. mathematics ﬁw\o\w

Article
A New Criterion for Model Selection

Hoang Pham

Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA;
hopham@soe.rutgers.edu

check for
Received: 5 November 2019; Accepted: 5 December 2019; Published: 10 December 2019 updates

Abstract: Selecting the best model from a set of candidates for a given set of data is obviously not an
easy task. In this paper, we propose a new criterion that takes into account a larger penalty when
adding too many coefficients (or estimated parameters) in the model from too small a sample in
the presence of too much noise, in addition to minimizing the sum of squares error. We discuss
several real applications that illustrate the proposed criterion and compare its results to some existing
criteria based on a simulated data set and some real datasets including advertising budget data,
newly collected heart blood pressure health data sets and software failure data.

Keywords: model selection; criterion; statistical criteria

1. Introduction

Model selection has become an important focus in recent years in statistical learning, machine
learning, and big data analytics [1-4]. Currently there are several criteria in the literature for model
selection. Many researchers [3,5-11] have studied the problem of selecting variables in regression in
thepast three decades. Today it receives much attention due to growing areas in machine learning,
data mining and data science. The mean squared error (MSE), root mean squared error (RMSE), R?,
Adjusted R?, Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), AICc are
among common criteria that have been used to measure model performance and select the best model
from a set of potential models. Yet choosing an appropriate criterion on the basis of which to compare
the many candidate models remains not an easy task to many analysts since some criteria may taking
toll on the model size of estimated parameters while the others could emphasis more on the sample
size of a given data.

In this paper, we discuss a new criterion PIC that can be used to select the best model among a set
of candidate models. The proposed PIC takes into account a larger penalty from adding too many
coefficients in the model when there is too small a sample. We also discuss briefly several common
existing criteria include AIC, BIC, AICc, R?, adjusted R2, MSE, and RMSE. To illustrate the proposed
criterion, we discuss the results based on a simulated data and some real applications including
advertising budget data and recent collected heart blood pressure health data sets. The new PIC takes
into account a larger penalty when there are too many coefficients to be estimated from too small a
sample in the presence of too much noise.

2. Some Criteria for Model Comparisons

Suppose there are 1 observations on a response variable Y that relates to a set of independent
variables: X1, X», ..., Xi_1 in the form of

Y = f(X1, X2, .+, Xp1)- D

The statistical significance of model comparisons can be determined based on existing
goodness-of-fit criteria in the literature [12]. In this section, we first briefly discuss some existing
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criteria that commonly used in model selection. Then we discuss a new PIC for selecting the best
model from a set of candidates. Following are some common criteria, for instance.

The MSE measures the average of the squares deviation between the fitted values with the actual
data observation [13]. The RMSE is the square root of the variance of the residuals or the square root of
MSE. The coefficient of determinations R? or R? value measures the amount of variation accounted for
the fitted model. It is frequently used to compare models and assess which model provides the best fit
to the data. R? always increases with the model size. The adjusted R? is a modification to the R? which
takes into account the number of estimated parameters or the number of explanatory variables in a
model relative to the number of data points [14]. The adjusted R? gives the percentage of variation
explained by only those independent variables that actually affect the dependent variable.

The AIC was introduced by Akaike [5] and is calculated by obtaining the maximum value of the
likelihood function for the model and the penalty term due to the number of estimated parameters
in the model. This criterion implies that by adding more parameters in the model, it improves the
goodness of the fit but also increases the penalty imposed by adding more parameters.

The BIC was introduced by Schwarz [10]. The difference between these two criteria, BIC and AIC,
isa penalty term. In BIC, it depends on the sample size n that shows how strongly they impacts the
penalty of the number of parameters in the model while in AIC it does not depend on the sample size.
When the sample size is small, there is likely that AIC will select models that include many parameters.
The second order information criterion, called AICc, takes into account sample size by increasing the
relative penalty for model complexity with small data sets. As n gets larger, AICc converges to AIC.

It should be noted that the lower value of MSE, RMSE, AIC, BIC, AICc indicates the better the
model goodness-of-fit. Conversely, the larger the value of R?, adjusted R? indicates better fit.

New PIC

We now discuss a new criterion for selecting a model among several candidate models. Suppose
there are 1 observations on a response variable Y and (k — 1) explanatory variables Xj, Xp, ..., Xx_1. Let

y; be the ith response (dependent variable),i=1,2,... ,n

7; Dbe the fitted value of y;

e; Dbe theithresidual,ie., ¢; =y; — 7

From Equation (1), the sum of squared error can be defined as follows:

n n

SSE = Z e = Z(}/i - 9;)° 2)

i=1 i=1

In general, the adjusted R? attaches a small penalty for adding more variables in the model. The
difference between the adjusted R? and R? is usually slightly small unless there are too many unknown
coefficients in the model to be estimated from too small a sample in the presence of too much noise.
In other words, the adjusted R? penalizes the loss of degrees of freedom that result from adding
independent variables to the model. Our motivation of this study is to propose a new criterion by
addressing the above situation. According to the unbiased estimators of the adjusted R? and R? that,
respectively, correct for the sample size and numbers of estimated coefficients, we can easily show that
1_R§dj

1-R?
many coefficients (or estimated parameters) in the model from too small a sample in the presence of
too much noise where n is the sample size and k is the number of estimated parameters.

Based on the above, we propose a new criterion, PIC, for selecting the best model. The PIC value
of the model is as follows:

the following function k( ) or equivalently, that k(’;—:}() indicates a larger penalty for adding too

n—-1
PIC = SSE—l—k(n_k) 3)

where 7 is the number of observations in the model
k is the number of estimated parameters or (k—1) explanatory variables in the model, and
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SSE is the sum of squares error as given in Equation (2).
Table 1 presents a summary of criteria for model selection in this study. The best model from
among candidate models is the one that yields the smaller the value of MSE, RMSE, AIC, BIC, AICc
and the new criterion value given in Equation (3) or the larger the value of R?, adjusted R?.

Table 1. Some criteria model selection.

No. Criteria Formula
n . Measures the deviation between the
1 MSE MSE — A fitted values with the actual data
N n—k observation.
2 RMSE RMSE — El(y‘_?f)z The square root of the MSE.
- n—k
z A2
3 R2 R2_ 1 L i) Measures the amount of variation
- i (vi—7)° accounted for the fitted model.
i=1
s 2 _ q_(n=1\(1_R2 Take into account a small penalty for
4 AdjR R“df 1 (”‘k )(1 R ) adding more variables in the model.

The model improves the goodness of
5 AIC AIC = -2log(L) + 2k the fit but also increases the penalty by
adding more parameters.

Depend on the sample size n that shows
6 BIC BIC = —2log(L) + klog(n) how strongly BIC impacts the penalty of
the number of parameters in the model.

AICc takes into account sample size by
7 AlCc AIC. = —2log(L) + 2k + 21]1‘(_’;:1) increasing the relative penalty for
model complexity with small data sets.

PIC — SSE + k(z_:}c ) Tllns newhcrlterloln takﬁs mtg1 Cail‘ccount a
8 PIC n arger the penalty when adding too
where SSE = ). (y; — yi)z many coefficients in the model when
i=1 there is too small a sample.

3. Experimental Validation

3.1. Numerical Examples

In this section, we illustrate the proposed criterion based on a simulated data from a multiple
linear regression with three independent variables X7, X, and X3 for a set of 100 observations (Case 1)
and 20 observations (Case 2).

Case 1: 100 observations based on simulated data.

Table 2 presents a list of the first 10 observations from the simulated data consisting of 100
observations based on a multiple linear regression function. From Table 3 we can observe that based on
the new proposed criterion the multiple regression models including all three independent variables
provides the best fit. The results are also consistent with all of the criteria such as MSE, AIC, AICc, BIC,
RMSE, R?, and adjusted R2.
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Table 2. A simulated dataset of 100 observations from a multiple linear regression consisting of 3

independent variables.

X1 X X3 Y

11 68.028164 0 21.46126
12 69.086446 0 23.28792
13 84.806730 1 18.71906
14 19.011313 1 18.50209
15 63.046323 1 22.37717
16 82.686964 1 24.19955
17 59.263664 1 20.64198
18 88.756598 0 29.50144
19 77.884304 1 24.49684
20 9.346073 0 27.15191

Table 3. Criteria values of independent variables based on 100 simulated data observations consisting

of three independent variables X;, X, and X3.

Criteria X1, X2, Xs X1, X» X1, X3 X, X3 X, X, X3
MSE 2715904  8.844676  3.632836 2149156 9.259849  213.7444  217.8576
AIC 389.594  506.7012  417.7079 4177079  510.3048  824.2031  826.1659
AICc 390.0151  506.9512  417.9579  417.9579 5104285  824.3268  826.289
BIC 400.0147 5145167 4255234 4255234 5155151  829.4134  831.3762

RMSE 1.648 2.974 1.906 14.66 3.043 14.62 14.76
R? 0.9879 0.9601 09836  0.02904  0.9578 0.0251  0.005776
Adjusted R2 0.9875 0.9592 09833  0.00902 09573  0.01515  —0.00437
PIC 264.8518  860.9954 3554469  20849.88  909.4856 2094897  21352.07

Case 2: 20 observations.

Table 4 presents a simulated data set consisting of 20 observations based on a multiple linear
regression function. From Table 5 we can observe that a multiple regression model including all three
independent variables based on the new criterion provides the best fit from among all 7 models (see
Table 5). This result is also consistent with all the criteria such as MSE, AIC, AICc, BIC, RMSE, R? and

adjusted R?.

Table 4. A simulated dataset of 20 observations from a multiple linear regression consisting of 3

independent variables.

¢ X2 X3 Y

11 68.028164 0 28.05442
12 69.086446 0 25.44146
13 84.806730 1 18.73395
14 19.011313 1 18.00611
15 63.046323 1 24.69284
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Table 4. Cont.

X1 X5 X3 Y
16 82.686964 0 28.57457
17 59.263664 1 22.69636
18 88.756598 0 29.59276
19 77.884304 0 29.19881
20 9.346073 1 21.72717
21 80.920814 1 25.78641
22 91.528869 1 26.44676
23 13.096270 1 23.20765
24 5.530196 0 25.37850

0

0

0

0

0

0

25 73.659765 32.86512
26 47.619990 29.91239
27 84.961929 35.45651
28 67.516106 34.46896
29 16.024371 31.97531
30 9.566489 33.54677

Table 5. Criteria values of independent variables based on 20 simulated data observations consisting
of three independent variables X;, X, and X3.

Criteria X1, X2, X5 X1, X2 X1, X3 X, X3 X X, X3
MSE 262764 8934121  5.692996  9.909904  14.32623 2355161  10.44582
AIC 81.6276 1053009 962897  107.3718 113.8972  123.8301  107.5755
AICc 8429427  106.8009  97.7897  108.8718  114.6031 124536  108.2814
BIC 8561053  108.2881  99.2769 110359  115.8887 1258216  109.567

RMSE 1.621 2.989 2.386 3.148 3.785 4.853 3.232

R? 0.9111 0.6792 0.7956 0.6442 0.4551 0.1046 0.6028

Adjusted R2 0.8945 0.6415 0.7715 0.6024 04248  0.05487  0.5807
PIC 4679226 155233 100.1339  171.8213  259.9833  426.0401  190.1359

3.2. Applications

In this section we demonstrate the proposed criterion with several real applications including
advertising products, heart blood pressure health and software reliability analysis. Based on our
preliminary study on the collected data, the multiple linear regression model assumption is appropriate
to be used in our applications 1 and 2 to illustrate the model selection.

Application 1: Advertising Budget.

In this study, we use the advertising budget data set [15] to illustrate the proposed criterion where
the sales for a particular product is a dependent variable of multiple regressionand the three different
media channels such as TV, Radio, and News paper are independent variables. The advertising dataset
consists of the sales of a product in 200 different markets (200 rows), together with advertising budgets
for the product in each of those markets for three different media channels: TV, radio and newspaper.
The sales are in thousands of units and the budget is in thousands of dollars. Table 6 shows the first
few rows of the advertising budget data set.
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Table 6. Advertising budget data in 200 different markets.

TV Radio  Newspaper Sales
230.1 37.8 69.2 221
44.5 39.3 45.1 10.4
17.2 45.9 69.3 9.3
151.5 413 58.5 18.5
180.8 10.8 58.4 12.9
8.7 48.9 75 7.2
57.5 32.8 23.5 11.8
120.2 19.6 11.6 13.2
8.6 2.1 1 4.8

We now discuss the results of the linear regression model using this advertising data. Figures 1
and 2 present the data plot and the correction coefficients between the pairs of variables of the
advertising budget data, respectively. It shows that the pair of Sales and TV variables has the highest
correlation. This implies that the TV advertising has a direct positive effect on the Sale. Results also
show that there is a statistical significant positive effect of both TV and Radio advertisings on the Sales.
From Table 7, TV media is the most significant media among the three advertising channels and it has
strongest impacts on the Sales. The R? is 0.8972, so 89.72% of the variability is explained by all three
media channels. From Table 8, the values of R? with all three variables and just two variables (TV and
Radio advertisings) in the model are the same. This implies that we can select the model with two
variables (TV and Radio) in the regression. We can now examine the adjusted R? measure. For the
regression model with TV and Radio variables, the adjust R? is 0.8962 while adding the third variable
(Newspaper) into the model, the adjusted R? of the full model size is then reduced to 0.8956. Based on
the new proposed criterion, the model with the two advertising media channels (TV and Radio) is the
best model from a set of seven candidate models as shown in Table 8. This result is consistent with all
criteria such as MSE, AIC, AICc, BIC, RMSE, and adjusted RZ,

Scatter Plot

100 200 300

0

80

T T T T 171
40

T
0

0 50 100 200 300

20 40 &0 B0 100

Figure 1. The scatter plot of the advertising data with four variables.
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Figure 2. The correlation coefficient between the variables.

Table 7. The relative important metrics of all three media channels (TV, Radio, Newspaper).

Relative importance metrics:

Lmg Last First Pratt
vV 0.65232505 0.6918832537 0.6143151 0.656553238
Radio 0.32187149 0.3080966738 0.3333566 0.344548723
Newspaper 0.02580346 0.0000200725 0.0523283 —0.001101961

Table 8. Criteria values of independent variables (TV, Radio, Newspaper) of regression models. (X,
X, and X3 be denoted as the TV, Radio and Newspaper, respectively).

Criteria X1, X2, X3 X1, X2 X1, X3 X2, X3 X1 X X3
MSE 2.8409 2.8270 9.7389 18.349 10.619 18.275 25.933
AIC 782.36 780.39 1027.8 1154.5 1044.1 1152.7 1222.7
AlCc 782.49 780.46 1027.84 1154.53 1044.15 1152.74 1222.73
BIC 795.55 790.29 1037.7 1164.4 1050.7 1159.3 1229.3

RMSE 1.6855 1.6814 3.1207 4.2836 3.2587 4.2750 5.0925
R? 0.8972 0.8972 0.6458 0.3327 0.6119 0.3320 0.0521
Adjusted R? 0.8956 0.8962 0.6422 0.3259 0.6099 0.3287 0.0473

PIC 5.7467 47118 6.1512 7.3141 5.2688 6.2850 7.1026
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Application 2: Heart Blood Pressure Health Data.

Blood pressure (BP) is one of the main risk factors for cardiovascular diseases. BP is the force of
blood pushing against your artery walls as it goes through your body [16]. Abnormal BP has been a
forceful issue that causes strokes, heart attacks, and kidney failureso it is important to check your blood
pressure on a regular basis. The author has monitored blood pressure daily of an individual since
January 2019 using Microlife product. He measured his blood pressure each morning and evening
each day within the same time interval and recorded the results of all three measures such as Systolic
Blood Pressure ("systolic"), Diastolic Blood Pressure ("diastolic"), and Heart Rate ("pulse") each time
as shown in Table 9. The Systolic BP is the pressure when the heart beats — while the heart muscle is
contracting (squeezing) and pumping oxygen-rich blood into the blood vessels. Diastolic BP is the
pressure on the blood vessels when the heart muscle relaxes. The diastolic pressure is always lower
than the systolic pressure [17]. The Pulse or Heart rate measures the heart rate by counting the number
of beats per minute (BPM).

Table 9. Sample heart blood pressure health data set of an individual in 86-day interval.

Day Time Systolic Diastolic Pulse
5 0 154 99 71
5 1 144 94 75
6 0 139 93 73
6 1 128 76 85
7 0 129 73 78
7 1 125 65 74
1 0 129 80 70
1 1 130 83 72
2 0 144 83 74
2 1 124 87 84
3 0 120 77 73
3 1 124 70 80

The newly heart blood pressure health data set consists of the heart rate (pulse) of such individual
in 86 days with 2 data points measured each day, making a total of 172 observations. The first few
rows of the data set are shown in Table 9. In Table 9 for example, the first row of the data set can be
read as follows: on a Thursday ("day" = 5) morning ("time"=0), the high blood "systolic", low blood
"diastolic", and heart rate "pulse" measurements were 154, 99, and 71, respectively. Similarly, on a
Thursday afternoon (i.e., the second row of the data set in Table 9, and "time" =1), the high blood, low
blood and heart rate measurements were 144, 94, and 75, respectively.

From Figure 3, the systolic BP and diastolic BP have the highest correlation. In this study, we
decided not to include the Time variable (i.e., column 2 in Table 9) in this model analysis since it
may not necessary reflect the health measurement much. The analysis shows that the Systolic blood
pressure seems to be the most significant factor that can have strong impacts on the heart rate measure.
The R? is 0.09997, s0 9.99% of the variability is explained by all three variables (Day, Systolic, Diastolic)
as shown in Table 10. Based on the new proposed criterion, the model with only Systolic blood pressure
variable is the best model from the set of seven candidate models as shown in Table 10. This result
stands alone compared to all other criteria, except BIC. In other words, the best model based on our
proposed criterion will only obtain Systolic BP variable in the model.
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Figure 3. The correlation coefficient between the variables.

Table 10. Criteria values of variables (day, systolic, diastolic) of regression models (X7, X», and X3 be
denoted as the day, systolic, diastolic, respectively).

Criteria X1, X2, X3 X1, X2 X1, X3 X2, X3 X1 X> X3
MSE 43.1175 43.7381 47.0101 43.5859 46.8450 44.1352 47.2311
AIC 1141.463 1142942 1155.351  1142.342 1153.76 1143.511  1155.172
BIC 1154.053 1152.384  1164.793  1151.784  1160.055 1149.806  1161.467

RMSE 6.5664 6.6135 6.8564 6.6020 6.8443 6.6434 6.8725
R? 0.09997 0.0816 0.01287 0.08477 0.0105 0.0678 0.00236
Adjusted R? 0.08389 0.0707 0.00119 0.07394 0.00469 0.0623 —-0.00351
PIC 10.6378 9.6490 9.8919 9.6375 8.8561 8.6552 8.8843

Application 3: Software Reliability Dataset #1.

In this example, we use the numerical results recently studied by Song et al. [12] to illustrate
the new criterion by comparing it to some existing criteria based on the two real data sets in the
applications of software reliability engineering. Table 11 shows the numericalresults of 19 different
software reliability models based on four existing criteria such as MSE, AIC, R? and adjusted R%and a
new criterion, called Pham criterion, using dataset #1 [18]. In dataset #1, the week index ranges from 1
week to 21 weeks, and there are 38 cumulative failures at 14 weeks. Detailed information is recorded
in Musa et al. [18]. Model 6 as shown in Table 11 provides the best fit based on the MSE, R?, adjusted
R? and new criteria. However, Model 1 seems to be the best fit based on the AIC.
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Table 11. Results for criteria based on dataset #1 [12].

No. Value k Model MSE AIC R? Adj R? PIC
1 2 GO 3.6343 62.8309 0.9687 0.9630 45.7783
2 2 DS 9.1885 68.6375 0.9208 0.9064 112.4287
3 3 IS 3.9647 64.8309 0.9687 0.9593 47.1572
4 4 YE 4.1162 66.7083 0.9704 0.9573 46.3621
5 4 YR 16.0972 82.0186 0.8844 0.8331 166.1721
6 3 YID1 2.9149 64.8745 0.9770 0.9701 35.6094
7 3 YID2 2.9795 64.7603 0.9765 0.9694 36.3199
8 3 HDGO 3.9647 64.8309 0.9687 0.9593 47.1572
9 4 PNZ 3.2378 66.6674 0.9768 0.9664 37.5782
10 5 Pz 4.8458 68.8309 0.9687 0.9491 50.8344
11 6 ZFR 5.4529 70.8319 0.9687 0.9418 53.3732
12 5 TP 5.2511 72.6973 0.9736 0.9428 54.4821
13 3 IFD 13.0533 67.8928 0.8969 0.8660 147.132
14 4 PDP 26.2542 138.4862 0.8115 0.7277 267.742
15 4 KSRGM 5.3204 65.7919 0.9618 0.9448 58.4041
16 4 RMD 3.3303 66.7588 0.9761 0.9655 38.5032
17 5 CT 4.0547 68.0606 0.9738 0.9574 43.7145
18 5 Vtub 3.7733 66.2648 0.9756 0.9604 41.1819
19 5 3PFD 4.3488 68.6419 0.9719 0.9543 46.3614

Application 4: Software Reliability based on Dataset #2.

Similarly, in this example we use the numerical results recently studied by Song et al. [12] to
illustrate the new criterion based on a real dataset #2 [19]. In dataset #2, the weekly index uses
cumulative system days, and the failures in 58,633 system days. The detailed information is recorded
in [19]. Table 12 presents the numerical results of 19 different software reliability models based on four
existing criteria such as MSE, AIC, R?, and adjusted R? and the new proposed criterion.

Table 12. Results for criteria based on dataset #2 [12].

No.  Valuek Model MSE AIC R? Adj R? PIC
1 2 GO 1.6266 49.4070 0.9839 0.9806 20.0744
2 2 DS 7.3713 72.2378 0.9269 0.9122 83.2661
3 3 IS 1.7892 51.4070 0.9839 0.9785 21.4920
4 4 YE 1.9812 53.3655 0.9839 0.9759 23.1641
5 4 YR 2.8131 91.6713 0.8960 0.8440 120.6512
6 3 YID1 1.0219 48.4929 0.9908 0.9877 13.8190
7 3 YID2 0.9979 48.4804 0.9910 0.9880 13.5790
8 3 HDGO 1.7883 51.3850 0.9839 0.9785 21.4830
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Table 12. Cont.

No. Value k Model MSE AIC R? Adj R? PIC
9 4 PNZ 1.1090 50.4830 0.9910 0.9865 15.3143
10 5 PZ 1.3039 53.3626 0.9906 0.9839 17.9312
11 6 ZFR 2.5591 57.3622 0.9838 0.9677 28.4794
12 5 P 1.3344 56.0182 0.9928 0.9827 18.1752
13 3 IFD 38.8383 65.7427 0.6497 0.5330 391.983
14 4 PDP 34.4540 134.4592 0.7203 0.5805 351.4193
15 4 KSRGM 3.2468 55.0954 0.9736 0.9605 34.5545
16 4 RMD 2.0411 53.5239 0.8934 0.9751 23.7032
17 5 CT 0.9229 51.9769 0.9933 0.9886 14.8832
18 5 Vtub 2.0950 52.9672 0.9849 0.9741 24.2600
19 5 3PFD 1.2405 52.9005 0.9910 0.9847 17.4241

Based on dataset #2, Model 7 (see Table 12) provides the best fit based on the AIC and new criteria
where Model 17 indicates to be the best fit based on the MSE, R2, and adjusted R2.

4. Conclusions

In this paper we proposed a new PIC that can be used to select the best model from a set of
candidate models. The proposed criterion takes into account a larger penalty when adding too many
coefficients (or estimated parameters) in the model from too small a sample in the presence of too
much noise where 7 is the sample size and k is the number of estimated parameters.

The paper illustrates the proposed criterion with several applications based on the Advertising
budget data, the newly Heart Blood Pressure Health dataset, and software failure data. Given the
number of estimated parameters k and sample size #, it is straightforward to obtain the new criterion
value. Based on the three real applications studied in this paper, PIC has a very attractive performance
which is accuracy based on both simulated data and several real world applications discussed in
Section 3 for selecting the best model among a set of candidates.
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Acronyms

SSE sum of squared error

MSE mean squared error

RMSE root mean squared error

R? Coefficient of determination

Adjusted R Adjusted R-squared

AIC Akaike’s information criterion

BIC Bayesian information criterion

AlCc Second-order AIC

PIC new criterion in this paper (i.e., Pham Information
Criterion)
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