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Abstract: The purpose of this paper is to present some topological properties in E-metric spaces such
as the properties of e-sequences, the decision conditions of e-Cauchy sequences, the characteristics
of non-normal cones, and so on. Moreover, the theorem of nested closed-balls in such spaces is
displayed. In addition, some principal applications to fixed point theory are also given.
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1. Introduction

Over the past several decades, nonlinear functional analysis, especially fixed point theory in
ordered normed spaces had covered a large number of applications in optimization theory, game theory,
variational inequalities, dynamical systems, fractals, graph theory, models in economy, computer
science, and many other fields. Among them a partial ordering, is given by utilizing vector cones
from certain spaces. Using this partial ordering, certain elements may be compared better than
crude estimates via a norm. By substituting an ordered Banach space instead of the real line,
in 2007, Huang and Zhang [1] introduced the concept of cone metric space with a new point of
view. They considered convergent and Cauchy sequences in terms of interior points with regard to the
underlying cone partial ordering. Subsequently, many mathematicians paid their attention to fixed
point problems in such spaces (see [2–7] and the references therein).

In 2012, Rawashdeh et al. [8] modified the definition of cone metric space by means of using
an ordered vector space instead of the ordered Banach space, and introduced the notion of E-metric
space. They also dealt with convergent and Cauchy sequences via interior points regarding the same
cone partial ordering as the mentioned above. It is worth pointing out that most fixed point problems
from cone metric spaces and E-metric spaces are embedded into solid cones, whereas, solid cones
are so-called cones containing at least one interior point. Fixed point results in the framework of
these spaces frequently rely on the solid cones. As a matter of fact, non-solid cones exist a great deal
(see [2,5]). As a consequence, these results inevitably lead to limitations in applications.

Fortunately, in 2017, Basile et al. [9] introduced the notion of the semi-interior point, and took
into account fixed point results in E-metric spaces by embedding non-solid cones in which the cones
contain semi-interior points. In 2019, based on [8,9], Mehmood et al. [10] obtained some fixed results
in the setting of E-metric spaces by embedding such cones. The topological properties in cone metric
spaces are becoming the center of strong research activities in recent years (see [11–14]). Using the
topological properties of certain spaces, we are able to have an insight into the interior constructions of
spaces. Therefore, it is valuable for us to investigate the topological properties.

To the best of our knowledge, we are the first to focus on systemic investigations on topological
properties in E-metric spaces. Throughout this paper, we give some basic properties in E-metric spaces
with regard to cones containing semi-interior points. By using the properties obtained, we learn the
substantive characteristics of E-metric spaces. Furthermore, as applications, we cope with a class of
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fixed point problems such as the existence and uniqueness of fixed points for Hardy–Rogers type
mapping, the T-stability of Picard′s iteration and the equivalence between two distinct e-sequences in
such spaces. All the results obtained in this paper will play a significant role in forthcoming research.

The following definitions and results will be needed in this paper.

Definition 1 ([1]). Let E be a real normed space, E+ be a nonempty closed and convex subset of E, and θE be a
zero element in E. Then E+ is called a positive cone if it satisfies

(1) x ∈ E+ and α ≥ 0 imply αx ∈ E+;
(2) x ∈ E+ and −x ∈ E+ imply x = θE.

Definition 2 ([1]). Let E be a real normed space and E+ a positive cone in E. We say � is a partial ordering
relation on E if

x, y ∈ E, x � y if and only if y− x ∈ E+.

Clearly,
x ∈ E+ if and only if θE � x.

Definition 3 ([8]). A real normed space E with a norm ‖ · ‖ is called a real ordered vector space if the following
conditions hold:

(i) x, y, z ∈ E and x � y imply x + z � y + z;
(ii) α ≥ 0, x ∈ E and θE � x imply θE � αx.

In the sequel, unless there is a special explanation, we always denote by N, the set of positive
integers. We also denote by E, the real ordered vector space, E+, the positive cone in E, and intE+,
the interior of E+. We say that

U = {x ∈ E : ‖x‖ ≤ 1}

is the closed unit ball of E and that

U+ = U ∩ E+

is the positive part of U.

Definition 4 ([1]). E+ is called:
(1) a solid cone if intE+ 6= ∅;
(2) a normal cone if there exists an M > 0 such that

x, y ∈ E and θE � x � y imply ‖x‖ ≤ M‖x‖.

The least positive number satisfying the above is called the normal constant of E+.

Definition 5 ([8]). Let X be a nonempty set and dE : X× X → E a mapping. Then dE is called an E-metric
on X if for all x, y, z ∈ X, it satisfies

(1) θE � dE(x, y), dE(x, y) = θE if and only if x = y;
(2) dE(x, y) = dE(y, x);
(3) dE(x, y) � dE(x, z) + dE(z, y).

The pair (X, dE) is called an E-metric space.

Definition 6 ([9]). The point x0 ∈ E+ is called a semi-interior point of E+ if there exits a real number ρ > 0
such that

x0 − ρU+ ⊆ E+.
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Here and thereafter, denote by (E+)	 the set of all semi-interior points of E+. We say that ≪ is a
partial relation on E+ if

x, y ∈ E+ and x ≪ y if and only if y− x ∈ (E+)	.

It is easy to see that
x ∈ (E+)	 if and only if θE ≪ x.

Any interior point of E+ is a semi-interior point. However, the converse is not true. See
Example 2.5 of [9].

Definition 7 ([10]). Let (E+)	 6= ∅ and (X, dE) be an E-metric space. Let {xn} be a sequence in X and
x ∈ X. We say

(i) {xn} is e-convergent to x if for any e ≫ θE, there exists a natural number N such that dE(xn, x) ≪ e
for all n > N;

(ii) {xn} is an e-Cauchy sequence if for any e ≫ θE, there exists a natural number N such that
dE(xn, xm) ≪ e for all n, m > N;

(iii) (X, dE) is e-complete if every e-Cauchy sequence is e-convergent in X.

Lemma 1 ([5]). Let 0 ≤ λ < 1 be a constant, u ∈ E+ and u � λu. Then u = θE.

2. Main Results

In this section, omitting the assumption of solid cones of the main results in the existing literature,
we shall give some topological properties relevant to semi-interior points in E-metric spaces. It will
help us apperceive the internal structure of the spaces.

Proposition 1. Let x, y ∈ E. Then x ≪ y implies x � y.

Proof. Let x, y ∈ E and x ≪ y. In view of x ≪ y, then y− x ∈ (E+)	, so there exists ρ > 0 such that

y− x− ρU+ ⊆ E+.

Noting that θE ∈ U+, it follows that

y− x = y− x− θE = y− x− ρθE ∈ y− x− ρU+ ⊆ E+,

which means that x � y.

Proposition 2. Let x ∈ intE+ and y ∈ E such that x ≪ y. Then y ∈ intE+.

Proof. On account of x ≪ y, by Proposition 1, we have x � y, further, y− x ∈ E+. As x ∈ intE+ , U
implies x ∈ E+, then y = x + (y− x) ∈ E+, here and thereafter “,” means “denote and equal”. Let

f : E 7→ E (t 7→ t + x− y)

be a mapping. In view of f (y) = x ∈ U, it means that U is the image set of f . Noting that f is
continuous and U is an open set, it follows that f−1(U) is also an open set. Thereby we only need to
prove f−1(U) ⊆ E+. This is because if f−1(U) ⊆ E+, then y ∈ U, based on the fact that y ∈ f−1(U).

Indeed, since f is a bijection, then f−1(U) = { f−1(u) : u ∈ U} is well-defined. Hence,
f−1(u) = u + (y− x) ∈ E+ if u ∈ U ⊆ E+. Therefore, f−1(U) ⊆ E+.
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Proposition 3. Let x, y, z ∈ E. Then x ≪ z if one of the following holds:

x � y ≪ z, x ≪ y � z, x ≪ y ≪ z.

Proof. Let x, y, z ∈ E. Without loss of generality, assume that x � y ≪ z. Since x � y, then y− x ∈ E+.
By virtue of y ≪ z, i.e., z− y ∈ (E+)	, hence there exists ρ > 0 such that

z− y− ρU+ ⊆ E+.

Noting that E+ is a positive cone, it follows that

z− x− ρU+ = (z− y− ρU+) + (y− x) ⊆ E+,

thus, z− x ∈ (E+)	, that is, x ≪ z. Similarly, we may prove the remaining cases.

Proposition 4. E+ + (E+)	 = (E+)	.

Proof. Choose x ∈ E+, y ∈ (E+)	. On the one hand, it is valid that θE � x, θE ≪ y. Hence,

θE ≪ y = θE + y � x + y.

Thus by Proposition 3, it follows that θE ≪ x + y, i.e., x + y ∈ (E+)	. That is to say,

E+ + (E+)	 ⊆ (E+)	. (1)

On the other hand, due to θE ∈ E+ and y ∈ (E+)	, then

y = θE + y ∈ E+ + (E+)	.

Consequently,

(E+)	 ⊆ E+ + (E+)	. (2)

Considering (1) and (2), we demonstrate that

E+ + (E+)	 = (E+)	.

The proof is completed.

Proposition 5. Let λ > 0 be a real number. Then λ(E+)	 = (E+)	.

Proof. Choose x ∈ (E+)	. Then there exists a real number ρ > 0 such that

x− ρU+ ⊆ E+.

Since λ > 0 and E+ is a positive cone, then

λx− λρU+ = λ(x− ρU+) ⊆ E+. (3)

Taking ρ1 = λρ, (3) becomes

λx− ρ1U+ ⊆ E+.
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Hence, λx is a semi-interior point in E+, that is, λx ∈ (E+)	. This leads to

λ(E+)	 ⊆ (E+)	. (4)

Now we show that

(E+)	 ⊆ λ(E+)	. (5)

Indeed, by (4), we get

(E+)	 = λ · 1
λ
(E+)	 ⊆ λ(E+)	.

Combining (4) and (5), the claims holds.

Remark 1. Clearly,

(E+)	 + (E+)	 = (E+)	.

Indeed, by Proposition 5, it follows that

(E+)	 + (E+)	 = 2(E+)	 = (E+)	.

Proposition 6. Let 0 < α ≤ β and θE � x ≪ y. Then αx ≪ βy. In particular, αx ≪ αy.

Proof. By θE � x ≪ y, it follows that x ∈ E+ and y − x ∈ (E+)	. Since 0 < α ≤ β, then by
Proposition 5 and Definition 1, it may be verified that

β(y− x) ∈ (E+)	, (β− α)x ∈ E+. (6)

Thus, by (6) and Proposition 4, we obtain

βy− αx = β(y− x) + (β− α)x ∈ (E+)	,

which implies that αx ≪ βy.

Proposition 7. If θE � u ≪ e holds for any e ∈ (E+)	, then u = θE.

Proof. Due to e ∈ (E+)	, then by Proposition 5, it follows that e
n ∈ (E+)	 for any n ∈ N. Thus, by the

hypothesis, we have u ≪ e
n , which implies that e

n − u ∈ (E+)	 ⊆ E+. Let n tend to ∞ and notice that
E+ is a closed set. Then −u ∈ E+. Now that θE � u leads to u ∈ E+, hence, u = θE.

Proposition 8. (E+)	 is a closed set.

Proof. Let {xn} be a sequence of (E+)	 such that xn → x ∈ E as n→ ∞. In view of xn ∈ (E+)	, then
there exists a real number ρ > 0 such that xn − ρU+ ⊆ E+. Taking the limit as n→ ∞ from this item
together with the fact that E+ is a closed set, it follows that x− ρU+ ⊆ E+. This means that x ∈ (E+)	.
In other words, (E+)	 is a closed set.

Proposition 9. If a ≪ b + e holds for any e ∈ (E+)	, then a ≪ b.

Proof. Since a ≪ b + e holds for any e ∈ (E+)	, and e ∈ (E+)	, it follows from Proposition 5 that
e
n ∈ (E+)	 is satisfied for any n ∈ N, which means that a ≪ b + e

n holds for any n ∈ N. Thus,
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b − a + e
n ∈ (E+)	 for any n ∈ N. Passing to the limit as n → ∞ from this item together with

Proposition 8, we have b− a ∈ (E+)	, i.e., a ≪ b.

Proposition 10. Let x ∈ E and y ∈ (E+)	. Then there exists m ∈ N such that x ≪ my.

Proof. Owing to

lim
n→∞

(
y− x

n

)
= y ∈ (E+)	,

then by Proposition 8, there exists m ∈ N such that y− x
m ∈ (E+)	. Thus, it follows immediately from

Proposition 5 that

my− x = m
(

y− x
m

)
∈ (E+)	.

Therefore, x ≪ my holds.

Motivated by the concept of c-sequence from [15], we introduce the concept of the e-sequence in
E-metric space as follows.

Definition 8. A sequence {xn} in E+ is called an e-sequence if for each e ≫ θE, there exists N ∈ N such that
xn ≪ e for all n > N.

Proposition 11. Let {xn} and {yn} be e-sequences in E and α, β ≥ 0 be constants. Then {αxn + βyn} is an
e-sequence.

Proof. Without loss of generality, we assume that α, β > 0. Since {xn} is an e-sequence, then for any
e ≫ θE, there exists N1 ∈ N such that xn ≪ 1

2α e for all n > N1. Similarly, since {yn} is an e-sequence,
then for the previously mentioned e ≫ θE, there exists N2 ∈ N such that yn ≪ 1

2β e for all n > N2. We
make N = max{N1, N2}, then for all n > N, by Proposition 6, we have

αxn + βyn ≪ α · 1
2α

e + β · 1
2β

e = e,

therefore, {αxn + βyn} is an e-sequence.

Proposition 12. Let {xn} be a sequence in E and xn → θE (n→ ∞). Then {xn} is an e-sequence.

Proof. For any e ∈ (E+)	, there exists a real number ρ1 > 0 such that

e− ρ1U+ ⊆ E+.

Since xn → θE (n→ ∞), then there exist N ∈ N and a real number ρ2 > ρ1 such that xn ∈ ρ2
2 U+ for all

n > N. Hence, we have

e− xn −
ρ2

2
U+ ⊆ e− ρ2

2
U+ −

ρ2

2
U+ = e− ρ2U+ ⊆ e− ρ1U+ ⊆ E+,

from which, it follows that

e− xn ∈ (E+)	 (n > N),

so xn ≪ e (n > N).

Proposition 13. Let {xn} and {yn} be two sequences in E such that xn � yn and yn → θE (n → ∞).
Then {xn} is an e-sequence.



Mathematics 2019, 7, 1222 7 of 14

Proof. Since yn → θE (n → ∞), then by Proposition 12, for any e ∈ (E+)	, there exists N ∈ N such
that yn ≪ e for all n > N. Thus, xn � yn ≪ e for all n > N. Now, by Proposition 3, we have xn ≪ e
for all n > N.

Remark 2. Let {xn} and {yn} be two sequences in E such that xn � yn. Then {xn} is an e-sequence provided
that {yn} is an e-sequence. Indeed, by the proof of Proposition 13, the claim holds.

Proposition 14. Let 0 ≤ λ < 1 be a constant, {xn} and {yn} be sequences in E+ satisfying

xn+1 � λxn + yn. (7)

Then {xn} is an e-sequence if {yn} is an e-sequence.

Proof. Assume that {yn} is an e-sequence. Then for any e ≫ θE, there exists N1 ∈ N such that

yn ≪
1− λ

2
e (8)

for all n > N1. Note that λn−N1 xN1+1 → θE (n → ∞). Then by Proposition 12, there exists N2 ∈ N
such that

λn−N1 xN1+1 ≪
1
2

e (9)

for all n > N2.
Put N = max{N1, N2}, then (8) and (9) hold for all n > N. Using (7), we have

xn+1 − λxn � yn,

λxn − λ2xn−1 � λyn−1,

λ2xn−1 − λ3xn−2 � λ2yn−2,

· · · · · · · · · · · · · · · · · ·
λn−N1−1xN1+2 − λn−N1 xN1+1 � λn−N1−1yN1+1.

Consider the above inequalities, for all n > N, it follows that

xn+1 � λn−N1 xN1+1 + yn + λyn−1 + λ2yn−2 + · · ·+ λn−N1−1yN1+1

≪
1
2

e + (1 + λ + λ2 + · · ·+ λn−N1−1) · 1− λ

2
e

≪
1
2

e +
1

1− λ
· 1− λ

2
e

= e.

Finally, by Proposition 3, we claim that {xn} is an e-sequence.

Proposition 15. Let (X, dE) be an E-metric space and {xn} a sequence in X satisfying

dE(xn, xn+1) � λdE(xn−1, xn) (n = 1, 2, . . .), (10)

where 0 ≤ λ < 1 is a constant. Then {xn} is an e-Cauchy sequence in X.

Proof. By (10), it follows that

dE(xn, xn+1) � λdE(xn−1, xn) � λ2dE(xn−2, xn−1) � · · · � λndE(x0, x1). (11)
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For any n, m ∈ N and m > n, using (11), we have

dE(xn, xm) � dE(xn, xn+1) + dE(xn+1, xn+2) + · · ·+ dE(xm−1, xm)

� (λn + λn+1 + · · ·+ λm−1)dE(x0, x1)

� λn

1− λ
dE(x0, x1)→ θE (n→ ∞). (12)

Then by (12) and Proposition 13, we claim that {xn} is an e-Cauchy sequence in X.

Proposition 16. Let (X, dE) be an E-metric space wherein (E, ‖ · ‖) is complete, {xn} and {yn} be e-Cauchy
sequences in X. Then E+ is not a normal cone provided that {dE(xn, yn)} is not convergent in E.

Proof. Assume that {dE(xn, yn)} is not convergent in E. We argue by contradiction by supposing
that E+ is a normal cone with the normal constant M. We start with ε > 0 and take e ∈ (E+)	 with
‖e‖ < 2ε

2M+1 . Since {xn} is an e-Cauchy sequence, then there exists N1 ∈ N such that

dE(xn, xm) ≪
e
4

, (13)

for all n, m > N1. Since {yn} is an e-Cauchy sequence, then there exists N2 ∈ N such that

dE(yn, ym) ≪
e
4

, (14)

for all n, m > N2. Let N = max{N1, N2}, then (13) and (14) hold for all n, m > N. Accordingly, for all
n, m > N, we deduce that

dE(xn, yn) � dE(xn, xm) + dE(xm, ym) + dE(ym, yn) ≪ dE(xm, ym) +
e
2

, (15)

dE(xm, ym) � dE(xm, xn) + dE(xn, yn) + dE(yn, ym) ≪ dE(xn, yn) +
e
2

. (16)

Combining (15) and (16), we have

θE ≪ dE(xm, ym) +
e
2
− dE(xn, yn) ≪ dE(xn, yn) +

e
2
+

e
2
− dE(xn, yn) = e. (17)

By Proposition 1, (17) establishes that

θE � dE(xm, ym) +
e
2
− dE(xn, yn) � e. (18)

Since E+ is a normal cone, then it may be verified from (18) that

‖dE(xm, ym) +
e
2
− dE(xn, yn)‖ ≤ M‖e‖. (19)

Hence, by using (19), we obtain

‖dE(xm, ym)− dE(xn, yn)‖ ≤ ‖dE(xm, ym) +
e
2
− dE(xn, yn)‖+ ‖

e
2
‖ ≤ (M +

1
2
)‖e‖ < ε,

which means that {dE(xn, yn)} is a Cauchy sequence in E. Since (E, ‖ · ‖) is complete, then {dE(xn, yn)}
is convergent. This leads to a contradiction with the hypothesis.

Theorem 1. Let (X, dE) be an E-metric space and {xn} a sequence in X. Then the following are equivalent:
(1) (X, dE) is e-complete;
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(2) there exists a unique point p ∈
∞⋂

n=1
Sn provided that {rn} is an e-sequence where Sn = {x ∈ X :

dE(xn, x) � rn} with S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · .

Proof. Let (1) hold, {rn} be an e-sequence and Sn = {x ∈ X : dE(xn, x) � rn} with S1 ⊇ S2 ⊇
· · · ⊇ Sn ⊇ · · · . In view of xm ∈ Sm ⊆ Sn (m ≥ n), it follows that dE(xn, xm) � rn. Since {rn} is an
e-sequence, then by Proposition 3 or Remark 2, it is easy to see that {xn} is an e-Cauchy sequence in X.
Since (X, dE) is e-complete, then there exists p ∈ X such that {xn} e-converges to p. In other words,
for every e ≫ θE and any k ∈ N, there exists N1 ∈ N such that for all m > N1, one has dE(xm, p) ≪ e

k .
As a consequence of

dE(xn, p) � dE(xn, xm) + dE(xm, p) � rn + dE(xm, p) ≪ rn +
e
k

,

we get from Proposition 3 that rn +
e
k − dE(xn, p) ∈ (E+)	. Using Proposition 8 and letting k → ∞

from this item, we have rn − dE(xn, p) ∈ (E+)	, further, by Definition 6, we have rn − dE(xn, p) ∈ E+,

that is, dE(xn, p) � rn, i.e., p ∈ Sn. Thus, p ∈
∞⋂

n=1
Sn.

On the other hand, if there exists q ∈
∞⋂

n=1
Sn, then dE(xn, q) � rn. For each e ≫ θE, since {rn} is

an e-sequence and {xn} e-converges to p, then there exists N2 ∈ N such that for all n > N2, we get
rn ≪ e

2 and dE(xn, p) ≪ e
2 . Consequently, for all n > N2, we deduce that

dE(q, p) � dE(q, xn) + dE(xn, p) � rn + dE(xn, p) ≪
e
2
+

e
2
= e,

so by Propositions 3 and 7, we obtain dE(q, p) = θE, i.e., q = p.
Conversely, assume that (2) holds and {xn} is an e-Cauchy sequence in X. Under this hypothesis,

we may choose e0 ∈ (E+)	 and n1 < n2 < · · · < nk < · · · satisfying

dE(xn, xm) ≪
e0

2k+1

for all n, m ≥ nk. We denote

S(xnk ,
e0

2k ) = {x ∈ X : dE(xnk , x) � e0

2k }, k = 1, 2, . . . ,

and take y ∈ S(xnk+1 , e0
2k+1 ). As

dE(xnk , y) � dE(xnk , xnk+1) + dE(xnk+1 , y) ≪
e0

2k+1 +
e0

2k+1 =
e0

2k ,

by Propositions 1 and 3, we speculate y ∈ S(xnk , e0
2k ), thus, S(xnk+1 , e0

2k+1 ) ⊆ S(xnk , e0
2k ). By virtue of (2),

there is a unique point p ∈
∞⋂

k=1
S(xnk , e0

2k ). Hence, dE(xnk , p) � e0
2k . Since {xn} is an e-Cauchy sequence,

then for each e ≫ θE, there exists N3 ∈ N such that for all n, m > N3, one has dE(xn, xm) ≪ e
2 . Note

that dE(xnk , p) � e0
2k → θE (k→ ∞), then for each e ≫ θE, by Proposition 13, there exists k0 such that

nk0 > N3 and dE(xnk0
, p) ≪ e

2 . Consequently, for all n > N3, we have

dE(xn, p) � dE(xn, xnk0
) + dE(xnk0

, p) ≪
e
2
+

e
2
= e,

which follows from Proposition 3 that {xn} e-converges to p. Therefore, (X, dE) is e-complete.
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Remark 3. Theorem 1 gives us a sufficient and necessary condition on e-completeness in the setting of E-metric
spaces. It is regarded as the theorem of nested closed-ball in E-metric spaces. Clearly, it expands the theorem of
nested interval from metric spaces to E-metric spaces.

3. Some Applications to Fixed Point Theory

In this section, we use the aforementioned topological properties to deal with a class of fixed
point problems. As compared to the previous methods, our results are more general and the proofs are
more straightforward.

Similar to Definition 2.24 of [11], we introduce the following notion.

Definition 9. Let (X, dE) be an E-metric space, {yn} a sequence in X and T a self-map on X. Let x0 ∈ X and
xn+1 = Txn be a Picard′s iteration in X. The iteration procedure xn+1 = Txn is said to be T-stable with respect
to T if {xn} e-converges to a fixed point q of T, and {dE(yn+1, Tyn)} is an e-sequence, then {yn} e-converges
to q.

Subsequently, motivated by Theorem 1 of [16], we introduce the concept of Hardy–Rogers type
mapping in the framework of E-metric spaces.

Definition 10. Let (X, dE) be an E-metric space and T : X → X be a mapping satisfying

dE(Tx, Ty) � λ1dE(x, y) + λ2dE(x, Tx) + λ3dE(y, Ty)

+ λ4dE(x, Ty) + λ5dE(y, Tx) (20)

for all x, y ∈ X, where λi ≥ 0 (i = 1, 2, 3, 4, 5) are constants such that 0 ≤
5
∑

i=1
λi < 1. Then T is called a

Hardy–Rogers type mapping on X.

Finally, taking advantage of the above topological properties, we give some applications to fixed
point theory with respect to Hardy–Rogers type mappings on E-metric spaces.

Theorem 2. Let (X, dE) be an e-complete E-metric space and T : X → X a Hardy–Rogers type mapping on
X. Then

(1) T has a unique fixed point in X, and for each x ∈ X, the iterative sequence {Tnx}n≥0 e-converges to
the fixed point;

(2) the Picard′s iteration is T-stable;
(3) {d(yn, Tyn)} is an e-sequence if and only if {d(yn+1, Tyn)} is an e-sequence.

Proof. (1) We choose x0 ∈ X and construct the Picard′s iterative sequence {xn} by xn+1 = Txn =

Tn+1x0. Taking advantage of (20), on the one hand, we have

dE(xn, xn+1) = dE(Txn−1, Txn)

� λ1dE(xn−1, xn) + λ2dE(xn−1, Txn−1) + λ3dE(xn, Txn)

+ λ4dE(xn−1, Txn) + λ5dE(xn, Txn−1)

= (λ1 + λ2)dE(xn−1, xn) + λ3dE(xn, xn+1) + λ4dE(xn−1, xn+1)

� (λ1 + λ2 + λ4)dE(xn−1, xn) + (λ3 + λ4)dE(xn, xn+1), (21)

on the other hand, we have

dE(xn, xn+1) = dE(Txn, Txn−1)

� λ1dE(xn, xn−1) + λ2dE(xn, Txn) + λ3dE(xn−1, Txn−1)
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+ λ4dE(xn, Txn−1) + λ5dE(xn−1, Txn)

= (λ1 + λ3)dE(xn−1, xn) + λ2dE(xn, xn+1) + λ5dE(xn−1, xn+1)

� (λ1 + λ3 + λ5)dE(xn−1, xn) + (λ2 + λ5)dE(xn, xn+1). (22)

Adding up (21) and (22) yields

2dE(xn, xn+1) � (2λ1 + λ2 + λ3 + λ4 + λ5)dE(xn−1, xn)

+ (λ2 + λ3 + λ4 + λ5)dE(xn, xn+1),

from which follows

dE(xn, xn+1) �
2λ1 + λ2 + λ3 + λ4 + λ5

2− λ2 − λ3 − λ4 − λ5
dE(xn−1, xn). (23)

We make λ = 2λ1+λ2+λ3+λ4+λ5
2−λ2−λ3−λ4−λ5

, then 0 ≤ λ < 1 by right of 0 ≤
5
∑

i=1
λi < 1. Equation (23) and

Proposition 15 ensure us that {xn} is an e-Cauchy sequence in X.
Since (X, dE) is e-complete, then there exists q ∈ X such that {xn} e-converges to q. In the

following, we show that q is a fixed point of T.
Indeed, using (20), we speculate that

dE(Tq, q) � dE(Tq, Txn−1) + dE(xn, q)

� λ1dE(q, xn−1) + λ2dE(q, Tq) + λ3dE(xn−1, Txn−1)

+ λ4dE(q, Txn−1) + λ5dE(xn−1, Tq) + dE(xn, q)

� (λ1 + λ3 + λ5)dE(xn−1, q) + (λ2 + λ5)d(Tq, q) + (1 + λ3 + λ4)dE(xn, q),

which means that

dE(Tq, q) � λ1 + λ3 + λ5

1− λ2 − λ5
dE(xn−1, q) +

1 + λ3 + λ4

1− λ2 − λ5
dE(xn, q) , zn. (24)

Since {xn} e-converges to q, then {dE(xn, q)} is an e-sequence. Thus, by Proposition 11, {zn} is
also an e-sequence. Therefore, by (24) and Proposition 3, for any e ≫ θE, there exists N ∈ N such that
for all n > N, ones have

dE(Tq, q) ≪ e. (25)

Accordingly, by (25) and Proposition 7, it is obvious that dE(Tq, q) = θE, i.e., q is a fixed point of T.
Now we prove that the fixed point of T is unique. To this end, assume that there exists another

fixed point p of T. Then by utilizing (20), it follows that

dE(q, p) = dE(Tq, Tp)

� λ1dE(q, p) + λ2dE(q, Tq) + λ3dE(p, Tp)

+ λ4dE(q, Tp) + λ5dE(p, Tq)

= (λ1 + λ4 + λ5)dE(q, p).

As 0 ≤ λ1 + λ4 + λ5 ≤
5
∑

i=1
λi < 1, then by Lemma 1, we get dE(q, p) = θE. Hence, q = p.

(2) Assume that {yn} is a sequence in X such that {d(yn+1, Tyn)} is an e-sequence. Using (20),
firstly we have

dE(Tyn, q) = dE(Tyn, Tq)
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� λ1dE(yn, q) + λ2dE(yn, Tyn) + λ3dE(q, Tq)

+ λ4dE(yn, Tq) + λ5dE(q, Tyn)

= λ1dE(yn, q) + λ2dE(yn, Tyn) + λ4dE(yn, q) + λ5dE(q, Tyn)

� (λ1 + λ4)dE(yn, q) + λ2[dE(yn, q) + dE(q, Tyn)] + λ5dE(q, Tyn)

= (λ1 + λ2 + λ4)dE(yn, q) + (λ2 + λ5)dE(q, Tyn). (26)

Secondly, we obtain that

dE(Tyn, q) = dE(q, Tyn) = dE(Tq, Tyn)

� λ1dE(q, yn) + λ2dE(q, Tq) + λ3dE(yn, Tyn)

+ λ4dE(q, Tyn) + λ5dE(yn, Tq)

= λ1dE(yn, q) + λ3dE(yn, Tyn) + λ4dE(q, Tyn) + λ5dE(yn, q)

� (λ1 + λ5)dE(yn, q) + λ3[dE(yn, q) + dE(q, Tyn)] + λ4dE(q, Tyn)

= (λ1 + λ3 + λ5)dE(yn, q) + (λ3 + λ4)dE(q, Tyn). (27)

We add up (26) and (27), which yields

2dE(Tyn, q) � (2λ1 + λ2 + λ3 + λ4 + λ5)dE(yn, q) + (λ2 + λ3 + λ4 + λ5)dE(q, Tyn),

which means that

dE(Tyn, q) � 2λ1 + λ2 + λ3 + λ4 + λ5

2− λ2 − λ3 − λ4 − λ5
dE(yn, q).

As mentioned above, on account of λ = 2λ1+λ2+λ3+λ4+λ5
2−λ2−λ3−λ4−λ5

, then 0 ≤ λ < 1 and

dE(Tyn, q) � λdE(yn, q).

Now, setting an = dE(yn, q) and cn = dE(yn+1, Tyn), we establish

an+1 = dE(yn+1, q) � dE(yn+1, Tyn) + dE(Tyn, q) � λan + cn.

Since {cn} is an e-sequence, using Proposition 14, we deduce that {an} is an e-sequence. Thus, {yn}
e-converges to q as n→ ∞. This implies that the Picard′s iteration is T-stable.

(3) Suppose that {yn} is a sequence in X. Put bn = dE(yn, Tyn). If {cn} is an e-sequence, then for
one thing, we have

bn = dE(yn, Tyn) � dE(yn, Tyn−1) + dE(Tyn, Tyn−1)

� dE(yn, Tyn−1) + λ1dE(yn, yn−1) + λ2dE(yn, Tyn) + λ3dE(yn−1, Tyn−1)

+ λ4dE(yn, Tyn−1) + λ5dE(yn−1, Tyn)

� dE(yn, Tyn−1) + λ1[dE(yn, Tyn−1) + dE(Tyn−1, yn−1)]

+ λ2dE(yn, Tyn) + λ3dE(yn−1, Tyn−1) + λ4dE(yn, Tyn−1)

+ λ5[dE(yn−1, Tyn−1) + dE(Tyn−1, yn) + dE(yn, Tyn)]

= (λ2 + λ5)bn + (λ1 + λ3 + λ5)bn−1 + (1 + λ1 + λ4 + λ5)cn−1,

which implies that

(1− λ2 − λ5)bn � (λ1 + λ3 + λ5)bn−1 + (1 + λ1 + λ4 + λ5)cn−1. (28)
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For another thing, we have

bn = dE(yn, Tyn) � dE(yn, Tyn−1) + dE(Tyn−1, Tyn)

� dE(yn, Tyn−1) + λ1dE(yn−1, yn) + λ2dE(yn−1, Tyn−1) + λ3dE(yn, Tyn)

+ λ4dE(yn−1, Tyn) + λ5dE(yn, Tyn−1)

� dE(yn, Tyn−1) + λ1[(dE(yn−1, Tyn−1) + dE(Tyn−1, yn)]

+ λ2dE(yn−1, Tyn−1) + λ3dE(yn, Tyn) + λ5dE(yn, Tyn−1)

+ λ4[dE(yn−1, Tyn−1) + dE(Tyn−1, yn) + dE(yn, Tyn)]

= (λ3 + λ4)bn + (λ1 + λ2 + λ4)bn−1 + (1 + λ1 + λ4 + λ5)cn−1,

which establishes that

(1− λ3 − λ4)bn � (λ1 + λ2 + λ4)bn−1 + (1 + λ1 + λ4 + λ5)cn−1. (29)

Sum up both (28) and (29) and it follows that

bn �
2λ1 + λ2 + λ3 + λ4 + λ5

2− λ2 − λ3 − λ4 − λ5
bn−1 +

2(1 + λ1 + λ4 + λ5)

2− λ2 − λ3 − λ4 − λ5
cn−1.

Noticing that 0 ≤ λ = 2λ1+λ2+λ3+λ4+λ5
2−λ2−λ3−λ4−λ5

< 1, we deduce from Proposition 14 that {bn} is an
e-sequence.

Conversely, if {bn} is an e-sequence, then

cn = dE(yn+1, Tyn) � dE(yn+1, Tyn+1) + dE(Tyn+1, Tyn)

� dE(yn+1, Tyn+1) + λ1dE(yn+1, yn) + λ2dE(yn+1, Tyn+1)

+ λ3dE(yn, Tyn) + λ4dE(yn+1, Tyn) + λ5dE(yn, Tyn+1)

� dE(yn+1, Tyn+1) + λ1[dE(yn+1, Tyn) + dE(yn, Tyn)]

+ λ2dE(yn+1, Tyn+1) + λ3dE(yn, Tyn) + λ4dE(yn+1, Tyn)

+ λ5[dE(yn, Tyn) + dE(Tyn, yn+1) + dE(yn+1, Tyn+1)]

= (1 + λ2 + λ5)bn+1 + (λ1 + λ3 + λ5)bn + (λ1 + λ4 + λ5)cn.

It is obvious that

cn �
1 + λ2 + λ5

1− λ1 − λ4 − λ5
bn+1 +

λ1 + λ3 + λ5

1− λ1 − λ4 − λ5
bn , dn.

Since {bn} is an e-sequence, then by Proposition 11, {dn} is an e-sequence. Thus, by Remark 2, it
is not hard to verify that {cn} is an e-sequence.

Remark 4. Item (1) of Theorem 2 greatly generalizes the main theorems of [10]. As a matter of fact, if we take
λ1 = λ ∈ [0, 1), λ2 = λ3 = λ4 = λ5 = 0 in (20), then (1) of Theorem 2 becomes Theorem 1 of [10]; if we take
λ1 = λ4 = λ5 = 0 and λ2 = λ3 = λ ∈ [0, 1

2 ) in (20), then (1) of Theorem 2 becomes Theorem 2 of [10]; if we
take λ1 = λ2 = λ3 = 0 and λ4 = λ5 = λ ∈ [0, 1

2 ) in (20), then (1) of Theorem 2 becomes Theorem 3 of [10].
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6. Kadelburg, Z.; Radenović, S. A note on various types of cones and fixed point results in cone metric spaces.
Asian J. Math. Appl. 2013, 2013, ama0104.

7. Rezapour, S.; Hamlbarani, R. Some notes on the paper “Cone metric spaces and fixed point theorems of
contractive mappings”. J. Math. Anal. Appl. 2008, 345, 719–724. [CrossRef]

8. Rawashdeh, A.A.; Shatanawi, W.; Khandaqji, M. Normed ordered and E-metric spaces. Int. J. Math. Math. Sci.
2012, 2012, 272137. [CrossRef]

9. Basile, A.; Graziano, M.G.; Papadaki, M.; Polyrakis, I.A. Cones with semi-interior points and equilibrium.
J. Math. Econ. 2017, 71, 36–48. [CrossRef]
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