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Abstract: We present a robust dynamic programming approach to the general portfolio selection
problem in the presence of transaction costs and trading limits. We formulate the problem as
a dynamic infinite game against nature and obtain the corresponding Bellman-Isaacs equation.
Under several additional assumptions, we get an alternative form of the equation, which is more
feasible for a numerical solution. The framework covers a wide range of control problems, such as the
estimation of the portfolio liquidation value, or portfolio selection in an adverse market. The results
can be used in the presence of model errors, non-linear transaction costs and a price impact.
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1. Introduction

In this paper, we consider a robust approach to the constrained portfolio optimization problem
in the presence of transaction costs and a price impact on the market. Optimal portfolio selection
has become a popular topic in the mathematical finance literature since the pioneering works of
Samuleson [1] and Merton [2]. Both papers consider a stochastic dynamic programming approach
to the portfolio optimization problem on an efficient frictionless market with no trading limits.
The continuous-time Samuelson model has been extended in various studies, see Reference [3]
for an overview of the field. The works by Magill & Constantinides [4] and Davis & Norman [5],
among others, paved the way for a new direction in research by considering a market with friction
and introducing linear transaction costs, see Reference [6] for an overview. Portfolio selection for a
discrete-time market, however, has not been given as much attention in the academic literature as its
continuous-time counterpart, since in most cases it does not provide the Hamilton-Jacoby-Bellman
equation (or quasi-variational inequality) to get the solution in a closed form, but requires a numerical
solution instead. The discrete-time approach has been implemented in Bertsimas & Lo [7] and
Almgren [8,9] for the optimal execution problem when an investor chooses the optimal strategy of the
portfolio liquidation over a given number of consecutive periods.

The assumptions of the classic financial market model have undergone heavy criticism in view
of the LTCM crisis in 1998 [10]. One of the main topics of discussion was the VAR risk metric, which
assumed the Samuelson price model based on geometric Brownian motion and underestimated the
risk of sudden price movements. Another question concerned the significance of market liquidity and
transaction costs. Many works have been presented to deal with both problems. In References [8,9,11],
the authors introduce a trade-off between profit and volatility in a portfolio optimization framework in
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the presence of costs. Reference [12] accounts for the sudden price movements by introducing jumps
into the price model. Nevertheless, most frameworks are still based on the arithmetic or the geometric
Brownian motion model. In this paper, we present a discrete-time portfolio optimization framework in
the presence of ambiguity in an illiquid market. The approach can be used to account for the impact of
model error, which might be significant in many cases and especially during a financial crisis, when
the investor needs a conservative estimate of the portfolio liquidation value, or when the portfolio
needs to be rebalanced in a short period of time.

We adapt the framework of Smirnov [13,14] and introduce a portfolio optimization problem
as a game against nature where an investor tries to maximize the expected worst-case reward
from a portfolio by making general and non-restrictive assumptions about the market. The robust
optimization techniques have been introduced for a variety of economic problems recently. Deng et al.
in Reference [15] combines the robust approach with the Markowitz framework to solve a one-period
portfolio selection problem in a frictionless market, while Reference [16] solves a multi-stage asset
allocation problem with linear costs by considering a series of linear programming problems with
ambiguous constraints. In Reference [17], the authors present a game theoretic approach to the risk
management control problem in the market with ambiguous coefficients of the Samuelson model.
Robust optimization techniques have also been used to quantify the impact of the model error when
assessing portfolio risks, see for example, Reference [18]. In this paper, we provide a framework for
the multi-period portfolio optimization in the presence of model error by introducing the ambiguity in
the market price distribution. We consider a general convex transaction costs function to account for
the non-linear cost growth, and non-Markov dynamics of the system to account for a price impact.

The paper is structured as follows. In Section 1 we provide an overview of the problem. Section 2
provides a short overview of the research. In Section 3, we formulate the optimization framework,
introduce the assumptions about the market, and present the corresponding Bellman-Isaacs equation.
In Section 4, we study the sufficient conditions that allow the equation to be simplified, making it more
feasible for a numerical solution. Section 5 discusses the results.

2. Overview of the Main Results

Consider an investor who tries to maximize the reward from the provided portfolio by the end
of the investment horizon. Usually, the investor assumes some market price model, which allows
them to estimate the distribution of the portfolio future wealth for any appropriate strategy, and make
the correct investment decision. In this research, we assume that the investor does not possess the
knowledge of the market price model. Instead, they have the estimates of the expected value and range
of the future price movements. Both estimates are usually relevant for any investment process and can
be interpreted in business terms. Below, we formulate the optimization problem in the presence of
ambiguity and reduce it to the corresponding Bellman-Isaacs equation.

The rest of the research is devoted to simplifying the Bellman-Isaacs equation, since, in its original
form, the equation requires estimating the worst expected value of the value function among all the
appropriate candidate market models, each represented by the corresponding probability measure.
Optimization over a set of measures does not provide an analytic solution in many practical cases,
and the problem should be solved numerically. Nevertheless, some insight about the solution can
be obtained in the most general case. In Theorem 2 below we show that the worst expected value is
actually attained over a subset of atomic measures where the maximum number of atoms is defined by
the dimension of the considered space. The result can be strengthened if (i) the value function remains
concave with respect to the ambiguous parameters throughout the investment periods, and (ii) the
problem can be formulated in terms of the position market values instead of volumes and market
prices. In Theorem 4 we provide the corresponding sufficient conditions and prove that in this case the
worst expected value is actually attained over a subset of atomic measures concentrated in the extreme
points of the support. This allows to search for the optimal measure only on a subset of the support
which might prove useful for a numerical implementation.
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3. The Robust Portfolio Optimization Problem

Consider a market with a finite horizon and discrete time t = 0, 1, . . . , N. The proposed framework
describes a consecutive process of decision-making by an investor who manages a portfolio trying
to attain maximum reward at the end of the strategy. Each decision is made at the beginning of the
investment period, while the outcome is observed at the end of the period. Throughout the paper,
t will denote the beginning of the corresponding period.

Assume that there are n risky assets and one risk-free asset on the market. Let Xi
t be the market

price of the i-th risky asset at time t and let Xt = (X1
t , . . . , Xn

t ). Let Yt be the market price of the risk-free
asset. In the rest of the paper, the term “price” means the market price. The price of any risky asset at
time t might be undetermined at t− 1 while the exact value of Yt is assumed to be known at t− 1 (such
property will be referred to as predictability later on). An example of a risk-free asset is the price of
money in the portfolio’s base currency. Another example is a sovereign bond account if the bonds are
assumed risk-free and liquid, and if they are issued and traded in the portfolio’s base currency. For the
rest of the paper, we assume that all prices are positive. Note that, while this is a classic assumption
that is reasonable in many practical cases, it does not fully account for the risk of bankruptcy of the
issuer. We also do not account for the price discretization and assume that X1

t , . . . , Xn
t , Yt ∈ R.

By portfolio at time t we mean a predictable vector of asset volumes Ĥt = (H1
t , . . . , Hn

t , HY
t ).

Predictability means that the portfolio structure for the next investment period is decided at
the beginning of that period. We assume that all the assets are infinitely divisible: H1

t , . . . , Hn
t ,

HY
t ∈ R. At the start of the strategy the investor is provided with the initial portfolio Ĥ0.

Let Ht = (H1
t , . . . , Hn

t ) ∈ Rn denote the volumes of the risky assets at t.
To account for the friction in the market, we assume that each trade by the investor incurs

transaction costs. Costs can be categorized as explicit, such as broker commissions and fees,
and implicit, which are due to the insufficient liquidity of the market: a trade moves the corresponding
market price against it, therefore the average price of the trade might be worse than the market price if
the volume is sufficiently large. Thus, in the frictionless market, a portfolio can be rebalanced with no
loss of market value. In the real market, however, any rebalancing might lead to the loss of portfolio
market value, which can be thought of as carrying additional costs. We assume that there are no costs
incurred by the trades in the risk-free asset.

We assume that all information about the market is contained in the prices of the assets.
The system state can therefore be represented as a combination of the price values and the portfolio.
Let WY

t = HY
t Yt be the market value of the risk-free position at time t. Since the risk-free asset is

assumed to be absolutely liquid, it is easier to operate in terms of WY
t then work with HY

t and Yt

separately. Thus, by the system state St at time t, we would mean a combination of Ht, Xt and
WY

t . We will also refer to the system history S0, . . . , St up to the moment t as S̄t. For the ease of
notation, the functional dependence on the “·” argument will mean the dependence on the system’s
past history throughout the paper. The dependence will sometimes be explicitly written out to clarify
the dependence on the components of S̄t.

Let Ct(·, Ht) denote the costs carried when transitioning to the portfolio Ht. The function Ct(·, Ht)

is assumed predictable. We do not introduce any additional inflows and outflows of assets, hence the
following budget equation should hold for all t:

∆HY
t Yt−1 + ∆HtXt−1 = −Ct(·, Ht), (1)

where ∆ is the backward difference operator, that is, ∆Ht = Ht − Ht−1. Both in Equation (1) and in
the rest of the paper, the product of vectors should be understood as the inner product. Equation (1)
allows us to express HY

t as a function of Ht and the past history as

HY
t (·, Ht) = Y−1

t−1
(
WY

t−1 − (Ht − Ht−1)Xt−1 − Ct(·, Ht)
)
, (2)
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thus the optimization problem will be stated in terms of Ht instead of Ĥt in the rest of the paper, and by
the portfolio strategy we mean the sequence of H1, . . . , HN .

We assume that at each time t the portfolio structure might be subject to the predictable constraints:

Ht ∈ Dt(·) 6= ∅.

The constraint sets Dt(·) can be interpreted as the trading limits, which might serve the
risk-management purposes or originate from the aims of the portfolio strategy. For example, consider
a portfolio liquidation problem where an investor tries to close the risky positions over N consecutive
periods. The problem can be formulated in several ways, one of which is gradually reducing the
allowed volumes of risky assets via the constraints, that is,

D1(·) ⊇ D2(·) ⊇ . . . ⊇ DN(·).

Dt(·) = ∅ would have meant the inability to continue with the investment process and the
early termination of the strategy. This case would have complicated the presentation of the results
with technical details, so we assume the non-emptiness of Dt(·) throughout the paper. As for the
other properties, from the risk-management point of view, it is usually reasonable to assume the
boundedness of the constraint sets, since the unbounded sets might encourage entering infinitely large
risky positions that are subject to infinite risk.

At t− 1, the risk-free price Yt is assumed to be known by the investor. Consider the risk-free price
dynamics in a multiplicative form as

Yt = RtYt−1, t = 1, . . . , N, (3)

where Rt > 0 is assumed predictable. Rt − 1 can be interpreted as the risk-free rate of return.
By combining (2) and (3), we can represent WY

t as a function of portfolio Ht and the past history as

WY
t (·, Ht) = HY

t Yt = Rt HY
t Yt−1 = Rt

(
WY

t−1 − (Ht − Ht−1)Xt−1 − Ct(·, Ht)
)
. (4)

As for the risky assets, the only assumption about the prices considers the range of returns. Let the
risky price dynamics be represented in a multiplicative form as

Xi
t = ξ i

tX
i
t−1, ξ i

t > 0, i = 1, . . . , n, t = 1, . . . , N,

where ξ i
t − 1 is the return of the i-th asset over the investment period starting at t − 1.

Let ξt = (ξ1
t , . . . , ξn

t ) ∈ Rn and let Λ(ξt) be a diagonal matrix with ξt on the main diagonal. Then we
can write

Xt = Λ(ξt)Xt−1, t = 1, . . . , N. (5)

The main assumption about market ambiguity is that we assume that ξt belongs to a predefined
set Kt(S0, . . . , St−1) ⊂ Rn for each t = 1, . . . , N, whereas the sets K1(S̄0), . . . , KN(S̄N−1) are assumed
convex and compact.

Below, we present the notion of optimality and the Bellman-Isaacs equation. Classic portfolio
selection frameworks usually assume that the investor maximizes the expected reward function of
the portfolio at the end of the strategy. for example, in Reference [7], the authors consider the negated
value of the execution costs as a reward, while in Reference [8], the mixture of the execution costs and
the market risk is optimized. Many frameworks are based on expected utility maximization, where
the form of the utility reflects the risk-aversion of the investor. Our approach accounts for both the
uncertainty and the ambiguity of the market—the former refers to the stochastic nature of the market
given a specific market model, while the latter refers to the uncertainty about the market model itself.
In the presence of ambiguity, the standard expected von Neumann-Morgenstern utility cannot be used
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to define the optimal strategy, see the Ellsberg paradox [19]. Instead, we say that the portfolio strategy
is optimal if it maximizes the robust Savage representation as defined in Reference [20] (see Theorem
2.80). For this, we assume the reasonable additional axioms of uncertainty aversion and certainty
independence presented in Reference [20], when describing the behavior of the investor. The form of
the robust Savage representation resembles the worst-case expected reward, which makes it a natural
extension of the classic framework.

Remark 1. Optimization of the worst-case expected von Neumann-Morgenstern utility might still be
appropriate when applied to a particular investment process. Assume, for example, that the utility function
is defined by the risk-averse decision-maker based on the subjective estimates of the market. At the same time,
the optimal strategy is obtained by another agent, the analyst, who tries to maximize the expected value of the
provided utility in the worst case based on the analyst’s independent estimate. Thus, from the analyst’s point of
view, the utility is an exogenous reward function which should be used in the framework.

We represent the ambiguity of the market via a set of probability measures describing price
dynamics. For each t = 1, . . . , N, consider a set of probability measures Pt(·), where each measure
describes the uncertainty of risky prices over the corresponding period (in terms of the distribution
of ξt, see (5)). Let Pt,N(·) be the set of probability measures describing the risky prices across the
investment periods starting at t− 1 or later. Throughout the paper, we assume the following properties:

1. for each t = 1, . . . , N and every Q ∈ Pt(·), supp Q ⊆ Kt(·) and Kt(·) has compact and
convex values;

2. for each t = 1, . . . , N and every Q ∈ Pt(·),
∫

ξ Q(dξ) = Et(·), where Et(·) ∈ Kt(·);
3. (The Rectangularity assumption) for each admissible portfolio strategy,

Pt,N(S̄t−1) = Pt(S̄t−1)× . . .×PN(S̄N−1). (6)

Property 1 refers to the previously mentioned assumption about the price dynamics. The integral
of the vector ξ in Property 2 should be interpreted element-wise as

∫
ξ i Q(dξ) = Ei

t(·) for i = 1, . . . , n
and Et(·) =

(
E1

t (·), . . . , En
t (·)

)
. Property 2 means that at the beginning of each period the investor

has certain expectations about the future price values, whereas E(·) is the expected value based on the
investor’s estimate. The assumption is not restrictive since, in many practical cases, the investment
process is based on the estimate of future price movements, which is provided by the analyst. Besides,
dropping the assumption would lead to the degeneration of the strategy in some practical cases,
which will be illustrated at the end of the Section. Property 3 is a generalization of the Rectangularity
assumption of References [21,22], that can be interpreted as the independence of market ambiguity
in the future from the present market model. As an example of ambiguity that does not comply
with (6), consider a single-asset market with the multiplicative dynamics (5) and N = 2. For each t,
let Kt(·) ≡ [d, u], 0 < d < u, and let ξt be either uniformly distributed on [d, u+d

2 ] with probability
p or uniformly distributed on ( u+d

2 , u] with probability 1− p, where p ∈ [0, 1] is unknown, which
makes the market model ambiguous. Let Qt,p denote the corresponding probability measure at t.
Then Pt =

{
Qt,p : p ∈ [0, 1]

}
for t = 1, 2, and

P1 ×P2 =
{

Q1,p ×Q2,p′ : p, p′ ∈ [0, 1]
}

.

On the other hand,
P1,2 =

{
Q1,p ×Q2,p : p ∈ [0, 1]

}
,

hence P1,2 6= P1 × P2. The Rectangularity assumption means that the investor assumes that the
market is “replenished” at each period in terms of ambiguity, which is reasonable in the context of the
worst-case framework. See Reference [22] for a similar example for the Ellsberg paradox.
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In this paper, we do not focus on the formal definition of the admissible strategies of the investor
and the market, for a formal definition see for example, Reference [23]. Let J(S̄N) be the reward
function which depends on the portfolio structure and the market state. We assume that J has values
from R ∪ {−∞}, where the −∞ value means the failure of the investment strategy. Let H be the set
of the admissible portfolio strategies, and let Ht,N(·) be the set of the admissible strategies over the
periods starting at t− 1 or later. Let P = P1,N(S0) be the set of probability measures describing the
market dynamics across all periods. Then we can say that the portfolio strategy H∗ ∈ H is optimal if

sup
H∈H

inf
Q∈P

∫
J(S̄N) dQ = inf

Q∈P

∫
J(S̄∗N) dQ, (7)

where S̄∗N is the system history for the strategy H∗. The supremum in (7) might not be achieved in
general. However, it is usually the case in practice, if the problem is stated correctly, so throughout the
paper we assume the existence of an optimal strategy. Note that inf

Q∈P

∫
J(·) dQ is the robust Savage

representation we mentioned earlier.

Remark 2. Definition (7) requires integrability of the underlying reward function. In the presented practical
framework, we do not focus on the question of measurability but assume the required form of measurability as
needed. It will be shown in the next section, that we are mainly interested in the infimum over the subset of
atomic measures from Pt(·) that are concentrated in n + 1 or fewer points of Kt(·), t = 1, . . . , N, and every
function is integrable with respect to any measure from that subset.

Let V∗t−1(S̄t−1) be the supremum of the robust Savage representation as estimated at time t− 1,
t = 1, . . . , N:

V∗t−1(S̄t−1) = sup
Ht,N(S̄t−1)

inf
Qt,N∈Pt,N(S̄t−1)

∫
J(S̄N) dQt,N . (8)

For t = N, let V∗N(S̄N) ≡ J(S̄N). We refer to V∗t as the “value function” in the rest of the paper.
The proposed portfolio optimization problem can be solved via the dynamic programming principle
which can be applied to the proposed framework:

Theorem 1. 1. The value function V∗t (S̄t) satisfies the following Bellman-Isaacs equation:

V∗t−1(S̄t−1) = sup
H∈Dt(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
V∗t
(
S̄t
)

dQ, t = 1, . . . , N, (9)

V∗N(S̄N) = J(S̄N). (10)

2. If for each t = 1, . . . , N the supremum in (9) is achieved at some H∗t , then H∗ = {H∗1 , . . . , H∗N} is an
optimal strategy.

Proof. The proof is technical and has been moved to the Appendix A.

The dynamic programming principle makes the problem more feasible for the numerical solution
by allowing us to reconstruct the value function for each investment period through an iterative
process. By combining the formulae for the risk-free position value (4) and the price dynamics (5)
with (9) and (10), we obtain the final form of the Bellman-Isaacs equation for the portfolio investment
problem as

V∗t−1(S̄t−1) = sup
H∈Dt(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
V∗t
(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)

Q(dξ), (11)

V∗N(S̄N) = J(S̄N). (12)
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The numerical solution of the provided equation might prove difficult due to the additional
minimization problem in the recursive formula, which is not present in the classic stochastic framework.
The problem is even more relevant due to the high dimension of the state space. In practical cases,
the number of risky assets covered by the investment strategy can be quite high. For example, when
the portfolio replicates a market index. In the next section, we provide sufficient conditions which
allow the class of measures in the infimum problem to be narrowed down to atomic measures, which
should make the Bellman-Isaacs equation more feasible for practical use.

Note that the value function V∗t (·) might attain both −∞ and +∞ values. While the case
V∗t (·) = −∞ arises naturally given the definition of J(·), V∗t (·) = +∞ usually means an incorrect
problem statement, since the possibility of infinite reward usually implies infinite risk of the optimal
strategy. Therefore, in the rest of the paper we assume that V∗t (·) < +∞ for each t. The assumption is
satisfied for example, for the bounded reward function:

Proposition 1. If J(S̄N) ≤ a for some a ∈ R, then V∗t (S̄t) ≤ a, for each t = 0, . . . , N.

Proof. We conduct the proof by backward induction. For t = N, the statement is true by definition of
the value function. Assume that V∗t (·) ≤ a for some t ≤ N. Then inf

Q∈Pt(S̄t−1)

∫
V∗t
(
S̄t
)

dQ ≤ a and from

the Bellman-Isaacs equation we get the statement for V∗t−1(·).

If the reward function is unbounded, then proving that V∗t (·) < +∞ would require some
additional continuity assumptions, which is out of the scope of the presented research.

At the end of the current Section, we return to the question of the robust strategy in the absence
of any expectations about risky prices, that is when Et(·), as defined above, is also ambiguous.
For example, consider a one period problem (N = 1) for a single risky asset (n = 1) with no costs
(Ct(·, H) ≡ 0) and phase constraints of the form Dt(·) = [H, H], where H < 0 and H > 0, so that
positive, negative and zero volumes are allowed. Let Rt ∈ int Kt(·), which means that the risky price
rate can either be higher or lower than the risk-free rate Rt (the assumption is natural, since otherwise
there would be obvious arbitrage in the market). Assume that Xt = ξtXt−1, where the distribution
of ξt is ambiguous, and belongs to the family of distributions Pt with support Kt(·). Note that for
N = 1, the Rectangularity property is automatic. Assume that Pt contains all the Dirac measures, that
is, the admissible strategies of the “market” include the deterministic strategies. Let the initial risky
price be X0 and let the initial portfolio have H0 volume invested in the risky asset, while its risk-free
position value is WY

0 . Let the reward J(·) be a strictly monotone function of the portfolio market value
HN XN + WY

N . For any admissible strategy H, the market value of the portfolio at t = 1 would be

W(H) = HXt + Rt(WY
t−1 − (H − Ht−1)Xt−1) = Rt(WY

t−1 + Ht−1Xt−1) + (ξ − Rt)HXt−1,

where ξ ∈ Kt(·). Note that if H > 0 and the “market” chooses a deterministic strategy δξ∗ , where
ξ∗ < Rt, then W(H) < Rt(WY

t−1 + HT
t−1Xt−1) = W(0); similarly, if H < 0, then we have W(H) < W(0)

for the deterministic “market” strategy δξ∗ with ξ∗ > Rt. Note that W(0) does not depend on
the risky price (there are no risky investments in the portfolio). Therefore, the value of the robust
Savage representation for any strategy H 6= 0 is less than its value for H = 0, which makes H = 0
the optimal strategy. The optimality of H = 0 means that the investor should liquidate the risky
positions completely. One can easily extrapolate the example to the multiperiod problem and see
that H = 0 is optimal for each period, which compromises the whole idea of the investment process.
This example shows that to obtain a non-trivial strategy in this case, the investor needs to have some
prior expectations about the future price values.

4. Simplified Forms of the Bellman-Isaacs Equation

This research provides a practical framework for the portfolio optimization problem. Therefore,
we attempt to make economically reasonable assumptions while providing the interpreted solution via
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the Bellman-Isaacs equation. Still, a practical approach should allow for either an analytic or numerical
solution. The Equations (11) and (12) does not allow for an analytic representation of the value function
in most practical cases, while solving it numerically might be computationally difficult compared to
the usual Bellman equation, since we need to solve an additional minimization problem at every step.
Below, we consider particular cases of the framework that allow us to simplify the numerical solution
of the internal minimization problem.

Let ext
(
Kt(·)

)
be the set of extreme points of Kt(·). Let Pn

t (·) (respectively, Pn∗
t (·)) be the set of

probability measures from Pt(·) concentrated at n + 1 or fewer points (respectively, extreme points)
of Kt(·). Below we show that in some cases, the infimum over Pt in the Bellman-Isaacs equation is
equivalent to the infimum over Pn

t or even Pn∗
t . For this, we use the following result:

Lemma 1. Let f (x) be a real-valued Borel measurable function on convex and compact Kt(·) ⊂ Rn. Then (i)
the infimum of

∫
f (x) Q(dx) over the set of probability measures Pt(·) equals the infimum over Pn

t (·); (ii) if
f (x) is concave, the infimum over Pt(·) coincides with the infimum over Pn∗

t (·).

Proof. The proof is technical and has been moved to the Appendix A. A similar result for a continuous
f (x) can be found in Smirnov [24]. The idea of their proof applies to our case as well. The proof of the
Lemma 1 is based on their idea and is provided in this paper for consistency.

Lemma 1 immediately yields the following result, which allows us to narrow the set of measures
in the Bellman-Isaacs equation:

Theorem 2. Assume that V∗t (·) < +∞ and the sets Kt(·) are compact and convex for each t = 1, . . . , N. Then

V∗t−1(S̄t−1) = sup
H∈Dt(S̄t−1)

inf
Q∈Pn

t (S̄t−1)

∫
V∗t
(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)

Q(dξ), (13)

V∗N(S̄N) = J(S̄N). (14)

Proof. Assume that for some t, S̄t−1 and H, H ∈ Dt(S̄t−1), the subfunction
ξ 7→ V∗t

(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)

attains −∞ for some ξ ′ ∈ Kt(S̄t−1), ξ ′ 6= Et(S̄t−1).
Then the infimum is attained at the atomic measure concentrated at the points ξ ′, ξ ′′ ∈ Kt(S̄t−1), such
that Et(S̄t−1) belongs to the interval connecting ξ ′ and ξ ′′. If −∞ is attained exactly at Et(S̄t−1), then
the corresponding atomic measure is concentrated at Et(S̄t−1). If −∞ is not attained on Kt(S̄t−1), then
we use Lemma 1 to complete the proof.

Lemma 1 allows us to further narrow the class of measures when finding the infimum in the
Bellman-Isaacs equation. For this, the subfunctions ξ 7→ V∗t

(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)

in (11)
should be concave. Below, we will prove the concavity via backward induction by imposing restrictions
on the form of the cost function, the reward function, the constraint sets and the measure sets. Under the
restrictions, the dependence on the risky position volumes H would only be allowed through the
dependence on the market values H ◦ X, where “◦” means the element-wise (Hadamard) product.

For further convenience, we sometimes represent the dependence on the system history S̄t as
the dependence on the arguments S̄t−1, Ht, Xt and WY

t , thus decomposing the dependence on the
latest system state and the history before that. We also uphold this notation for t = 0, in which
case the arguments should be interpreted as H0, X0 and WY

0 , meaning that there is no history at the
beginning of the strategy. We also sometimes represent the system history S̄t as a combination of
the history of the portfolio risky volumes H̄t, the history of the risk-free position value W̄Y

t and the
price history X̄t up to time t. For example, V∗t (S̄t) might be equivalently written as V∗t (H̄t, X̄t, W̄Y

t ) or
V∗t (H̄t−1, X̄t−1, W̄Y

t−1, Ht, Xt, WY
t ), whenever the notation is clear from the context. In the following



Mathematics 2019, 7, 1147 9 of 16

proofs, we also make some monotonicity assumptions, in which case the comparison of vectors and
arrays of arguments should be understood element-wise.

Assume that the constraint sets Dt are monotonic in the following sense: let dt(W̄Y
t−1) be any of

the subfunctions W̄Y
t−1 7→ Dt(S̄t−1), then

dt(W̄Y,1
t−1) ⊆ dt(W̄Y,2

t−1) if W̄Y,1
t−1 ≤ W̄Y,2

t−1. (15)

The assumption means that the increase in the portfolio risk-free position should provide
additional trading options while keeping the previous ones available. The assumption might be
inappropriate in some cases, for example, when the increase in risk-free funds leads to additional
constraints on the less risky positions in favor of the more risky ones to stimulate the more risky and
profitable strategies. We do not consider such cases, believing that the investor is reasonable enough to
account for the increased risk-free reserves when choosing the strategy, thus the additional trading
limits are not required.

Assume that the measure sets Pt are monotonic in the following sense: let pt(W̄Y
t−1) be any of the

subfunctions W̄Y
t−1 7→ Pt(S̄t−1), then

pt(W̄Y,1
t−1) ⊇ pt(W̄Y,2

t−1) if W̄Y,1
t−1 ≤ W̄Y,2

t−1. (16)

The assumption means that the increase in the risk-free funds does not lead to more ambiguity in
the market, according to the investor’s subjective estimate. Otherwise, we would have assumed that
the investor becomes more uncertain when provided with the additional risk-free liquid assets, which
is unreasonable.

Below, we provide sufficient conditions for the concavity and monotonicity of the value function.

Theorem 3. Let V∗t (·) be the value function in the Bellman-Isaacs Equations (11) and (12). Assume that for
each t = 1, . . . , N

• the subfunctions H̄Y
t , W̄Y

t−1 7→ Ct(S̄t−1, Ht) are convex;
• the subfunctions W̄Y

t−1 7→ Ct(S̄t−1, Ht) are non-increasing;
• the subfunctions H̄N , W̄Y

N 7→ J(S̄N) are concave;
• the subfunctions W̄Y

N 7→ J(S̄N) are non-decreasing;
• the constraint sets Dt have convex values and monotone in the sense of (15);
• the measure sets Pt are monotone in the sense of (16);
• V∗t (S̄t) < +∞.

Then the subfunctions H̄t, W̄Y
t 7→ V∗t (S̄t) are concave and the subfunctions W̄Y

t 7→ V∗t (S̄t) are
non-decreasing for t = 1, . . . , N.

Proof. The proof is technical and has been moved to the Appendix A.

The convexity of the cost function is a common requirement in financial literature, which
is justified in most practical cases due to the well-known price impact effect in the market.
The assumption that the costs are non-increasing with respect to the risk-free position value is
economically reasonable, since the additional risk-free and liquid funds should create more favorable
conditions when choosing the execution strategy, while incurring no additional costs themselves.
The concavity of the reward function is reasonable if the investor is risk-averse, while the monotonicity
with respect to the risk-free position value is natural for many practical cases, when adding to the total
portfolio value at no additional costs should increase the portfolio reward.

Let WX
t = Ht ◦Xt be the vector of risky position values at time t, and let W̄X

t be the corresponding
history up to time t, t = 0, . . . , N. Let SW

t = (WX
t , WY

t ) be the state of the portfolio in terms of the
position market values. SW

t can be derived from St and combines the market and portfolio states.
Let S̄W

t be the corresponding state history up to time t. Next, we show how the class of measures in the
Bellman-Isaacs equation can be narrowed, if the value function can be represented as a function of S̄W

t .
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Theorem 4. Assume that all the assumptions of Theorem 3 hold and, in addition,

• the cost function has the following form:

Ct(S̄t−1, Ht) ≡ C̃t(S̄W
t−1, Ht ◦ Xt−1); (17)

• the reward function has the following form:

J(S̄N) ≡ J̃(S̄W
N ); (18)

• the constraint sets Dt(·) are given in the form of constraints on the risky position market values:

H ∈ Dt(S̄t−1) ⇔ H ◦ Xt−1 ∈ D̃t(S̄W
t−1); (19)

• the probability measure sets Pt(·) have the following form:

Pt(S̄t−1) ≡ P̃t(S̄W
t−1). (20)

Then

V∗t−1(S̄t−1) = sup
H∈Dt(S̄t−1)

inf
Q∈Pn∗

t (S̄t−1)

∫
V∗t
(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)

Q(dξ), (21)

V∗N(S̄N) = J(S̄N). (22)

Proof. The statement can be proven by using Lemma 1, so we only need to prove the concavity of the
subfunctions ξ 7→ V∗t

(
S̄t−1, H, Λ(ξ)Xt, WY

t (S̄t−1, H)
)

for each t = 1, . . . , N. First, we will prove by
backward induction that the value function V∗t can be represented in the form

V∗t (S̄t) ≡ Ṽ∗t (S̄
W
t ). (23)

The statement holds for t = N due to (18). Assume that it is true for some t ≤ N. From (17), we
get that WY

t (S̄t−1, Ht) can be represented as a function of S̄W
t−1 and Ht ◦ Xt−1. Indeed, from (4) we have

WY
t (S̄t−1, Ht) = Rt

(
WY

t−1 − HtXt−1 + Ht−1Xt−1 − Ct(S̄t−1, Ht)
)

= Rt
(
WY

t−1 − 1 · (Ht ◦ Xt−1) + 1 · (Ht−1 ◦ Xt−1)− C̃t(S̄W
t−1, Ht ◦ Xt−1)

)
≡ W̃Y

t (S̄
W
t−1, H ◦ Xt−1),

where 1 means the vector (1, 1, . . . , 1) ∈ Rn. Since Λ(ξ) is a diagonal matrix, (23) implies that

V∗t
(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)
≡ Ṽ∗t

(
S̄W

t−1, H ◦Λ(ξ)Xt−1, W̃Y
t (S̄

W
t−1, H ◦ Xt−1)

)
≡ Ṽ∗t

(
S̄W

t−1, Λ(ξ)(H ◦ Xt−1), W̃Y
t (S̄

W
t−1, H ◦ Xt−1)

)
.

Therefore, V∗t
(
S̄t−1, H, Λ(ξ)Xt−1, WY

t (S̄t−1, H)
)

is, in fact, a function of S̄W
t−1, H ◦ Xt−1 and

ξ, which we will denote as φt(S̄W
t−1, H ◦ Xt−1, ξ). Then, by substituting (19) and (20) into the

Bellman-Isaacs equation, we get that

V∗t−1(S̄t−1) = sup
H◦Xt−1∈D̃t(S̄W

t−1)

inf
Q∈P̃t(S̄W

t−1)

∫
φt(S̄W

t−1, H ◦ Xt−1, ξ) Q(ξ). (24)
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Therefore, V∗t−1(S̄t−1) is a function of S̄W
t−1, which proves the induction step, thus proving that the

value function admits the representation (23) for t = 0, . . . , N. Then, from (23) and the diagonality of
Λ(ξ), we get that, for any ξ ∈ Kt(S̄t−1),

V∗t (S̄t−1, H, Λ(ξ)Xt−1, WY
t ) = Ṽ∗t (S̄

W
t−1, H ◦Λ(ξ)Xt−1, WY

t )

= Ṽ∗t (S̄
W
t−1, (Λ(ξ)H) ◦ Xt−1, WY

t ) = V∗t (S̄t−1, Λ(ξ)H, Xt−1, WY
t ). (25)

By Theorem 3, the subfunctions H 7→ V∗t (S̄t−1, H, Xt, WY
t ) are concave. Therefore,

the subfunctions ξ 7→ V∗t
(
S̄t−1, Λ(ξ)H, Xt, WY

t
)

are concave as compositions of the linear
function ξ 7→ Λ(ξ)H and the concave function. Then, (25) implies that the subfunctions
ξ 7→ V∗t

(
S̄t−1, H, Λ(ξ)Xt, WY

t
)

are concave as well, which means the concavity of the subfunctions
ξ 7→ V∗t

(
S̄t−1, H, Λ(ξ)Xt, WY

t (S̄t−1, H)
)

and proves the statement.

The conditions of Theorem 4 might seem too restrictive. However, they are satisfied in a variety
of practical cases. Below, we provide some examples covered by the Theorem.

The form of the cost function (17) includes the widely-used affine model of costs, see Reference [5].
At the same time, it allows us to introduce the non-linear cost growth, which might be relevant for
large portfolios.

As the example of the concave and monotonic reward function of the form (18), consider a utility
function which depends on the portfolio value, for example,

J̃(S̄W
N ) = U(HN XN + WY

N)

or
J̃(S̄W

N ) = U(HN XN + WY
N − CN+1(S̄W

N )),

where U is a concave non-decreasing utility function and CN+1(S̄N) is the costs of liquidating the
remaining risky assets in the portfolio after the end of the strategy (assume that H̄N , W̄Y

N 7→ CN+1(S̄N)

are convex and W̄Y
N 7→ CN+1(S̄N) are non-increasing). In the first case, the investor wants to

maximize the market value of the portfolio, and in the latter case, the liquidation value of the portfolio
is being maximized.

As the example of the constraint sets covered by Theorem 4, consider a set of predictable functions
gi

t(·, x) for t = 1, . . . , N and i = 1, . . . , M, such that the corresponding subfunctions x 7→ gi
t(·, x) are

quasi-convex. Let βi
t(·) ≥ 0 be predictable coefficients and let Wt−1 = Ht−1Xt−1 + WY

t−1 be the market
value of the portfolio at t− 1. Consider the constraint sets of the form:

Dt(·) =
{

H : gi
t(·, H ◦ Xt−1) ≤ βi

t(·)Wt−1, i = 1, . . . , M
}

. (26)

Quasi-convexity of gi
t implies the convexity of Dt(·) values, while non-negativity of βi

t(·) implies
the monotonicity as required by Theorem 4. The introduced form of constraints includes several
important trading limit types, for example:

1. gi
t(·, H ◦ Xt−1) = HiXi

t−1, i = 1, . . . , n, means the constraints on the maximum value of each risky
position in terms of the percentage of the portfolio market value;

2. gi
t(·, H ◦ Xt−1) = −HiXi

t−1, i = 1, . . . , n, means the constraints on the minimum value of each
risky position, which limits short-selling;

3. gi
t(·, H ◦ Xt−1) = ∑n

j=1 ai,j
t (·)H jX j

t−1 means the constraints on the combinations of asset positions,
which is useful for limiting investments in a group of products, which, for example, represent
a sector of economy or constitute an index; a special case of this type of constraints is
gi

t(·, H ◦ Xt−1) = ∑n
j=1 H jX j

t−1, which might be used to limit the risk-free asset short-selling.
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Theorem 4 covers several price impact effects. For example, consider the measure sets Pt with the
expected value Et(·) =

(
E1

t (·), . . . , En
t (·)

)
defined as

ln Ei
t(·) =

t−1

∑
k=1

µi
k +

t−1

∑
k=1

λi
k(∆Hk ◦ Xk) +

t−1

∑
k=1

γi
k(∆Hk ◦ Xk)e−ρi

k(t−k),

where µi
k, λi

k(w), γi
k(w) and ρi

k are assumed to be known, i = 1, . . . , n. For the i-th risky asset and time
k, µi

k is the expected drift of the market price, λi
k(w) is the expected permanent price impact of the

trade with market value w, γi
k(w) is the expected temporary price impact of the trade with market

value w, and ρi
k characterizes the expected resilience rate of the market price. The logarithm in the

formula guarantees that the expected value of the multiplicative coefficient of the price dynamics is
positive. Let the support of the measure set be defined as

Kt(·) = {Et(·)}+ Mt,

where the “+” operator means the Minkowski sum, and Mt characterizes both the uncertainty and the
ambiguity of the market prices. Assume that 0 ∈ int Mt to guarantee that Et(·) ∈ Kt(·), t = 1, . . . , N.
The provided forms of Et(·) and Kt(·) capture several aspects of the price impact which are relevant
for portfolio optimization in a market with limited liquidity, see for example, References [8,11,25,26].
The structure of Mt characterizes the investor’s estimate of the market ambiguity. For example,
the investor might assume the rectangular structure to disregard any prior knowledge about the
dependencies between the asset prices. On the other hand, by considering the elliptical form of Mt,
the investor assumes that the prices will not attain the respective extreme values all at the same time,
thus introducing some prior knowledge about the market into the framework.

5. Conclusions

In this paper, we present a robust approach to a general portfolio optimization problem.
We introduce the ambiguity in the market by formulating the problem as a game against nature, where
the investor attempts to maximize the worst-case reward from the portfolio at the end of the strategy.
The robust approach considers the model error when selecting an optimal portfolio strategy, which is
relevant when the parameters of the model cannot be reliably estimated, or when the model-based
forecasts are untrustworthy, for example, during a financial crisis. The framework might be used
as a decision support system when comparing portfolio strategies based on the model-independent
estimates about the future market price values. Our goal is to present a practical approach, therefore
all the assumptions are economically reasonable and well-interpreted.

Calculation of the value function in the Bellman-Isaacs Equations (11) and (12) involves a complex
problem of optimizing over a set of distributions with the common mean and support. A direct solution
of the problem would have required some approximation and parametrization of the measure set which
would have raised the question of approximation error. Theorem 2 shows that such approximation is
unnecessary and the problem can be reduced to optimization over a finite set of points of the support,
thus can be solved numerically similar to the classic Bellman equation. Indeed, given the n + 1 atoms
of the distribution in Rn, the probabilities of the atoms can be calculated directly as the corresponding
barycentric coordinates of the distribution mean. Due to the recursive nature of the Equation (11),
a derivative-free method, for example, a random search method, might be more appropriate for
estimating the value of the robust Savage representation inf

Q∈Pt(S̄t−1)

∫
V∗t (S̄t) dQ, and for reconstructing

the value function. Theorem 4 states that under some assumptions, the search space for the method
can be reduced, since the atoms of the optimal measure are guaranteed to be the extreme points of
the support.

The research covers a wide range of problem statements which might include non-linear
transaction costs and price impact, and various forms of trading limits. The provided framework
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can be applied for such classic portfolio optimization problems as the optimal execution of trades
and the portfolio selection, and might be used as an analytic tool for the strategy evaluation and
risk-management purposes in an ambiguous market.
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Appendix A

Proof of Theorem 1

Proof. We begin with the proof of the first part of the Theorem. Equations (9) and (10) for t = N are
true by definition of the value function, thus we only need to prove (9) for t = 1, . . . , N − 1 in case
N > 1. For any t = 1, . . . , N − 1 and any tail strategy ht,N ∈ Ht,N(S̄t−1) over the periods starting at
t− 1 or later, let

Vt−1(S̄t−1, ht,N) = inf
Qt,N∈Pt,N(S̄t−1)

∫
J(S̄N) dQt,N ,

where S̄N is the history for strategy ht,N . Let Ht be the part of strategy ht,N which covers the period
starting at t− 1, and let ht+1,N be the rest of ht,N . Then for t < N, due to the Rectangularity property
of Pt,N , we have

Vt−1(S̄t−1, ht,N) = inf
Qt,N∈Pt,N(S̄t−1)

∫
J(S̄N) dQt,N

= inf
Q∈Pt(S̄t−1)

∫
dQ inf

Qt+1,N∈Pt+1,N(S̄t)

∫
J(S̄N) dQt+1,N = inf

Q∈Pt(S̄t−1)

∫
Vt(S̄t, ht+1,N) dQ. (A1)

By definition (8), V∗t−1(S̄t−1) = sup
ht,N∈Ht,N

Vt−1(S̄t−1, ht,N). Therefore,

V∗t−1(S̄t−1) = sup
ht,N∈Ht,N(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
Vt(S̄t, ht+1,N) dQ

≤ sup
ht,N∈Ht,N(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
V∗t (S̄t) dQ = sup

Ht∈Dt(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
V∗t (S̄t) dQ, (A2)

because V∗t (S̄t) does not depend on ht+1,N . On the other hand, since V∗t (S̄t) is the supremum
of Vt(S̄t, ht+1,N) on Ht+1,N(S̄t), then for any ε > 0 there exists hε

t+1,N ∈ Ht+1,N(S̄t) such that
Vt(S̄t, hε

t+1,N) ≥ V∗t (S̄t)− ε. Then we have

V∗t−1(S̄t−1) = sup
ht,N∈Ht,N(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
Vt(S̄t, ht+1,N) dQ

= sup
Ht∈Dt(S̄t−1)

sup
ht+1,N∈Ht+1,N(S̄t)

inf
Q∈Pt(S̄t−1)

∫
Vt(S̄t, ht+1,N) dQ

≥ sup
Ht∈Dt(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
Vt(S̄t, hε

t+1,N) dQ

≥ sup
Ht∈Dt(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
V∗t (S̄t) dQ− ε. (A3)
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Since (A3) is true for any ε > 0, from (A2) and (A3) we get Equation (9).
To prove the second part of the Theorem, note that H∗ is optimal iff V0(S̄0, H∗) = V∗0 (S̄0), which

follows from the definition of the value function. Let h∗t,N be the tail strategies of H∗ for t = 1, . . . , N.
Next, we will prove that

Vt−1(S̄t−1, h∗t,N) = V∗t−1(S̄t−1), t = 1, . . . , N, (A4)

by backward induction. Since h∗1,N ≡ H∗ by definition, it will prove the optimality of H∗. For t = N,
(A4) follows from (9) and the definition of Vt−1(S̄t−1, ht,N). Assume that Vt(S̄t, h∗t+1,N) = V∗t (S̄t) for
some t ≤ N. Let S̄∗t be the combination of the history S̄t−1 and the state S∗t , induced by H∗t . Then from
(A1) we get that

Vt−1(S̄t−1, h∗t,N) = inf
Q∈Pt(S̄t−1)

∫
Vt(S̄∗t , h∗t+1,N) dQ = inf

Q∈Pt(S̄t−1)

∫
V∗t (S̄

∗
t ) dQ

= sup
Ht∈Dt(S̄t−1)

inf
Q∈Pt(S̄t−1)

∫
V∗t (S̄t) dQ = V∗t−1(S̄t−1),

which proves the induction step and, consequently, the second part of the Theorem.

Proof of Lemma 1

Proof. The first statement follows from Theorem 3.2 of Reference [27] and implies that the infimum of∫
f (x) Q(dx) over Pt(·) equals the infimum of

n+1
∑

i=1
pi f (xi) over xi ∈ Kt(·) and pi ≥ 0, i = 1, . . . , n + 1,

such that
n+1
∑

i=1
pixi = Et(·) and

n+1
∑

i=1
pi = 1. The second part can be proven by using the first statement.

From the Krein-Milman theorem [28] and the concavity of f (x), we get that the infimum over measures
concentrated at n + 1 or fewer points of Kt(·) is greater or equal than the infimum over measures

concentrated at (n + 1)2 or fewer extreme points of Kt(·), that is the infimum of
(n+1)2

∑
i=1

p′i f (x′i) over

x′i ∈ ext
(
Kt(·)

)
and p′i ≥ 0, i = 1, . . . , (n + 1)2, such that

(n+1)2

∑
i=1

p′ix
′
i = Et(·) and

(n+1)2

∑
i=1

p′i = 1. For any

given x′1, . . . , x′
(n+1)2 ∈ ext

(
Kt(·)

)
, this problem is a linear programming problem in the standard form,

which is known to have a basic feasible solution p∗1 , . . . , p∗
(n+1)2 with n + 1 or fewer nonzero elements.

Therefore, the infimum actually coincides with the infimum over measures concentrated at n + 1 or
fewer extreme points of Kt(·), which proves the result.

Proof of Theorem 3

Proof. The statement is proven by backward induction. For t = N, it holds by the assumptions about
J(·). Let the subfunctions H̄t, W̄Y

t 7→ V∗t (S̄t) be concave and let the subfunctions W̄Y
t 7→ V∗t (S̄t) be

non-decreasing for some t ≤ N.
Consider the function

νt(H̄t−1, X̄t−1, W̄Y
t−1, Ht, ξ) = V∗t

(
H̄t−1, X̄t−1, W̄Y

t−1, Ht, Λ(ξ)Xt−1, WY
t (H̄t−1, X̄t−1, W̄Y

t−1, Ht)
)
.

Note that the subfunctions H̄t, W̄Y
t−1 7→ WY

t (S̄t−1, Ht) are concave and the subfunctions
W̄Y

t−1 7→ WY
t (S̄t−1, Ht) are non-decreasing due to the assumptions about Ct(S̄t−1, Ht) and the

definition (4) of WY
t (S̄t−1, H). This, when combined with the concavity and monotonicity of V∗t ,

implies that the subfunctions H̄t, W̄Y
t−1 7→ νt(H̄t−1, X̄t−1, W̄Y

t−1, Ht, ξ) are concave and that the
subfunctions W̄Y

t−1 7→ νt(H̄t−1, X̄t−1, W̄Y
t−1, Ht, ξ) are non-decreasing. Therefore, the subfunctions
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H̄t, W̄Y
t−1 7→

∫
νt(H̄t−1, X̄t−1, W̄Y

t−1, Ht, ξ) Q(dξ) are concave and the subfunctions W̄Y
t−1 7→∫

νt(H̄t−1, X̄t−1, W̄Y
t−1, Ht, ξ) Q(dξ) are non-decreasing by the properties of the integral. Consider

φt(S̄t−1, Ht) = inf
Q∈Pt(S̄t−1)

∫
νt(H̄t−1, X̄t−1, W̄Y

t−1, Ht, ξ) Q(dξ).

The subfunctions H̄t, W̄Y
t−1 7→ φt(S̄t−1, Ht) are concave as the infima of the concave functions,

and the subfunctions W̄Y
t−1 7→ φt(S̄t−1, Ht) are non-decreasing due to the monotonicity of Pt and the

properties of infimum.
By definition, V∗t−1(S̄t−1) = sup

Ht∈Dt(S̄t−1)

φt(S̄t−1, Ht). For any admissible price history X̄t−1

and any ε > 0, consider the admissible risky volume histories H̄1
t−1, H̄2

t−1 and risk-free value
histories W̄Y,1

t−1, W̄Y,2
t−1. By the definition of supremum, there exist H1

t ∈ Dt(H̄1
t−1, X̄t−1, W̄Y,1

t−1) and
H2

t ∈ Dt(H̄2
t−1, X̄t−1, W̄Y,2

t−1) such that

φt(H̄1
t−1, X̄t−1, W̄Y,1

t−1, H1
t ) ≥ V∗t−1(H̄1

t−1, X̄t−1, W̄Y,1
t−1)− ε,

φt(H̄2
t−1, X̄t−1, W̄Y,2

t−1, H2
t ) ≥ V∗t−1(H̄2

t−1, X̄t−1, W̄Y,2
t−1)− ε.

Consider some α1, α2 ≥ 0, α1 + α2 = 1. From the concavity of φt, we get that

V∗t−1(α1H̄1
t−1 + α2H̄2

t−1, X̄t−1, α1W̄Y,1
t−1 + α2W̄Y,2

t−1)

≥ φ(α1H̄1
t−1 + α2H̄2

t−1, X̄t−1, α1W̄Y,1
t−1 + α2W̄Y,2

t−1, α1H1
t + α2H2

t )

≥ α1φ(H̄1
t−1, X̄t−1, W̄Y,1

t−1, H1
t ) + α1φ(H̄2

t−1, X̄t−1, W̄Y,2
t−1, H2

t )

≥ α1V∗t−1(H̄1
t−1, X̄t−1, W̄Y,1

t−1) + α2V∗t−1(H̄2
t−1, X̄t−1, W̄Y,2

t−1)− ε.

Since the above inequality holds for any ε > 0, the subfunctions H̄t−1, W̄Y
t−1 7→ V∗t−1(S̄t−1)

are concave.
To prove the monotonicity of W̄Y

t 7→ V∗t (S̄t), for any admissible price history X̄t−1 and risky
volume history H̄t−1, consider the admissible risk-free value histories W̄Y,1

t−1 and W̄Y,2
t−1, such that

W̄Y,1
t−1 ≤ W̄Y,2

t−1. Then, Dt(H̄t−1, X̄t−1, W̄Y,1
t−1) ⊆ Dt(H̄t−1, X̄t−1, W̄Y,2

t−1) due to the monotonicity of Dt(·),
and we use the monotonicity of W̄Y

t−1 7→ φt(S̄t−1, Ht) to get that

V∗t−1(H̄t−1, X̄t−1, W̄Y,1
t−1) = sup

Ht∈Dt(H̄t−1,X̄t−1,W̄Y,1
t−1)

φt(H̄t−1, X̄t−1, W̄Y,1
t−1, Ht)

≤ sup
Ht∈Dt(H̄t−1,X̄t−1,W̄Y,2

t−1)

φt(H̄t−1, X̄t−1, W̄Y,2
t−1, Ht) = V∗t−1(H̄t−1, X̄t−1, W̄Y,2

t−1),

which proves that the subfunctions W̄Y
t−1 7→ V∗t−1(S̄t−1) are non-decreasing. This concludes the proof

of the induction step and proves the statement.
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