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Abstract: Expansiveness is very closely related to the stability theory of the dynamical systems. It is
natural to consider various types of expansiveness such as countably-expansive, measure expansive,
N-expansive, and so on. In this article, we introduce the new concept of countably expansiveness
for continuous dynamical systems on a compact connected smooth manifold M by using the dense
set D of M, which is different from the weak expansive flows. We establish some examples having
the countably expansive property, and we prove that if a vector field X of M is C1 stably countably
expansive then it is quasi-Anosov.
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1. Introduction

Let X be a compact metric space with a metric d and f : X → X be a homeomorphism. Utz [1]
introduced a dynamic property, which is called expansiveness. It means that, if two orbits stay within
a small distance, then the orbits are the same. That is, a homeomorphism f is expansive if there is an
expansive constant e > 0 such that for any x , y ∈ X there is i ∈ Z satisfying d( f i(x), f i(y)) > e. From
the definition of the expansiveness, it is possible to consider the set

Φ f
δ
(x) = {y ∈ X : d( f i(x), f i(y)) ≤ δ ∀ i ∈ Z}.

We can easily check that f is expansive if and only if Φ f
δ
(x) = {x} for all x ∈ X.

Now, we have a natural question:

”Is Φ f
δ
(x) finite or countable?”

Definition 1 ([2] Definition 2.8). Given N ∈ N, a homeomorphism f of X is N-expansive on A ⊂ X if there is
an expansive constant δ > 0 such that Φ f

δ
(x) has at most N elements for all x ∈ A. If A = X. Then, we say that

f is N-expansive.

It is easy to see that if f is expansive then f is N-expansive. Now, we introduce another notion of
expansiveness, which is a general notion of expansiveness.

Definition 2 ([2] Definition 1.6). We say that a homeomorphism f of X is countably expansive if there is an
expansive constant δ > 0 such that for all x ∈ X the set Φ f

δ
(x) is countable.

Note that the relationship with among those notions is
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expansive⇒ N-expansive⇒ countably expansive.

On the other hand, from the stochastic point of view, Morales and Sirvent [2] introduced a general
notion of expansiveness by using a measure. For the Borel σ-algebra β on X, we denoteM(X) the
set of Borel probability measures on X endowed with the weak∗ topology. LetM∗(X) be the set of
nonatomic measure µ ∈ M(X).

Definition 3 ([2] Definition 1.3). We say that a homeomorphism f of X is µ-expansive if there exists an
expansive constant δ > 0 such that µ(Φ f

δ
(x)) = 0 for all x ∈ X. We say that f is measure expansive if it is

µ-expansive ∀µ ∈ M∗(X).

In among the notions, a remarkable notion is measure expansiveness (which was introduced
by Morales [2]). It is exactly same as countably expansiveness (see [3]). That is, Artigue and
Carrasco-Olivera [3] considered a relationship between the measure expansiveness and the countably
expansiveness.

Remark 1 ([3] Theorem 2.1). Let f : X→ X be a homeomorphism. Then,

f is countably expansive ⇐⇒ f is measure expansive.

Let M be a compact connected smooth manifold, and let Diff1(M) be the space of diffeomorphisms
of M endowed with the C1 topology. Denote by d the distance on M induced from a Riemannian metric
‖ · ‖ on the tangent bundle TM. In dynamical systems, the concept of expansiveness [1] is a useful
notion for studying stability theory. In fact, Mañé [4] showed that if a diffeomorphism f of M is C1

stably expansive then it is quasi-Anosov. Here, we say that f is quasi-Anosov if, for all v ∈ TM \ {0}, the
set {‖D f n(v)‖ : n ∈ Z} is unbounded.

Later, many mathematicians studied stability theory using the various types of expansiveness [5–8].
For instance, Moriaysu, Sakai, and Yamamoto [8] showed that if a diffeomorphism f of M is C1 stably
measure expansive then it is quasi-Anosov. The result is a generalization of the result of Mañé [4].

On the other hand, it is very important to extend from diffeomorphisms to vector fields (flows).
In fact, many researchers studied the various aspects of flows, such as thermodynamics-Hamiltonian
systems [9], nonlinear systems [10], and chaos systems [11,12].

From the result of [4], Moriyasu, Sakai, and Sun [7] extended expansive diffeomorphisms to
vector fields about the C1 stably point of view. That is, they showed that if a vector field X is C1 stably
expansive then it is quasi-Anosov. Lee and Oh [5] showed that if a vector field X is C1 stably measure
expansive then it is quasi-Anosov (We refer to the basic definitions related to the vector fields below.).

In this article, we introduce another type of countably expansive vector fields which is different
than weak expansiveness in [6]. In addition, we establish some examples of the countably expansiveness
for homeomorphisms and flows, such as shift map and suspension flow by applying the rotation map
on the circle. Moreover, we prove that if a vector field X of a compact connected manifold M is C1

stably countably expansive, then it is quasi-Anosov which is a general result of Moriyasu, Sakai, and
Sun [7]. Furthermore, we have that if a vector field X of a compact connected manifold M is C1 stably
expansive, weak expansive, and countably expansive then it is quasi-Anosov.

2. Countably Expansiveness for Suspension Flows

In this paper, we focus on countably expansiveness which is defined as the following remark.

Remark 2. In general, according to the Baire Category Theorem, there is a dense subset in a compact metric
space X. Especially, we consider a dense subset to define the countably expansiveness on this space X.
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Definition 4. We say that a homeomphism f : X→ X is countably expansive if there is δ > 0 such that for all
x ∈ X the set

Γ f
δ
(x) = {y ∈ D ⊂ X : d( f i(x), f i(y)) ≤ δ ∀i ∈ Z and D = X}

is countable, where A is the closure of A.

Example 1. Assume that X is a separable space and f : X→ X is a homeomorphism. Then, it is clear that f is
“countable expansive” (according to Definition 4).

Example 2. Let f : S1
→ S1 be an irrational rotation map. For all x ∈ S1, we consider the set

Γ f
δ
(x) = {y ∈ Q∩ S1

⊂ S1 : d( f ix, f iy) ≤ δ ∀ i ∈ Z}

where Q is the rational numbers. Then, it is clear that Q∩ S1 = S1, and #Γ f
δ
(x) = #(Q ∩ S1): countable,

denoted by #A the cardinality of a set A. Thus, f is countably expansive. However, Γ f
δ
(x) , {x} and Γ f

δ
(x) is

not a finite set. Therefore, the map is neither expansive nor N-expansive.

Symbolic systems can be used to “code” some smooth systems. Indeed, to study of symbolic
dynamics is the research of a specific class of the shift transformation in a sequence space. In addition,
it provides more motivation of the relationships between topological and smooth dynamics. The
properties of symbolic dynamical systems give a rich source of examples and counterexamples for
topological dynamics and ergodic theory.

The set of all infinite sequences of 0s and 1s is called the sequence space of 0 and 1 or the symbol
space of 0 and 1 is denoted by Σ2. More precisely, Σ2 = {(s0s1s2 · · · )| si = 0 or si = 1 (∀i)}. We often
refer to elements of Σ2 as points in Σ2. Shift map σ : Σ2 → Σ2 is defined by

σ(s0s1s2s3 · · · ) = s1s2s3 · · ·

In short, the shift map “deletets” is the first coordinate of the sequence, for example σ(01110101 · · · ) =
1110101 · · · (for more details, see [13]).

Definition 5 ([13] Definition 11.2). Let s = s0s1s2s3 · · · and t = t0t1t2t3 · · · be points in Σ2. We denote the
distance between s and t as d(s, t) and define it by

d(s, t) =
∞∑

i=0

|si − ti|

2i .

Since |si − ti| is either 0 or 1, we know that

0 ≤ d(s, t) ≤
∞∑

i=0

1
2i = 2.

The shift map is continuous; it is clear that two points are close if and only if their initial coordinates
are same. The more the coordinates are the same before they are different, the closer they are to each
other. Then, we know that the set of periodic points of the shift map is dense in Σ2 (the shift map has
2n periodic points of period n). We put the set

D = {s0s1s2 · · · ∈ Σ2 | ∃ N such that si = 0 ∀ i ≥ N},

then D = Σ2 where D is a dense set of D. In fact, we can check the above facts by the following example.
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Example 3. Let s, t ∈ Σ2 and δ = 1. Then,

Γσδ(s) = {y ∈ D ⊂ Σ : d(σn(s), σn(t)) ≤ δ, ∀n ∈ Z and D is dense in Σ}

is countable.

Proof. Let s = (s0s1s2 · · · ) ∈ Σ2 and t = (t0t1t2 · · · ) ∈ Σ2. Then, we have two cases as follows.

(i) d(σn(s), σn(t)) = 0 for ∀n implies s = t.
(ii) If s , t, then 0 < d(σn(s), σn(t)) ≤ δ for ∀n implies there exists j ∈ Z such that sn+ j , tn+ j. That is,

the jth coordinate of σn(s) = snsn+1sn+2 · · · sn+ j · · · and σn(t) = tntn+1tn+2 · · · tn+ j · · · have at least
one different coordinate components.

For two cases, we consider the cardinality of j, where j is countably many. This means that Γσ
δ
(s)

is a countable set. �

On the other hand, we need to check some properties of countably expansive homeomorphism,
which are used to prove the lemmas and theorems below.

Lemma 1. If a homeomorphism f of X is countably expansive, then f |A : A→ A is countably expansive for a
closed subset A ⊂ X.

Proof. Since f is countably expansive, there exists δ > 0 such that Γ f
δ
(x) is countable set for all x ∈ X.

Let A be a closed subset of X. Then, D∩A is dense in X. If y′ ∈ D∩A ⊂ X satisfying d( f i(x), f i(y′)) ≤ δ
for all i ∈ Z and for all x ∈ X, then y′ ∈ Γ f

δ
(x). This means that Γ f |A

δ
(x) ⊂ Γ f

δ
(x). As Γ f |A

δ
(x) is countable,

f |A is countably expansive. �

Example 4. Let f be the identity of the interval [0, 1] and A = {0}. It is clear that f : A→ A is expansive but f
is not expansive in the whole interval. Thus, the converse of Lemma 1 cannot hold.

Lemma 2. Let f : X→ X be a homeomorphism. Then,

(a) f is countably expansive if and only f k is countably expansive, for some k ∈ Z \ {0}.
(b) If f is the identity map Id, then f is not countably expansive.

Proof of (a). (⇒) For fixed k, since X is compact we can choose 0 < ε < δ such that if d(x, y) ≤ ε then

d( f i(x), f i(y)) ≤ δ for all − k ≤ i ≤ k. We have Γ f k

ε (x) ⊂ Γ f
δ
(x) ∀x ∈ X. Since Γ f

δ
(x) is countable, Γ f k

ε (x)
is countable as well. Therefore, f k is countably expansive.

(⇐) Let D ⊂ X be dense in X and δ > 0 be the countably expansive constant for f k for some k ∈ Z \ {0}.
For all x ∈ X, Γ f k

δ
(x) = {y ∈ D : d(( f k)i(x), ( f k)i(y)) ≤ δ ∀i ∈ Z}. Let Γ f

i δ2
(x) = {y ∈ D : d( f i(x), f i(y)) ≤

δ/2 0 ≤ i ≤ k}. Then, ⋃
i∈Z

Γ f
i δ2
(x) = Γ f

δ
2
(x) ⊂ Γ f k

δ
(x).

This means that f is countably expansive. �

Proof of (b). Suppose that f is the identity map Id. Then, there exists x ∈ X such that ΓId
δ
(x) = B[x, δ]

for any δ > 0. As we know that the set is uncountable, f is not countably expansive. �

Remark 3. In Lemma 2, (b) says that if the identity is countable expansive then the space is countable (there are
countable compact metric spaces).
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Lee, Morales, and Thach [6] characterized the countably expansive flows in measure-theoretical
terms, which is extended the result of [3] in the discrete case, called weak expansive flows. They
showed that a flow is countably expansive if and only if the flow is weak measure expansive.

Definition 6 ([6] Definition 1.1). A flow φ on a compact metric space X is countably expansive if there is
an expansive constant δ > 0 such that for any x ∈ X and c ∈ C there is an at most countable subset B ⊆ X
satisfying Γφ

δ,c(x) ⊆ φR(x), where

Γφ
δ,c(x) =

⋂
t∈R

φ−c(t)(B[φt(x), δ]).

Here, C denotes the set of continuous maps c : R→ R with c(0) = 0 and φR(x) = {φt(x) : t ∈ R}.
Now, we introduce the new notion of countably expansive flows by using a dense subset D of X and

consider the examples showing the countably expansive property, very well. A continuous flow of X
such that

1. φ : X ×R −→ X satisfying φ(x, 0) = x,
2. φ(φ(x, s), t) = φ(x, s + t) for x ∈ X and s, t ∈ R.

Denote by
φ(x, s) = φs(x) and φ(a,b)(x) = {φt(x) : t ∈ (a, b)}.

Definition 7. We say that a flow φ of X is countably expansive if there exist an expansive constant δ > 0 and
dense subset D of X such that Γφ

δ
(x) is a countable set, where

Γφ
δ
(x) = {y ∈ D ⊂ X : d(φt(x),φh(t)(y)) ≤ δ ∃ h ∈ H and ∀ t ∈ R}

andH denotes the set of increasing continuous maps h : R→ R with h(0) = 0.

Now, let τ : Σ2 → R be a continuous function and consider the space

Yτ, f = {(x, t) ∈ Σ2 ×R : 0 ≤ t ≤ τ(x)}

with (x, τ(x)) ∼ (σ(x), 0) for each x ∈ Σ2. The suspension flow over σ with height function τ is the flow
(φ

τ, f
t )t∈R on Yτ, f defined by

φ
τ, f
t (x, s) = (x, s + t) whenever s + t ∈ [0, τ(x)].

More precisely, for all x ∈ Σ2, σ0(x) = 0 and σn+1(x) = σn(x) + σ(τ(x)) for all n ∈ Z. For all
(x, s) ∈ Yτ, f and t ∈ R, there is a unique n ∈ Z such that σn(x) ≤ s + t < σn+1(x); we set

φ
τ, f
t (x, s) = (τ(x), s + t− σn(x)).

The Bowen–Walters distance (Definition 2 of [14]) makes Yτ, f a compact metric space where a
neighborhood of a point (x, s) ∈ Y contains all the points of φτ, f

t (w, s) ∈ Yτ, f where |t| is small and w is

close to x. With respect to the topology generated, φτ, f
t is a homeomorphism on Yτ, f for all t ∈ R.

Carrasco-Olivera and Morales [15] extended the concept of expansive measure from
homeomorphism [2] to flows. They (respectively [6]) showed that a homeomorphism of a compact
metric space is measure expansive (respectively, countable expansive) if its suspension flow is. The
following theorem says that the case of countably expansiveness, which is defined in this paper, is also
satisfied.
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Theorem 1. Let f : X → X be a homeomorphism. Then, f is countably expansive if and only if there is a
continuous map τ : X → (0,∞) such that the suspension flow φ

τ, f
t on Yτ, f over f with height function τ is

countably expansive.

Proof. It is enough to show that “only if” part. Let τ : X→ (0,∞) be given by τ(x) = 1 for all x ∈ X.
Then, the quotient space Yτ, f associated with X and τ, the suspension flow φ

1, f
t on Yτ, f given by

φ
1, f
t (x, s) = (x, t + s) for (x, s) ∈ Yτ, f with 0 ≤ t + s ≤ 1.

Now, we claim that φτ, f
t is countably expansive. It is sufficient to show that there are a constant δ > 0

and a dense subset D′ of Yτ, f such that

Γ
φ

1, f
t
δ

(x, s) = {(y, t) ∈ D′ ⊂ Yτ, f : d(φ1, f
t (x, s),φ1, f

h(t)
(y, t)) ≤ δ}

for all t ∈ R and some h ∈ H . Since D′ = D × [0, 1] and D is a dense subset of Yτ, f , Γ
φ

1, f
t
δ

(x, s) ⊆

Γ f
δ
(x) × [0, 1]. Thus, Γ

φ1,σ
t
δ

(x, s) is a countable set. Therefore, the suspension flow φ
τ, f
t on Yτ, f over f

with height function τ is countably expansive. �

By the following examples, it is easy to see that a suspension flow over an irrational rotation map
on the unit circle S1 is countably expansive by applying the Theorem 1.

Example 5. Consider a flow φ on the unit circle S1 given by

φ(eis, t) = e(s+t)i f or eis
∈ S1, t ∈ R.

Then φ is countably expansive.

In addition, we can see that the following example satisfies Theorem 1.

Example 6. If f : S1
−→ S1 is an irrational rotation map then there is a continuous map τ : S1

−→ (0,∞)

such that the suspension flow φ
τ, f
t on Yτ, f over f with height function τ is countably expansive.

On the other hand, we can find a dense subset of Σ2 as following remark.

Remark 4. As we know that

D = {s = s0s1s2 · · · ∈ Σ2 : there is N satisfying si = 0 for all i ≥ N}

is a dense subset of Σ2, we can check that D′ = D × [0, 1] is a dense subset of Σ2 × [0, 1]. Fix 0 < δ < 1
4 , let

y = (x, t), y0 = (x0, t0) in D′. Then, there exists h ∈ H such that d1,σ(φ1,σ
t (y),φ1, f

h(t)
(y0)) ≤ δ for all t ∈ R.

Since

φ1,σ
1 (y) = φ1,σ

1 (x, t) = (x, t + 1− σn(x))

φ1,σ
1 (y0) = φ1,σ

h(1)
(x0, t0) = (x0, t0 + h(1) − σn(x0)) and

d1, f (φ1,σ
1 (y),φ1,σ

h(1)
(y0)) ≤ δ. Therefore

|t + 1− σn(x) − t0 − h(1) − σn(y)| ≤ |t + 1− t0 − h(1)|+ |σn(x) − σn(x0)|

≤ δ.
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In fact there exists N > 0 such that d(σn(x), σn(x0)) ≤
1

2n for all n ≥ N then Bε(y)∩D′ , ∅. This means that
D′ is a dense subset of Σ2 × [0, 1].

Moreover, we can show that Theorem 1 holds by using the above remark for the case of the
suspension flow over a shift map as following example.

Example 7. If σ : Σ2 → Σ2 is countably expansive if and only if there is a continuous map τ : Σ2 → (0,∞)

such that the suspension flow φτ,σ
t on Yτ,σ over σ with height function τ is countably expansive.

Proof. Let τ : Σ2 → (0,∞) be given by τ(x) = 1 for all x ∈ Σ2. Then, the quotient space Yτ,σ

corresponding to Σ and τ, the suspension flow φ1,σ
t on Yτ,σ given by

φ1,σ
t (x, s) = (x, t + s) for (x, s) ∈ Yτ,σ with 0 ≤ t + s ≤ 1.

Now, we claim that φτ,σ
t is countably expansive. It is enough to show that there are a constant δ > 0

and a dense subset D′ of Yτ,σ such that

Γ
φ1,σ

t
δ

(x, s) = {(y, t) ∈ D′ ⊂ Yτ,σ : d(φ1,σ
t (x, s),φ1,σ

h(t)
(y, t)) ≤ δ}

for all t ∈ R and some h ∈ H . Since D′ = D× [0, 1] and D is a dense subset of Σ2,

Γ
φ1,σ

t
δ

(x, s) ⊆ Γσδ(x) × [0, 1].

Thus Γ
φ1,σ

t
δ

(x, s) is a countable set. Therefore, the suspension flow φτ,σ
t on Yτ,σ over σ with height

function τ is countably expansive. �

3. C1 Stably Countably Expansive Vector Fields

Recall that M is a compact connected smooth manifold, d is the distance on M induced from a
Riemannian metric ‖ · ‖ on the tangent bundle TM. Denote by X1(M) the set of all C1 vector fields
of M endowed with the C1 topology. Then, every X ∈ X1(M) generates a C1 flow Xt : M ×R → M
satisfying Xs ◦Xt = Xs+t for all s, t ∈ R, X0 = 1d and dXt(x)/dt|t=0 = X(x) for any x ∈M. Here, Xt is
called the integrated flow of X. Throughout this paper, for X, Y, . . . ∈ X1(M), denote the integrated flows
by Xt, Yt, . . ., respectively.

Note: To study of dynamical systems, the properties of orbits (or points) are important: singular, periodic,
non-wandering, etc. If a flow has a periodic orbit or singularity, then it causes a chaos phenomenon (for example,
Geometric Lorenz attractor). This means that we cannot control the system. Especially, the countably expansive
flow which we present in this paper does not have a singularity. Thus, we could investigate the stability of
countably expansive flows.

For x ∈M, denote by OX(x) the orbit {Xt(x) : t ∈ R} of the flow Xt (or X) through x. A point x ∈M
is singular of X if X(x) = 0x, Sing(X) denotes the set of singular points of X. It is said that a point p is
periodic if Xπ(p)(p) = p for some π(p) > 0, but Xt(p) , p for all 0 < t < π(p), PO(Xt) denotes the set
of periodic points of X. A point p is regular if x < PO(Xt) and x < Sing(X). The set of non-wandering
points of X, denoted by Ω(Xt) then we can see that

Sing(X)∪ PO(Xt) ⊂ Ω(Xt).

A flow Xt of M is expansive if for given ε > 0 there is a expansive constant δ > 0 such that if x, y ∈ X
satisfying d(Xt(x), Xh(t)(y)) ≤ δ for some h ∈ H and all t ∈ R then y ∈ X[−ε,ε](x), whereH denotes the
set of increasing continuous maps h : R→ R fixing 0.
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Definition 8. We say that X ∈ X1(M) is countably expansive if there exists δ > 0 such that

Γδ(x) is a countable set for all x ∈M,

where Γδ(x) = {y ∈ D ⊂M : d(Xh(t)(y), Xt(x)) ≤ δ, f or all t ∈ R, some h ∈ H and D is dense in M}.

First, we can check some properties of countably expansive flows as following lemmas.

Lemma 3. If X ∈ X1(M) is countably expansive, then Sing(X) is totally disconnected.

Proof. Assume that Sing(X) is not totally disconnected. Take x, y ∈M. For any δ > 0, let I be a closed
small arc with two end points x and y such that the length of I is less than δ. Let e = δ/2 be an
expansive constant. We can take a local chart (U,φ) satisfying I ⊂ U(⊂ Rn). Then, I∩Qc = D. Thus,
we consider the dense set D ⊂ I and we can easily see that D = I and D is uncountable. For any x ∈ I,

Γe(x) = {y ∈ D : d(Xt(x), Xh(t)(y)) ≤ e ∀t ∈ R, h ∈ H} : uncountable.

This means that X is not countably expansive. This contradicts to complete the proof. �

We can see that the singular points of countably expansive flows are isolated by the below lemma.

Lemma 4. Let X ∈ X1(M). If the flow Xt is countably expansive, then every singular points of X is isolated.

Proof. Suppose that there exist x , y ∈ Sing(X) which are not isolated. Let I be a closed small arc with
two endpoints x and y. By Lemma 3, this is a contradiction. Thus, every singular points is isolated. �

A closed Xt-invariant subset Λ is hyperbolic if there exist constants C > 0, λ > 0 and a splitting
TxM = Es

x ⊕ 〈X(x)〉 ⊕ Eu
x (x ∈ Λ) satisfying the tangent flow DXt : TM→ TM has invariant continuous

splitting and
‖DXt|Es

x
‖ ≤ Ceλt and ‖DX−t|Eu

x
‖ ≤ Ce−λt

for x ∈ Λ and t > 0. We say that X ∈ X1(M) is Anosov when M is hyperbolic for Xt.
We say that a vector field X is Axiom A if PO(Xt) is dense in Ω(Xt) \ Sing(X) and Ω(Xt) is

hyperbolic. For Axiom A vector field X, we know that Ω(Xt) is equal to the union of each basic set
Λi (1 ≤ i ≤ l) of X. Note that the basic set is closed, invariant, and transitive. A collection of basic sets
Λi1 , · · · , Λik of X is called a cycle if, for each j = 1, 2, · · · , k, there exists a j ∈ Ω(Xt) such that α(a j) ⊂ Λi j

and ω(a j) ⊂ Λi j+1 (k + 1 ≡ 1). We say that a vector field X has no cycle if there exist no cycles among
the basic sets of X.

For any hyperbolic periodic point x of X, the sets

Ws(x) ={y ∈M : d(Xt(x), Xt(y))→ 0 as t→∞} and

Wu(x) ={y ∈M : d(Xt(x), Xt(y))→ 0 as t→ −∞}

are the stable manifold and unstable manifold of x, respectively. For Axiom A vector field X ∈ X1(M), we
say that X has the quasi-transversality condition if TxWs(x)∩ TxWu(x) = {0x} for any x ∈M.

The exponential map defined by expx : TxM(1) → M for all x ∈ M where TxM(r) = {v ∈ TxM :
‖v‖ ≤ r}. Let MX = {x ∈M : X(x) , 0x}. For any x ∈MX, we set

Nx = (SpanX(x))⊥ ⊂ TxM and Πx,r = expx(Nx(r)),

where Nx(r) = Nx ∩ TxM(r) for 0 < r ≤ 1.
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LetN =
⋃

x∈MX
Nx be the normal bundle on MX. Then, we present a linear Poincaré flow for X on

N by
Ψt : N → N , Ψt|Nx = πNx ◦DxXt|Nx ,

where πNx : TxM→ Nx is the natural projection along the direction of X(x), and DxXt is the derivative
map of Xt. We say that X ∈ X1(M) is quasi-Anosov if supt∈R||Ψt(v)|| < ∞ for v ∈ N then v = 0.

Definition 9. We say that the integrated flow Xt of X ∈ X1(M) is C1 stably countably expansive if there is a
C1 neighborhoodU(X) of X such that the integrated flow Yt of Y ∈ U(X) is countably expansive.

The main theorem of this paper stated as follows.

Theorem 2. If a vector field X is C1 stably countably expansive, then it satisfies Axiom A without cycle
condition.

Now, let us prove the above theorem. To show this, we first need following lemma.

Lemma 5. Suppose that X ∈ X1(M), Sing(X) = ∅ and p ∈ OX(p) ∈ PO(Xt) (XT(p) = p). For the Poincaré
map f : Πp,r0 → Πp (r0 > 0), let U(X) ⊂ X1(M) be a C1 neighborhood of X and given 0 < r ≤ r0. Then,
there are δ0 > 0 and 0 < ε0 <

r
2 such that for a map O : Np → Np with ‖O −Dp f ‖ < δ0, there is Y ∈ U(X)

satisfying

(i) Y(x) = X(x), if x < Fp(Xt, r,
T
2
),

(ii) p ∈ OX(p) ∈ PO(Yt),

(iii) g(x) =
{

expp ◦Dp f ◦ exp−1
p (x), if x ∈ B[p, ε0

4 ] ∩Πp,r

f (x), if x < B[p, ε0] ∩Πp,r,

where Fp(Xt, r, T
2 ) = {Xt(y) : y ∈ Πp,r and 0 ≤ t ≤ T/2} and g : Πp,r → Πp is the Poincaré map of Yt.

Proof. By Lemma 1.3 of [16]. �

Denote X∗(M) as the set of X ∈ X1(M) with the property that there is a C1 neighborhoodU(X) of
X such that every γ ∈ PO(Yt) is hyperbolic for Y ∈ U(X). It was proved by [17] that X ∈ X∗(M) if and
only if X satisfies Axiom A without cycle condition.

Proof of Theorem 2. Let X be C1 stably countably expansive. Then, the proof is completed by showing
X ∈ X∗(M). Suppose there exists X < X∗(M). Then, there are Y ∈ U(X) and Y has a non-hyperbolic
periodic point p ∈ O ∈ PO(Yt).

Let T = π(p) and f : Πp,r0 → Πp (for r0 > 0) be the Poincaré map of Yt at p. As p is a
non-hyperbolic fixed point of f , there is an eigenvalue λ of Dp f with |λ| = 1. Let δ0 > 0 and 0 < ε0 < r0

be given by Lemma 5 forU(X) and r0. Then, for the linear isomorphism O = Dp f : Np → Np, there is
Z ∈ U(Y) satisfying

(i) Z(x) = Y(x), if x < Fp(Yt, r0,
T
2
),

(ii) g(x) =
 expp ◦Dp f ◦ exp−1

p (x), if x ∈ B[p, ε0
4 ] ∩Πp,r0

f (x) if x < B[p, ε0] ∩Πp,r0 .

Here, g is the Poincaré map of Z. Since the eigenvalue λ of Dpg is 1, we can take a vector v (v , 0)
associated to λ such that ‖v‖ ≤ ε0

4 and expp(v) ∈ B[p, ε0
4 ]. Then,

g(expp(v)) = expp ◦Dp f ◦ exp−1
p (expp(v)) = expp(v).
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Put Iv = {ηv : 0 < η < ε0
8 } and expp(Iv) = Ip. Then, Ip is an invariant small arc such that

Ip ⊂ B[p, ε0] ∩Πp,r0 and g(x) = x (x ∈ Ip),

and so ZT(Ip) = Ip, where ZT is the time T-map of the flow Zt. Since ZT is the identity on Ip, ZT is
not countably expansive. Thus, this contradict to that X is C1 stably countably expansive. Therefore,
we completed the proof. �

For given p ∈ MX, t ∈ R, take a constant r > 0, a C1 map τ : Πp,r → R such that τ(p) = t and
Xτ(y)(y) ∈ ΠXt(p),1 for ∀y ∈ Πp,r. The Poincaré map fp,t : Πp,r0 → ΠXt(p),1 is given by

fp,t(y) = Xτ(y)(y) for y ∈ Πp,r0 .

For given ε > 0, we denote by Nε(Πp,r) the set of diffeomorphisms ξ : Πp,r → Πp,r satisfying
supp(ξ) ⊂ Πp, r

2
and dC1(ξ, Id) < ε. Here, dC1 is the C1 metric, Id : Πp,r → Πp,r is the identity map and

supp(ξ) = Πp,r where it differs from Id.

Lemma 6. Suppose that X ∈ X1(M) and Sing(X) = ∅. For the Poincaré map f : Πx,r0 → Πx′(x′ = Xt0(x))
and Xt(x) , x (0 < t ≤ t0), letU(X) ⊂ X1(M) be C1 neighborhood of X and 0 < r ≤ r0. Then, there is ε > 0
with the property that for any ξ ∈ Nε(Πx,r), there exists Y ∈ U(X) such that{

Y(y) = X(y), if y < Fx(Xt, r, t0)

fY(y) = f ◦ ξ(y), if y ∈ Πx,r.

where fY : Πx,r → Πx′ is the Poincaré map of Yt.

Proof. By Remark 2 of [18]. �

Theorem 3. If a vector field X is C1 stably countably expansive, then X is quasi-Anosov.

Proof. It is enough to show that if the flow Xt of X ∈ X1(M) is C1 stably countably expansive then X
satisfies the quasi-transversality condition by applying Theorem A of [7] and Theorem 2.

Assume that there exists X such that it does not satisfy the quasi-transversality condition. Then,
there exists x ∈M such that

TxWs(x)∩ TxWu(x) , {0x},

and thus we have x < Ω(Xt). By Lemma 6 with a small C1 perturbation of X at x, we can construct
Y ∈ U(X) and an arc Lx centered at x. There exists a local chart (U, Yt) such that Lx ⊂ U and Lx is
diffeomorphic to [0, 1]. Now, we consider the set Γ fY

δ
(x), where fY is the Poincaré map defined by Yt.

That is,
Γ fY
δ
(x) = {y ∈ [0, 1] ∩QC : d( fY

i(x), fY
i(y)) ≤ δ ∀i ∈ Z}.

We can check that the set is uncountable, easily. Therefore, Yt is not countably expansive. The
contradiction completes the proof. �

4. Conclusions

The theory of dynamical systems is motivated by the search of knowledge about the orbits of a
given dynamical systems. To describe the dynamics on the underlying space, it is usual to use the
notion of expansiveness. In the various type of expansiveness for a homeomorphism of a compact
metric space X, Artigue and Carrasco-Olivera proved that a homeomorphism f : X→ X is countably
expansive if and only if f is measure expansive (Theorem 2.1 [3]).

In this article, we extend the countably expansiveness to the continuous dynamical systems.
However, there is a problem to define the countably expansiveness for flows caused by
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reparameterization for each point in Γδ(x) of Definition 8. Therefore, we define a suitable concept of
countably expansiveness for flows as an improvement of the problem. By using this concept, we apply
the results for expansiveness and measure expansiveness to the countably expansive flows. More
precisely, we prove that, if a vector field X is C1 stably countably expansive, then it satisfies Axiom A
without cycle condition. Furthermore, it is quasi-Anosov.

Author Contributions: Writing–original draft, J.O.; Writing–review and editing, M.L.

Funding: The first author is supported by NRF-2017R1A2B4001892. The second author is supported by
the National Research Foundation of Korea (NRF) grant funded by the MEST 2015R1A3A2031159 and NRF
2019R1A2C1002150.

Acknowledgments: The authors wish to express their appreciation to Keonhee Lee for his valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Utz, W.R. Unstable homeomorphisms. Proc. Am. Math. Soc. 1950, 1, 769–774. [CrossRef]
2. Morales, C.A.; Sirvent, V.F. Expansive Measures; IMPA Série D: Rio de Janeiro, Brazil, 2011.
3. Artigue, A.; Carrasco-Olivera, D. A note on measure-expansive diffeomorphisms. J. Math. Anal. Appl. 2015,

428, 713–716. [CrossRef]
4. Mãné, R. Expansive Diffeomorphisms; Lecture Notes in Math; Springer: Berlin, Germany, 1975; Volume 468.
5. Lee, K.; Oh, J. Weak measure expansive flows. J. Differ. Equ. 2016, 260, 1078–1090. [CrossRef]
6. Lee, K.; Morales, C.A.; Ngoc-Thach, N. Various expansive measures for flows. J. Differ. Equ. 2018, 265,

2280–2295. [CrossRef]
7. Moriyasu, K.; Sakai, K.; Sun, W. C1-stably expansive flows. J. Differ. Equ. 2005, 213, 352–367. [CrossRef]
8. Sakai, K.; Sumi, N.; Yamamoto, K. Measure expansive diffeomorphisms. J. Math. Anal. Appl. 2014, 414,

546–552. [CrossRef]
9. Bessa, M.; Rocha, J.; Torres, M.J. Shades of hyperbolicity for Hamiltonians. Nonlinearity 2013, 26, 2851–2873.

[CrossRef]
10. Schembri, F.; Bucolo, M. Periodic input flows tuning nonlinear two-phase dynamics in a snake microchannel.

Microfluid. Nanofluid. 2011, 11, 189–197. [CrossRef]
11. Luo, A.C.J. Periodic flows to chaos based on discrete implicit mappings of continuous nonlinear systems. Int.

J. Bifurc. Chaos 2015, 25, 1550044. [CrossRef]
12. Luo, A.C.J. Periodic flows to chaos in time-delay systems. In Nonlinear Systems and Complexity; Springer:

Berlin, Germany, 2017.
13. Holmgren, R.A. A First Course in Discrete Dynamical Systems, 2nd ed.; Springer: New York, NY, USA, 1996.
14. Bowen, R.; Walters, P. Expansive one-parameter flows. J. Differ. Equ. 1972, 12, 180–193. [CrossRef]
15. Carrasco-Olivera, D.; Morales, C.A. Expansive measures for flows. J. Differ. Equ. 2014, 256, 2246–2260.

[CrossRef]
16. Moriyasu, K.; Sakai, K.; Sumi, N. Vector fields with topological stability. Trans. Am. Math. Soc. 2001, 353,

3391–3408. [CrossRef]
17. Gan, S.; Wen, L. Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent. Math. 2006, 164,

279–315. [CrossRef]
18. Pugh, C.; Robinson, C. The C1 closing lemma including Hamiltonians. Ergod. Theory Dyn. Syst. 1983, 3,

261–313. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0002-9939-1950-0038022-3
http://dx.doi.org/10.1016/j.jmaa.2015.02.052
http://dx.doi.org/10.1016/j.jde.2015.09.017
http://dx.doi.org/10.1016/j.jde.2018.04.036
http://dx.doi.org/10.1016/j.jde.2004.08.003
http://dx.doi.org/10.1016/j.jmaa.2014.01.023
http://dx.doi.org/10.1088/0951-7715/26/10/2851
http://dx.doi.org/10.1007/s10404-011-0786-5
http://dx.doi.org/10.1142/S0218127415500443
http://dx.doi.org/10.1016/0022-0396(72)90013-7
http://dx.doi.org/10.1016/j.jde.2013.12.019
http://dx.doi.org/10.1090/S0002-9947-01-02748-9
http://dx.doi.org/10.1007/s00222-005-0479-3
http://dx.doi.org/10.1017/S0143385700001978
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Countably Expansiveness for Suspension Flows
	C1 Stably Countably Expansive Vector Fields
	Conclusions
	References

