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1. Introduction

At the present time, the theory of differential equations and inclusions of fractional order is
the subject of an active study for a large number of researchers. One of the main reasons for this
interest is caused by important applications of this theory in physics, engineering, biology, economics,
and other sciences (see, e.g., [1–4] and the references therein). It should be mentioned in this connection
that fractional order models provide an effective and convenient machinery for the description of
systems with memory and hereditary properties.

In the present paper, for a semilinear fractional–order functional differential inclusion in a
separable Banach space E of the form

CDqx(t) ∈ Ax(t) + F(t, xt), t ∈ [0, T], (1)

we consider the problem of existence of a mild solution to this inclusion satisfying the periodic
boundary value condition (PBVP). Here, CDq denotes the Caputo fractional derivative of the order
0 < q < 1, A : D(A) ⊂ E → E is the infinitesimal generator of a bounded C0-semigroup, F : [0, T]×
C([−h, 0]; E) ( E is a multivalued nonlinearity and the function xt describes the prehistory of the
solution at the moment t ∈ [0, T], i.e., xt(s) = x(t + s), s ∈ [−h, 0], 0 < h < T. It is worth noting that
the introducing into consideration of the delay of the trajectory allows, additionally to the application
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of the fractional derivative, to reflect the dependence of the current state of a system on its previous
characteristics.

Among a large amount of papers dedicated to fractional-order equations and inclusions in
Banach spaces, let us mention works [5–15] where existence results of various types were obtained.
In particular, in the authors’ paper [6], the periodic boundary value problem for fractional-order
semilinear differential inclusions in Banach spaces was studied by the method of translation
multioperator along the trajectories of the inclusion. However, this method can not be extended
directly to the case of functional differential inclusions. For this reason, in the present paper, we
apply for the solving of the PBVP the method of integral multioperators, combined with the theory of
condensing multimaps and the theory of Mittag–Leffler functions.

The paper is organized in the following way. In the next section, we present necessary notions
and facts from the fractional and multivalued analysis as well as from the theory of condensing maps.
In Section 3, we study the PBVP for a semilinear fractional-order functional differential inclusion
with delay in a Banach space. We introduce and study a multivalued integral operator whose fixed
points coincide with mild solutions of our problem. On that base, we prove the main existence result
(Theorem 4). In the last section, we consider an example dealing with existence of a trajectory for a
time-fractional diffusion type feedback control system with delay satisfying the periodic boundary .

2. Preliminaries

2.1. Differential Equations of Fractional Order

Recall some notions and definitions which we will need in the sequel (details can be found,
e.g., in [1,3,4]).

Let E be a real Banach space.

Definition 1. The Riemann–Liouville fractional derivative of the order q ∈ (0, 1) of a continuous function
g : [0, a]→ E is the function Dqg of the following form:

Dqg(t) =
1

Γ(1− q)
d
dt

∫ t

0
(t− s)−qg(s) ds

provided the right-hand side of this equality is well defined.

Here, Γ is the Euler gamma-function

Γ(r) =
∫ ∞

0
sr−1e−sds.

Definition 2. The Caputo fractional derivative of the order q ∈ (0, 1) of a continuous function g : [0, a]→ E
is the function CDqg defined in the following way:

CDqg(t) =
(

Dq(g(·)− g(0))
)
(t)

provided the right-hand side of this equality is well defined.

Definition 3. A function of the form

Eq,β(z) =
∞

∑
n=0

zn

Γ(qn + β)
, q, β > 0, z ∈ C

is called the Mittag–Leffler function.
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Denote Eq,1 by Eq. Notice that from the relations (see, e.g., [16]):

Eq(−z) =
∫ ∞

0
ξq(θ)e−zθdθ

and
Eq,q(−z) =

∫ ∞

0
qθξq(θ)e−zθdθ,

where
ξq(θ) =

1
q

θ
−1− 1

q Ψq(θ
−1/q), (2)

Ψq(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ R+. (3)

It follows that
Eq(τ) > 0, Eq,q(τ) > 0 for τ < 0. (4)

Remark 1 (See, e.g., [4,14]). ξq (θ) ≥ 0,
∫ ∞

0 ξq (θ) dθ = 1,
∫ ∞

0 θξq (θ) dθ = 1
Γ(q+1) .

In the sequel, we will need the following relations (see [17])

Eq,β(z) =
1

Γ(β)
+ zEq,β+q(z), (5)

∫ z

0
tβ−1Eq,β(λtq)dt = zβEq,β+1(λzq). (6)

2.2. Measures of Noncompactness and Condensing Maps

Let E be a Banach space. Introduce the following notation:

• P(E) = {A ⊆ E : A 6= ∅} ;
• Pb(E) = {A ∈ P(E) : A is bounded } ;
• Pv(E) = {A ∈ P(E) : A is convex} ;
• K(E) = {A ∈ Pb(E) : A is compact} ;
• Kv(E) = Pv(E) ∩ K(E).

Definition 4 (See, e.g., [18]). Let (A,≥) be a partially ordered set. A function β : Pb(E)→ A is called the
measure of noncompactness (MNC) in E if for each Ω ∈ Pb(E) we have:

β(co Ω) = β(Ω),

where co Ω denotes the closure of the convex hull of Ω.

A measure of noncompactness β is called:

(1) monotone if for each Ω0, Ω1 ∈ Pb(E), Ω0 ⊆ Ω1 implies β(Ω0) ≤ β(Ω1);
(2) nonsingular if for each a ∈ E and each Ω ∈ Pb(E) we have β({a} ∪Ω) = β(Ω).

If A is a cone in a Banach space, the MNC β is called:

(3) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E);
(4) real if A is the set of all real numbers R with the natural ordering;
(5) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every Ω0, Ω1 ∈ Pb(E).
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As the example of a real MNC obeying all above properties, we can consider the Hausdorff
MNC χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E}.

Notice that the Hausdorff MNC satisfies the semi-homogeneity condition, i.e.,:

χ(λΩ) = |λ|χ(Ω),

for every λ ∈ R and Ω ∈ P(E). More generally, if L : E → E is a bounded linear operator, then

χ(L(Ω)) = ‖L‖χ(Ω)

for every Ω ∈ P(E).
Recall that the norm of a set M ∈ Pb(E) is defined by the formula:

‖M‖ = sup
x∈M
‖x‖E .

Definition 5 (See, e.g., [18]). Let X be a closed subset of E ; β a MNC in E . A multivalued map (multimap)
F : X → K(E) is called condensing w.r.t. β (or β-condensing) if for every Ω ∈ Pb(X) which is not relatively
compact we have:

β(F(Ω)) 6≥ β(Ω).

Definition 6 (See, e.g., [18–20]). Let X be a metric space. A multimap F : X → P(E) is called upper
semicontinuous (u.s.c.) if

F−1(V) = {x ∈ X : F (x) ⊂ V}

is an open subset of X for each open set V ⊂ E .

Theorem 1 (Cf. Corollary 3.3.1 [18]). LetM be a convex closed subset of E and F :M→ Kv(M) a u.s.c.
β–condensing multimap, where β is a nonsingular MNC in E . Then, the fixed point set FixF = {x : x ∈ F (x)}
is non-empty.

Recall some notions (see, e.g., [18,20]). Let E be a Banach space.

Definition 7. For a given 1 ≤ p ≤ ∞, a multifunction G : [0, τ]→ K(E) is called:

• Lp–integrable if it admits an Lp–Bochner integrable selection, i.e., there exists a function g ∈ Lp ((0, τ); E)
such that g(t) ∈ G(t) for a.e. t ∈ [0, τ];

• Lp–integrably bounded if there exists a function ξ ∈ Lp((0, τ)) such that

‖G(t)‖ ≤ ξ(t)

for a.e. t ∈ [0, τ].

The set of all Lp–integrable selections of a multifunction G : [0, τ]→ K(E) is denoted by S p
G[0, τ].

Definition 8. The integral of an Lp-integrable multifunction G : [0, τ]→ K(E) is defined in the following way:∫ τ

0
G(s) ds =

{ ∫ τ

0
f (s) ds : f ∈ S p

G[0, τ]
}

.

In the sequel, we will need the following important property on the χ-estimation of the integral
of a multifunction.
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Lemma 1 (See Theorem 4.2.3 in [18]). Let E be a separable Banach space and G : [0, τ]→ K(E) an integrable,
integrably bounded multifunction such that

χ(G(t) ≤ v(t) for a.e. t ∈ [0, τ],

where χ is the Hausdorff MNC in E and v(·) ∈ L1
+(0, τ). Then,

χ
( ∫ τ

0
G(s) ds

)
≤
∫ τ

0
v(s) ds.

3. Existence Result

For a semilinear fractional–order differential inclusion in a separable Banach space E of the form

CDqx(t) ∈ Ax(t) + F(t, xt), t ∈ [0, T], (7)

we consider the problem (PBVP) of existence of a mild solution satisfying the following periodic
boundary value condition

x0 = xT (8)

under the next basic assumptions.
As earlier, the symbol CDqx denotes the Caputo fractional derivative of order q ∈ (0, 1).

We suppose that the linear operator A satisfies condition

(A) A : D(A) ⊆ E→ E is a linear closed (not necessarily bounded) operator generating a bounded
C0–semigroup{U(t)}t≥0 of linear operators in E.

In the sequel, we will use the notation C := C([−h, 0]; E).

We will assume that the multivalued nonlinearity F : [0, T]× C → Kv(E) obeys the following
conditions:

(F1) for each ξ ∈ C the multifunction F (·, ξ) : [0, T]→ Kv (E) admits a measurable selection;
(F2) for a.e. t ∈ [0, T] the multimap F(t, ·) : E→ Kv (E) is u.s.c.;
(F3) there exist functions α, γ ∈ L∞

+([0, T]) such that, for each ξ ∈ C, we have

‖F(t, ξ)‖E ≤ α(t) + γ(t) ‖ξ‖C for a.e. t ∈ [0, T],

(F4) there exists a function µ ∈ L∞([0, T]) such that for each bounded set ∆ ⊂ C we have:

χ(F(t, ∆)) ≤ µ(t)ϕ(∆),

for a.e. t ∈ [0, T], where ϕ(∆) = sups∈[−h,0] χ(∆(s)), χ is the Hausdorff MNC in E, ∆(s) =

{y(s) : y ∈ ∆} .

For a given x ∈ C([−h, T]; E) consider the multifunction

Φ : [0, T]→ Kv(E), Φ(t) = F(t, xt).

From above conditions (F1)–(F3), it follows (see, e.g., [18] Theorem 1.3.5) that the multifunction Φ
is L∞–integrable and, therefore, the superposition multioperator P∞

F : C([−h, T]; E)→ P(L∞([0, T]; E))
can be defined in the following way:

P∞
F (x) = S∞

Φ .
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Now, we consider the operator functions defined in the following way:

G(t) =
∫ ∞

0
ξq(θ)U(tqθ)dθ,

T (t) = q
∫ ∞

0
θξq(θ)U(tqθ)dθ,

where the function ξq(θ) is given by (2) and (3).

Remark 2. In a scalar case E = R and U(t) = e−ηt with η > 0:

G(t) = Eq(−ηtq), T (t) = Eq,q(−ηtq), t ∈ [0, T].

Lemma 2 (See [4,14]). The operator functions G and T possess the following properties:

(1) for each t ∈ [0, T], G(t) and T (t) are linear bounded operators and moreover, if the semigroup U(t) satisfies
the estimate

‖U(t)‖ ≤ e−ηt, t ≥ 0 (9)

with η > 0, then
‖G(t)‖ ≤ Eq(−ηtq) ≤ 1, t ∈ [0, T], (10)

‖T (t)‖ ≤ Eq,q(−ηtq) ≤ q
Γ(1 + q)

, t ∈ [0, T]; (11)

(2) the operator functions G(·) and T (·) are strongly continuous, i.e., functions t ∈ [0, T] → G(t)x and
t ∈ [0, T]→ T (t)x are continuous for each x ∈ E.

Definition 9. A mild solution of inclusion (7) is a function x ∈ C([−h, T]; E) satisfying

x(t) = G(t)x(0) +
∫ t

0
(t− s)q−1T (t− s)φ(s)ds, t ∈ [0, T], (12)

where φ ∈ P∞
F (x),

In what follows, we will assume that the next condition holds true:

1 /∈ sp[G(T)]. (13)

Consider the multioperator G : C([−h, T]; E)→ P(C([−h, T]; E)), given in the following way:

G(x) = {y},

for all functions y defined as
y(t) = G(t) (I − G(T))−1 ∫ T

0 (T − s)q−1T (T − s)φ(s)ds+∫ t
0 (t− s)q−1T (t− s)φ(s)ds, t ∈ [0, T],

y(s) = y(T − s), s ∈ [−h, 0],
(14)

where φ ∈ P∞
F (x).

The well posedness of the operator G follows from the next assertion.

Lemma 3. If y ∈ G(x) for some x ∈ C([−h, T]; E), then y(0) = y(T) and hence y0 = yT .
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Proof. In fact,

y(T) = G(T) (I − G(T))−1
∫ T

0
(T − s)q−1T (T − s)φ(s)ds +

∫ T

0
(T − s)q−1T (T − s)φ(s)ds =

=
(
G(T) (I − G(T))−1 + I

) ∫ T

0
(T − s)q−1T (T − s)φ(s)ds =

= (I − G(T))−1
∫ T

0
(T − s)q−1T (T − s)φ(s)ds = y(0).

Equality y0 = yT then follows from the definition of G.

Theorem 2. Fixed points of the multioperator G coinside with mild solutions to problems (7) and (8).

Proof.
(i) If x is a solution of problems (7) and (8), then, for t ∈ [0, T], it has the form

x(t) = G(t)x(0) +
∫ t

0
(t− s)q−1T (t− s)φ(s)ds,

where φ ∈ P∞
F (x). From condition (8), it follows that

x(0) = x(T) = G(T)x(0) +
∫ T

0
(T − s)q−1T (T − s)φ(s)ds,

implying

x(0) = (I − G(T))−1
∫ T

0
(T − s)q−1T (T − s)φ(s)ds,

that yields, for t ∈ [0, T],

x(t) = G(t) (I − G(T))−1
∫ T

0
(T − s)q−1T (T − s)φ(s)ds +

∫ t

0
(t− s)q−1T (t− s)φ(s)ds, (15)

that is x ∈ FixG.

(ii) Conversely, let x ∈ FixG; then, it satisfies, for t ∈ [0, T], Equation (15) with φ ∈ P∞
F (x), whence it

is a mild solution of inclusion (7). The validity of condition (8) follows from Lemma 3.

Let us consider some topological properties of the multioperator G.

Lemma 4. The multioperator G is u.s.c. and has compact values.

Proof. It is clear that it is sufficient to prove the assertion for the multioperator G whose values are
naturally restricted to the space C([0, T]; E). Let us denote this restriction as G̃.

The multioperator G̃ : C(−h, T]; E) → P(C([0, T]; E)) may be represented in the form of the
following composition:

G̃(x) = σ ◦ ē ◦ ḡ ◦ S ◦ P∞
F (x), (16)

where
S : L∞([0, T]; E)→ C([0, T]; E),

S(φ)(t) =
∫ t

0
(t− s)q−1T (t− s)φ(s)ds;

ḡ : C([0, T]; E)→ C([0, T]; E)× C([0, T]; E),

ḡ(u) = (u, u);
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ē : C([0, T]; E)× C([0, T]; E)→ C([0, T]; E)× C([0, T]; E),

ē(u, v) = (w, v),

w(t) = G(t)(I − G(T))−1u(T);

and
σ : C([0, T]; E)× C([0, T]; E)→ C([0, T]; E),

σ(u, v) = u + v.

From the results of the work [5], it is known that the multioperator S ◦ P∞
F is u.s.c. with

compact values and now the assertion follows from the fact that each of ḡ, ē, and σ is a bounded
linear operator.

To prove that the multioperator G is condensing, consider the cone

R2
+ = {ζ = (ζ1, ζ2) : ζ1 ≥ 0, ζ2 ≥ 0} (17)

endowed with the natural ordering and introduce in the space C([−h, T]; E) the vector measure of
noncompactness

ν : P(C([−h, T]; E))→ R2
+

defined as
ν(Ω) = (ϕ(Ω), modC(Ω)) ,

where ϕ(Ω) is the module of fiber noncompactness

ϕ(Ω) = sup
t∈[−h,T]

χ({y(t) : y ∈ Ω})

and the second component is the module of equicontinuity:

modC(Ω) = lim
δ→0

sup
u∈Ω

max
|t1−t2|≤δ

‖u(t1)− u(t2)‖.

Theorem 3. Under assumptions (A), (F1)–(F4), suppose, additionally, that

(A1) the semigroup U satisfies estimate (9) for some η > 0.

If
‖µ‖∞

η
< 1, (18)

where µ(·) is the function from condition (F4), then the multioperator G is ν-condensing.

Proof. Let Ω ⊂ C([−h, T]; E) be a nonempty bounded set such that

ν(G(Ω)) ≥ ν(Ω). (19)

Let us show that Ω is relatively compact.
From (19), it follows that

ϕ(G(Ω)) ≥ ϕ(Ω). (20)

Let 0 ≤ t ≤ T. By using estimates (10) and (11) and property (F4), and denoting, for 0 ≤ s ≤ T,
Ωs ⊂ C,

Ωs = {xs : x ∈ Ω},

we get
χ (G(Ω)(t)) ≤
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≤ χ

(
G(t) (I − G(T))−1

∫ T

0
(T − s)q−1T (T − s)F(s, Ωs) ds +

∫ t

0
(t− s)q−1T (t− s)F(s, Ωs) ds

)
≤

≤
Eq

(
− ηtq

)
1− Eq

(
− ηTq

) ∫ T

0
(T − s)q−1Eq,q(−η(T − s)q)µ(s)ϕ (Ωs) ds+

+
∫ t

0
(t− s)q−1Eq,q(−η(t− s)q)µ(s)ϕ (Ωs) ds ≤

≤
Eq

(
− ηtq

)
1− Eq

(
− ηTq

) ‖µ‖∞ sup
t∈[−h,T]

χ(Ω(t))
∫ T

0
(T − s)q−1Eq,q(−η(T − s)q)ds+

+ ‖µ‖∞ sup
t∈[−h,T]

χ(Ω(t))
∫ t

0
(t− s)q−1Eq,q(−η(t− s)q)ds.

For further estimation of χ (G(Ω)(t)), t ∈ [0, T], let us evaluate the integrals in the last expression
by means of Formula (6):

∫ T

0
(T − s)q−1Eq,q(−η(T − s)q)ds = −

∫ T

0
(T − s)q−1Eq,q(−η(T − s)q)d(T − s) =

=
∫ T

0
yq−1Eq,q(−ηyq)dy = TqEq,q+1(−ηTq).

Similarly, we obtain

∫ t

0
(t− s)q−1Eq,q(−η(t− s)q)ds = tqEq,q+1(−ηtq).

Now, notice that, if we will take β = 1 in Formula (5), we have

Eq(−ηtq) =
1

Γ(1)
− ηtqEq,q+1(−ηtq) = 1− ηtqEq,q+1(−ηtq).

Thus, we get the following equalities

∫ T

0
(T − s)q−1Eq,q(−η(T − s)q)ds = Tq 1

ηTq
(
1− Eq(−ηTq)

)
=

1
η

(
1− Eq(−ηTq)

)
,

∫ t

0
(t− s)q−1Eq,q(−η(t− s)q)ds =

1
η

(
1− Eq(−ηtq)

)
.

Thus, for t ∈ [0, T], we obtain

χ (G(Ω)(t)) ≤
Eq

(
− ηtq

)
1− Eq

(
− ηTq

) ‖µ‖∞ sup
t∈[−h,T]

χ(Ω(t))
1
η

(
1− Eq(−ηTq)

)
+

+ ‖µ‖∞ sup
t∈[−h,T]

χ(Ω(t))
1
η

(
1− Eq(−ηtq)

)
=
‖µ‖∞

η
sup

t∈[−h,T]
χ(Ω(t)).

From the last estimate, we get

sup
t∈[0,T]

χ (G(Ω)(t)) ≤ ‖
µ‖∞
η

sup
t∈[−h,T]

χ(Ω(t)). (21)
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At the same time, notice that, from the definition of the multioperator G, it follows that

sup
s∈[−h,0]

χ (G(Ω)(s)) = sup
t∈[T−h,T]

χ (G(Ω)(t)) ≤ sup
t∈[0,T]

χ (G(Ω)(t)) . (22)

Taking into account estimates (21) and (22), we get

sup
t∈[−h,T]

χ (G(Ω)(t)) ≤ ‖
µ‖∞
η

sup
t∈[−h,T]

χ(Ω(t)),

or that is the same

ϕ (G(Ω)) ≤ ‖
µ‖∞
η

ϕ(Ω).

Conditions (29) and (20) obviously imply

ϕ(Ω) = 0.

In the paper [5], it was shown that, on the interval [0, T] :

modC (S ◦ P∞
F (Ω)) = 0;

therefore, by representation (16), we also have

modC

(
G̃(Ω)

)
= 0.

From the definition of G, it follows that

modC (G(Ω)) = 0

implying, by (20),

modC (Ω) = 0.

This means, by the Arzela–Ascoli theorem, that Ω is a relatively compact set, concluding
the proof.

Now, we are in position to prove the main result of this paper.

Theorem 4. Under conditions (A), (A1), (F1)–(F4), if

k
η
< 1, (23)

where k = max {‖γ‖∞, ‖µ‖∞} , functions γ and µ are from conditions (F3) and (F4) respectively, η is the
constant from condition (A1), then problems (7) and (8) have a solution.

Proof. Take arbitrary x ∈ C([−h, T]; E) and y ∈ G(x), then, for some φ ∈ P∞
F (x), we will have,

for t ∈ [0, T] the following estimate:
‖y(t)‖E ≤

≤
∥∥∥∥G(t) (I − G(T))−1

∫ T

0
(T − s)q−1T (T − s)φ(s)ds +

∫ t

0
(t− s)q−1T (t− s)φ(s)ds

∥∥∥∥
E
≤

‖G(t)‖
∥∥∥(I − G(T))−1

∥∥∥ ∫ T

0
(T − s)q−1T (T − s)

(
α(s) + γ(s) ‖xt‖C

)
ds+
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+
∫ t

0
(t− s)q−1 ‖T (t− s)‖

(
α(s) + γ(s) ‖xt‖C

)
ds ≤

≤
Eq

(
− ηtq

)
1− Eq

(
− ηTq

) ∫ T

0
(T − s)q−1Eq,q(−η(T − s)q)

(
α(s) + γ(s) ‖x‖C([−h,T];E)

)
ds+

∫ t

0
(t− s)q−1Eq,q(−η(t− s)q)

(
α(s) + γ(s) ‖x‖C([−h,T];E)

)
ds ≤

≤
Eq

(
− ηtq

)
1− Eq

(
− ηTq

)(‖α‖∞ + ‖γ‖∞ ‖x‖C([−h,T];E)

) 1
η

(
1− Eq(−ηTq)

)

+
(
‖α‖∞ + ‖γ‖∞ ‖x‖C([−h,T];E)

) 1
η

(
1− Eq(−ηtq)

)
=

=
(
‖α‖∞ + ‖γ‖∞ ‖x‖C([−h,T];E)

) 1
η

.

Notice that, by definition of G, the last estimate is also valid for t ∈ [−h, 0].
Now, if we will take

R ≥ ‖α‖∞η−1

1− ‖γ‖∞η−1 ,

then the inequality ‖x‖C([−h,T];E) ≤ R implies ‖G(x)‖C([−h,T];E) ≤ R. Therefore, the multioperator G
transforms the closed ball BR(0) ⊂ C([−h, T]; E) into itself. By Theorem 1, G has a fixed point, which
is, by virtue of Theorem 2, a solution of problems (7) and (8).

4. Example: A Periodic Problem for a Time-Fractional Diffusion System

At the present time, the research of many authors (see [3] and the references therein) are devoted
to the study of equations of the form

Dα
t y(x, t) =

d2y(x, t)
dx2 . (24)

Since the order α of the derivative with respect to time in Equation (24) can be of arbitrary
real order, including α = 1, it is called the fractional diffusion-wave equation. This name has been
suggested by Mainardi (see [21]). For α = 1, Equation (24) becomes the classical diffusion equation; for,
0 < α < 1, we have so-called ultraslow diffiision. It is important that the fractional diffusion equation
has been related to a dynamical process in fractal media: the order of the resulted equation depends
on the fractal, which serves as a model of a porous material (see, e.g., [22]).

In our example, we consider such a fractional diffusion process subject to control effects.
Let R2 be the two-dimensional plane of points ζ = (ζ1, ζ2). As earlier, by R2

+, we denote the first
quadrant of the plane defined by Formula (17). Denote by L2(R2

+) the Hilbert spaces of functions
square summable on R2

+.
We will consider a time-fractional control system whose state will be described by the function

v : [−h, T] × R2
+ → R, v(t, ·) ∈ L2(R2

+), t ∈ [−h, T]. Similarly to the foregoing, let us denote by
C := C([−h, 0]; L2(R2

+)).
The control is characterized by k sources of external influence whose properties at the moment

t ∈ [0, T] are dependent on the prehistory of the system. Their densities are described by the functions
φi : R2

+×C → R, i = 1, ..., k and the intensities of sources can be regulated by the controls νi : [0, T]→ R,
i = 1, ..., k, measurable functions satisfying the feedback condition with delay of the form

ν(t) = (ν1(t), ..., νk(t)) ∈W(vt)), t ∈ [0, T], (25)
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where vt ∈ C is defined as the function s→ v(t + s, ·), s ∈ [−h, 0] and W is a u.s.c. multimap from C to
Euclidean space Rm with convex closed values which is globally bounded:

‖W(ξ)‖ ≤ W

for all ξ ∈ C, whereW > 0.
We will consider a time-fractional diffusion type feedback control system with delay governed by

the following equation of the order 0 < q < 1:

CDq
t v(t, ζ) = (4− η)v(t, ζ) +

k

∑
i=1

νi(t)φi(ζ, vt)), (t, ζ) ∈ [0, T]×R2
+ (26)

∂

∂n
v(t, ζ) = 0, (t, ζ) ∈ [0, T]× ∂R2

+, (27)

where4 = ∂2

∂ζ2
1
+ ∂2

∂ζ2
2

is the Laplace operator, η > 0.

For the above system, we will study the existence of a solution v(t, ζ) satisfying the periodic
boundary value condition of the form

v0 = vT . (28)

Consider the differential operator of the form A = 4− η I with the domain H2
0(R2

+), where H2
0

denotes the Sobolev space of functions whose normal derivatives ∂
∂n are vanishing on the boundary.

Then, as it is shown in [23], the boundary value problem

(λI − A)u = f , λ ≥ 0,

∂

∂n
u|Γ = 0

for f ∈ L2(R2
+), Γ = ∂R2

+ is solvable and the operator associating to the function f the solution u is
bounded. Moreover, since the set of functions with a finite support vanishing on a neighborhood of
the boundary Γ is densely embedded in L2(R2

+), by applying the Green formula to the expression∫
Ω u4udx, where Ω = R2

+, we get, for λ > 0, the following estimate:

(λ + η)‖u‖2 ≤ (λ + η)〈u, u〉 −
∫

Ω
u4udx = 〈(λI − A)u, u〉 ≤ ‖ f ‖ ‖u‖,

where the norm and the scalar product are taken in L2(R2
+). Hence, for the resolvent R(λ, A) =

(λI − A)−1, the following estimate is true:

‖R(λ, A)‖ ≤ 1
λ + η

for λ > 0.

This means (see, e.g., [24] Corollary II.3.5) that the operator A generates a strongly continuous
semigroup eAt satisfying the estimate

‖eAt‖ ≤ e−ηt, t ≥ 0. (29)

Notice that, since the resolvent R(λ, A) is noncompact, the semigroup eAt is also noncompact.
Furthermore, we assume that functions φi, i = 1, ..., k satisfy the following conditions:

(φ1) φi(·, ξ) : R2
+ → R is measurable for all ξ ∈ C;

(φ2) |φi(ζ, ξ)| ≤ ωi(ζ) for a.e. ζ ∈ R2
+ and all ξ ∈ C, where ωi ∈ L2

+(R2
+);

(φ3) |φi(ζ, ξ1)− φi(ζ, ξ2)| ≤ µi‖ξ1 − ξ2‖C for all ξ1, ξ2 ∈ C.
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Then, it is easy to see that the map h : C × BW (Rk)→ L2(R2
+), where BW (Rk) = {ν ∈ Rk : ‖ν‖ ≤

W}, defined as

h(ξ, ν)(ζ) =
k

∑
i=1

νiφi(ζ, ξ)

is µ-Lipschitz in ξ with

µ =W

√√√√ k

∑
i=1

µ2
i

and compact in ν, i.e., the set h(ξ,BW (Rk)) is relatively compact in L2(R2
+) for each ξ ∈ C.

However, then, one can verify (see [18] Proposition 2.2.2) that the multimap F : C → Kv(L2(R2
+))

F(ξ) = h(ξ, W(ξ))

satisfies conditions (F2)–(F4) of Section 3 (with α(t) ≡ ω :=W
√

∑k
i=1 ‖ωi‖2

L2 , γ(t) ≡ 0 in condition
(F3) and µ(t) ≡ µ in condition (F4)).

Now, we can rewrite our system in the form of the following fractional-order functional differential
inclusion in the Hilbert space E = L2(R2

+) :

CDqx(t) ∈ Ax(t) + F(xt), t ∈ [0, T]. (30)

To verify condition (13), let us estimate the norm of the operator G(T). By using estimate (29),
we have

‖G(T)‖ ≤
∫ ∞

0
ξq(θ)‖eA(Tqθ)‖ dθ ≤

∫ ∞

0
ξq(θ)e−ηTqθ dθ = Eq(−ηTq) < 1. (31)

Now, in accordance with Theorem 4, we conclude that, under condition

µ

η
< 1,

system (26) has a trajectory v∗(t, ζ) satisfying (28). The corresponding control may be taken as a
measurable selection of the multifunction W(v∗t ).
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