 and the P2, I2 and D2 are
represented level 2. Calculate the SNR of each experiment in the orthogonal array, then calculate
the effect of the various factors. The tracking performance is obtained and the small one is best.

The formulation of SNR can be rewritten as ρκ j =
1
2

2∑
is=1

Jc jis
where κ represents the number of factor,

j represents the number of level (Jc to be defined later), and the smaller one can be obtained. After
the orthogonal array experiment, the smaller SNRs are obtained to find the best factors and the best
chromosome can be found by each level. For example, level 1 is obtained in the factor P such that P1 is
selected; level 2 is obtained in the factor I, such that I2 can be selected; level 1 is obtained in the factor
D such that D1 is selected. Based on the above description, the best chromosome is CBT(P1, I2, D1).
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Step 7: Mutation: Real coded changes its value by extending or shortening the scalar. Refer
to [31,34,35], we can re-implement the mutation operator as the following

Co f f spring2 = Cparent + 2βmCparent, (35)

where βm is randomly selected in a range [−1 , 1]. By doing this way, it changes both the scalar and the
direction to achieve mutation operator.

Step 8: Enzyme/Virus: Select two chromosomes from the population. Enzyme and virus operators
can provide us with a suitable controller type. Two different type chromosomes from the pool of {P, PI,
PD, PID} are randomly selected. For instance, the former operator can transform PID controller to P
controller, PI controller or PD controller; the latter operator transforms P controller to PI controller,
PD controller, or PID controller.

Step 9: Calculating cost value: In order to evolve the population, the cost function is employed to
evaluate the value of each chromosome and the minimum one is the best chromosome. We define the
cost function as

Jc =

∫ t f

0

w1(

p∑
j1=1

|ey j1
(τ)|) + w2(

m∑
j2=1

|u j2(τ)|)

dτ, (36)

where ey(τ) =
[

ey1(τ), ey2(τ), · · · , eyp(τ)
]T

denotes the error between the output and the

pre-specified trajectory, u(τ) =
[

u1(τ), u2(τ), · · · , um(τ)
]T

denotes the control force, and Jc

denotes the cost value.
Step 10: Stopping criterion: If the stopping criterion is reached, then the algorithm is terminated.

Otherwise, return to Step 3 and continue to Step 10.

5. Illustrative Examples

In this section, two numerical simulations are given to illustrate the proposed fixed (optimal-based
robust tracker) and flexible (HTRDNA-based robust tracker) trackers, respectively.

5.1. Fixed PID-Type Controller

To verify effectiveness of the proposed PID-based robust tracker, the following example is
considered. Consider the nonlinear, Chen’s chaotic system described as

.
x1(t) = a(x2(t) − x1(t))
.
x2(t) = (c− a)x1(t) − x1(t)x3(t) + cx2(t) + u1(t) + d1(x, t)
.
x3(t) = x1(t)x2(t) − bx3(t) + u2(t) + d2(x, t)

, (37)

or in the general form
.
x(t) = Ax(t) + B(u(t) + g(x, t) + d(x, t)), (38)

where A =


−a a 0

c− a c 0
0 0 −b

, B =


0 0
1 0
0 1

, x(t) =


x1(t)
x2(t)
x3(t)

, u∗(t) =

[
u1
∗(t)

u2
∗(t)

]
, g(x, t) =

[
−x1(t)x3(t)
x1(t)x2(t)

]
, d(x, t) =

[
d1(x, t)
d2(x, t)

]
, in which a = 35, b = 3, c = 28, x ∈ <3, u(t) ∈ <2 and the

initial condition is selected as x(0) =
[
−0.5 0.2 0.3

]T
. The bounded nonlinear perturbation and

the reference trajectory r(t) are, respectively, given by

dg(x, t) =
[

cos(x1) 0
0 sin(x2)

][
0.3 0 0
0 −0.4 0.1

]
x(t) + g(x, t)



Mathematics 2019, 7, 1141 11 of 20

and

r(t) =


[

5 sin(2πt/1.5) 5 sin(2πt/1.5)
]T

, t ≤ 1.5 sec[
5 5

]T
, t > 1.5 sec

.

Let the output be represented by the general form

y(t) = Cx(t) + Du(t), (39)

where C =

[
−0.5 5 0

0 0 0.5

]
, D =

[
0.1 0
0 0.2

]
, y(t) =

[
y1(t)
y2(t)

]
, in which y ∈ <2.

We set the matrix pair {Q, R} =
{
103I2, I2

}
for the controller design, ko = 350, h = 5

and α = 0.8 to yield KD =

[
0 0.2 0
0 0 0.2

]
, M = I3 − BKD =


1 0 0
0 0.8 0
0 0 0.8

, Apid =


−35 35 0 0 0
−8.75 35 0 0 0

0 0 −3.75 0 0
−0.675 5.7 0 0 0

0 0 0.35 0 0


, Bpid =


0 0

1.25 0
0 1.25

0.125 0
0 0.25


, Cpid =

[
−0.675 5.70 0 0 0

0 0 0.35 0 0

]
, Dpid1 =

[
0.125 0

0 0.25

]
, Dpid2 =

[
0.025 0

0 0.05

]
, Cs =

[
0 0.8 0 0 0
0 0 0.8 0 0

]
, γ = 100, σ = 0.1 and δ = 10−3.

The PI gain matrices can be obtained as below

K =
[

KP KI
]
=

[
−5.503 46.1477 0 82.7264 0

0 0 1.3867 0 40.1473

]
,

where KP ∈ <
2×3 and KI ∈ <

2×2. The sliding surface and fixed PID-type controller are given in (13)
and (27), respectively.

Figures 2–4 demonstrate the tracking performance between the controlled system output y(t) and
the pre-specify trajectory r(t). The sliding surface is shown in Figure 5. The estimation error between
perturbation estimator and perturbation is shown in Figure 6. Figures 2–6 demonstrate a satisfied
performance based on the proposed robust tracker for the system with unknown perturbation.

5.2. Flexible PID-Type Controller Based on the HTRDNA

To improve the tracking performance of the proposed PID-based robust tracker, the proposed
HTRDNA is adopted. Consider the same Chen’s chaotic system given in Section 5.1. For searching the
best cost value during the iterative process, we define the cost function as

Jc =

∫ t f

0

w1(

p∑
j1=1

|ey j1
(τ)|) + w2(

m∑
j2=1

|u j2(τ)|)

dτ, (40)

where ey(τ) =
[

ey1(τ), ey2(τ), · · · , eyp(τ)
]T

denotes the error between the output and the

pre-specified trajectory, u(τ) =
[

u1(τ), u2(τ), · · · , um(τ)
]T

denotes the control force, Jc denotes
the cost value.

Here, we hope to apply the HTRDNA algorithm to seek for the best one from four kinds of PID-type
controllers. The parameters are chosen as follows: The maximum iteration number is 100, probability
of crossover pc = 0.5, probability of mutation pm = 0.01, probability of enzyme pe = 0.01, probability of
virus pv = 0.01, the orthogonal array select L4(23), the weighting w1 = 1 and w2 = 10−3. The resultant
controller selected based on the HTRDNA algorithm is the PID-type controller and its parameters are
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KP =

[
−5.0668 49.8911 0

0 0 2.4501

]
, KI =

[
102.4782 0.0001

0.0002 50.7663

]
and KD =

[
0 0.0081 0.0061
0 0.0019 0.0096

]
.

The sliding surface and fixed PID-type controller are given in (13) and (27), respectively.
Figures 7–11 demonstrate a quite satisfied tracking performance based on the proposed method.

According to Figures 3 and 8, the proposed HTRDNA algorithm can improve the error performance by
considering the performance index in (40). Figures 4 and 9 show the control input without undesired
chartering phenomenon by using the proposed control law (27). Compare Figure 4 with Figure 9,
Figure 9 shows that the control input is constrained by the performance index in (40). Figures 6 and 11
show that the error of perturbation estimation is converged. The simulation results demonstrate the
validity of the proposed perturbation estimator method. Furthermore, based on the cost function
(40), Figure 12 shows that the proposed flexible PID-type controller outperforms the fixed PID-type
controller. In addition, Figure 12 shows that the proposed HTRDNA algorithm outperforms the real
code DNA (RDNA) algorithm. Consider the performance index (40) to Section 5.1, the cost value is
0.2129. After HTRDNA algorithm optimization, the cost value is 0.1793. Compare Section 5.1 with
Section 5.2, the proposed HTRDNA algorithm can optimize the controller and improve the tracking
performance. Based on the above description, the newly proposed HTRDNA algorithm can improve
the performance for the proposed controller.
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6. Conclusions

A robust tracker design for a class of nonlinear controlled systems with/without direct feed-through
term and unknown nonlinear perturbation is proposed in this paper. Based on LQAT, by taking linear
transformation and augmented state, a simple approach for the PID-type controller with SMC and
perturbation estimator is proposed. The designed perturbation estimator is employed to eliminate
the unknown nonlinear perturbation so that the better performance can be achieved. To improve the
efficiency of real coded DNA algorithm, this paper utilizes the advantage of the Taguchi method to
real coded DNA algorithm so that the HTRDNA algorithm is newly proposed for the PID controller
optimization. Due to the SMC with fast response, SMC is employed to cope with the nonlinear
perturbation and then HTRDNA algorithm can be utilized to tune the PID controller type and its
parameters. Simulation results demonstrate the validity of our proposed method.
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Appendix A

Proof of Theorem A1. Substitute (19) and (20) into the derivative of sliding surface in (13) to obtain

.
s(t) = d̃g(t) − γs(t). (A1)

Differentiating (17), one has

.
d̂(t) = ko

( .
s(t) + γs(t)

)
= ko

(
d̃g(t) − γs(t) + γs(t)

)
= kod̃g(t).

(A2)

Substituting (16) and (A2) into the differentiation of (20) yields

.
d̃g(t) =

.
dg(x, t) −

.
d̂g(t) =

.
dg(x, t) − kod̃g(t)

= −kod̃g(t).
(A3)

If the gain ko is selected to be a positive value, the error of (20) can converge and approximate to
zero. In other words, the estimated perturbation can approximate to the unknown perturbation at the
steady state.

Consider a candidate Lyapunov function as

v(s) =
1
2

sTs, (A4)

and taking the derivative of v(s) in (A4) gives

.
v(s) = sT .

s = sT
(
d̃g(x, t) − γs− σsat(s(t))

)
≤ ‖d̃g(x, t)‖‖s‖ − γ‖s‖2 − σ‖s‖

≤ −γ‖s‖2 − σ‖s‖.
(A5)

Equations (A3)–(A5) show that the sliding mode states can reach the defined sliding manifold
in finite time with the given parameters γ > 0 and σ > 0; therefore, (17) can estimate the unknown
external perturbation and eliminate its impact directly. In addition, when d̃g(t) equals or closes to zero,
the controller in (19) can achieve a desired tracking performance. �

Appendix B

Proof of Theorem A2. Consider a linear time-invariant system with the PI-type controller and
underdetermined u(t) term described by

.
x(t) = Ax(t) + B

(
u(t) −KPx(t) −KI

∫
ey(t)dt

)
, (A6)

y(t) = Cx(t) + D
(
u(t) −KPx(t) −KI

∫
ey(t)dt

)
. (A7)

Take the Laplace transform of the tracking error to obtain the following equations

Ey(s) = Y(s) −Rs =
{
(C−DKP)[sIn − (A− BKP)]

−1B + D
}(Us

s
−KI

E(s)
s

)
−

Rs

s
, (A8)
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where Us and Rs are the steady-state values of u(t) and r(t), respectively, during any time period, if
u(t) and r(t) change slightly relative to the high gain property controlled system dynamics. Using the
final-value theorem to (A8), one has

lim
s→0

sEy(s) = lim
s→0

s
[
W

(
Us

s
−Ki

E(s)
s

)
−

Rs

s

]
= lim

s→0

[
W

(
U(s) −KiE(s)

)
−Rs

]
, (A9)

where
W = (C−DKP)[sIn − (A− BKP)]

−1B + D. (A10)

Rearrange (A9) to have

lim
s→0

(sIn + KIW)Ey(s) = lim
s→0

(
WUs −Rs

)
,

which implies
lim
s→0

{
(C−DKP)[sIn − (A− BKP)]

−1B + D
}
Us −Rs = 0

for lim
s→0

sEy(s) = 0. From (A10), we can infer that it is sufficient to derive the controller u(t) in (22) and

(23) by applying the final-value theorem without the integral term.
According to Theorem 1 and Theorem 2, SMC is reached and the perturbation is estimated by the

perturbation estimator. Then, take Laplace transforms of (22) and (23) without integral term to obtain

Y(s) = Cpidc(sIn −Apidc)
−1Bpid

Us
s + Dpid1

(
Us
s −

D̂gs
s

)
=

[
Cpidc(sIn −Apidc)

−1Bpid + Dpid1

]
Us
s −D

D̂gs
s ,

(A11)

where D̂gs is the steady-state values of d̂g(t), during any time period, if d̂g(t) changes slightly relative to
the high gain property controlled system dynamics. Applying the final-value theorem to the tracking
error and forcing it to be zero yields

lim
s→0

sEy(s) = lim
s→0

s(Y(s) −Rs)

=
[
Cpidc(−Apidc)

−1Bpid + Dpid1

]
Us −DD̂gs −Rs

= 0,

so that in general, one has

u(t) =
[
Cpidc(−Apidc)

−1B + Dpid1

]†{
r(t) + Dd̂g(t)

}
, (A12)

where
Apidc = Apid − BpidKP,

�
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