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Abstract: A generalized form of the Mittag-Leffler function denoted by pE;‘;’g‘ " (x) is established and
studied in this paper. The fractional integrals involving the newly defined function are investigated.
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1. Introduction

The symbol () is the familiar Pochhammer symbol (for x € C) (see [1], p. 2 and p. 5):

__{1 (n=0)

U xx+1) ... (x+n—-1) (neN) )
_ T(x+n) _
T T (x € C\Zy).

The function ,Fs(ay,...,ap;c1,..., ¢ x) is the generalized hypergeometric series [2] defined by

0 a - .. a
fFs(ag, .o a1, ,¢552) = Z (a1) - (@) 2k, lz| <1, )

k=0 (e)k - (es)e(D)k

where the ¢; can not be a negative integer or zero and (a); denotes the Pochhammar symbol. Here 7 or

s or both are permitted to be zero. For all finite z, the series (2) is absolutely convergent if » < s and for

|z] <1ifr =s+ 1. When r > s + 1, then the series diverge for z # 0 and the series does not terminate.
The function ,¥;(z) is the generalized Wright hypergeometric series which is given by

(airXi)l,r

b4 =.,¥Y
¥a(z) = r¥s (bj,01)1,6

®)

.| = i IT_; T(ai + xik) 2
=0 H]S-:1 F(b]' + (Sjk) k!’

where q;, b € C, and real )(i,éj ceR(@=12...,rj=1,2,...,5). The asymptotic behavior of (3) for
large values of argument of z € C was mentioned in [3,4] (also, see [5,6]). For more details of the
Wright function and related literature, refer to [7,8].

The Mittag-Leffler function (MLF) performs a crucial role in physics and engineering-related
problems [9-11]. The derivations of physical phenomena from exponential nature could be governed
by the physical laws through the MLF (power-law) [12-14].
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The famous mathematician Gosta Mittag-Leffler in 1903 introduced the so-called Mittag-Leffler
function (MLF) and denoted by E,; is introduced and studied in [15] and is defined by
[e) 371
E =) —F/— 4

n=0

where 3 € C,@ > 0and I'(y) is the Gamma function defined by
T(y) = / et 1dt, R(y) > 0,y € C. ®)
0

The generalization of Ey is given in [16] and is defined by

00 n

3
E = _—, 6
w,ﬁ(é) r;r(wn+ﬂ) ( )
where @,9,p € C, R(@) > 0and (&) > 0. The functions E g is also known as the Wiman function.
The function E° .0 called the Prabhakar function [17] defined by

[e9)

_ ()3
Eor ) = L i (n + 9"

n

@)

in which @,9,p € C,R(@) > 0, R(9¥) > 0, R(p) > 0 and (p)
Eg% (3) [18]is given by

is defined in (1). The function

n

i’l

qu ; (Dn + 19) ®)

where @, 89,0 € C,R(@) >0, R(9) >0, R(p) >0and g € (0,1) UN.
A new generalization of the Prabhakar function (see (7)) introduced in [19] and [20] by considering
the Pochhammar symbol respectively as

R ©
n=0

forw,d,p,0 € C,R(@w) >0,R(¥) >0, R(p) >0, R(c) >0and

pra © (0) g 3"
Eq sy (3) ; @1+ 8) (@ (10)

where @,9,p,0 € C,R(®@) >0, R(9) >0, R(p) >0, RN(c) >0
A particular form of (10) is studied in [21] by defining the following

n

e (0)gnd
0,09 - qn
Ew,0 (3) L Z T(c@n+19) (o,)n/ (11)
with@,89,0,0 € C,R(@w) >0, R(¥) >0,R(p) >0,R(c) >0and g € (0,1) UN.
An extension of the Prabhakar function mentioned in (7) is given by Sharma in [22] called the
K-function which is defined by

KA e (@)sc(ap)s (p)ss®
Py 0) = L (g (B (s £ ) 12

where y,xk,A € C,R(x) >0
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Motivated from the above definitions, we define a new generalized form of the MLF in the
following section.

2. The Generalized Mittag-Leffler Type Function (GMLTF)

The GMLTF is defined as follows:
For A, u,v € C,R(x) >0,0 #0,—1,-2,---,(x)r and (@), denotes the Pochhammer symbol.

A, A,
PE F‘V( ) :qu;V(Xll?(Z/"'/Xp;wl/('DZ/"'/(Dq;x)

X1 (2 (xp), ()«
)p (@2), - (@), (6),T (Ar+p)

Mg

(13)

The function is defined when (@;),j = 1,2,---,q is not a negative integer or zero and is
a polynomial in x when any of (;) is negative or zero. From the ratio test, it follows that the series is
convergent when p > g+ 1,Vx. When p = g+ 1 and |x| = 1 the series is convergent with certain cases.
Letv = Zp 1Xj— 2}721 @; it can be shown that when p = g + 1 the series is absolutely convergent for
|x| =1, if 3?( ) <0, conditionally convergent for x = —1if 0 < R(v) < 1, and divergent for |x| = 1if
R(v) > 1.

Special Cases

The following special cases of (13) are obtained by taking particular values of the parameters and
are listed as follows:

L pE] ¥ (x) gives the K— function defined by Sharma [22].

2. EO;’{” (x) reduced to EY P (x) [17].

3. OES;'I?W (x) gives EM (x) [23].

4. OES‘J}‘ & (x) turns to the Mittag-Leffler function E, , (x) [16].

5. ()Eg;’l1 1 (x) and E(l)% (x) gives the familiar Mittag-Leffler functions E) (x) [15] and e* [2].

3. Fractional Integration of (13)

Fractional calculus of special functions is studied by many authors in a different point of view
due to its importance in various applied science topics. Many extensions and generalizations are
established for special functions in view of fractional calculus [24-33]. It should be noted that the idea
of fractional treatment has also been studied in discrete mathematics [34]. For the basics of fractional
calculus and its related literature, interesting readers can be referred to [35-41].

In [8], two generalized integral transforms are given for x > 0 and x, @,y € C with R(x) > 0
respectively by

(17" ’”f) (x) = xr(xx)w/o (x— )X R (x +@,—7x1- i) f(t)at (14)
and
(If’w”f) (x) = 1"(1)() /xoo(t D L A ey o ()( +@,—7xl- %) f(t)dt, (15)

where »F; (g, T; v; z) represents the Gauss hypergeometric function (see [2]).
Now, we recall the following lemmas (See [8]):

Lemma1l. Let 7,17, € Cbe > R(t) > 0, R(w) > max|0, R(yy — 7)]. Then there 3 the relation

T pw— _ r(w)r(w+7_77) w—n—
(IOJ”t 1) (x) = F(w—n)F(w+T+7)x " (16)
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Lemma 2. Let 7,17, € Cbe 5> R(t) > 0, R(w) < 1+ min[R(y), R(y)]. Then

Ty qw—1 _ F(;y—w+1)1"(7—w+1) w—n—1
(I_Iﬂt )<x)_I’(1—w)I’(T+17+'y—w+1)x T A7)

-. Then

1,-2,-

Theorem 1. Let &, 1,v,p € C, (&) > 0, R(p) > max[0, R(y — )] and 6 # 0, —

(15"7”tp—1 ,,E)‘.’”"V(t)) (x)
X 1Iﬂ(f5)l—Iq I'(@;)
F(W)ITiZ T(xi)

SR A (Xirl)l,p 1) (1) (e+7-n1) (L1)
PRSI (@)1 (61 (WA (e—n,1) (p+n+71)

x] . (18)

Proof. Using definition (13) and denoting the left hand side (Lh.s) by £,,

MY o— A
e, = (Igj’ytﬂ 1 qu;;”(t)) (x)

a1 o (1), (x2), -
- <10+777tp 1%(@) ((DZ)

1)y r

Interchanging the integration and summation gives

& (), (x2), - (xp), ), S potr—1
&= Ll (@) (@) @, T ) @

Applying the Lemma 1 in the above expression gives,

o — i (Xl)r (Xz)r"'(xl’)r (U)r F(p—l—l’)r(p—l-r—l-’)/—ﬂ) P Hr—1-1
! (@1), (@2), (@), (6), T(Ar +p) T(p+r—m(p+r+5+7) '

The definition (1) leads to

g, =xP171

I'(6 )Hj 1 T@)) @ 2 1Txi+7)

() (Xz)r OH;]1 ((D]—l—i’)

F(V+V) (p+r)I(p+r+y—mI(1+r)
TA4+nNT@+nNTAr+u)T(p+r—m)T(e+r+C+ 7).

x x"

In view of (3), we reached the required result. [

Theorem 2. Let A, u,v,7,¢,1,7,p0 € C, R(E) > 0,R(p) <14+ min[R(xy), R(y)] and 6 #0,-1,-2,---
Then
LV 1
<I§777tp 1 pE/\F (t)) (x)
xp—ﬂ—lr((s) H?:l r((i?]')
T, T(x)
(Xirl)l ’ (1/,1), (777P+1r1)r (77p+1r1)r (1r1) ‘
X b4 P x| . 19
P (@1, (61, (-pl),  (E+p+r—p+11) 49
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Proof. Denoting the Lh.s of Theorem £,, then the use of definition of (13) and interchanging the
integration and summation gives

g, = (15’7”#’ ! E”‘”(i))( )

; : (( )) ,F((U)B;Hl) (E71er) @,

Applying the Lemma 2, we get

o i (x1), (x2), -~ (xp), (v), T —p+r+ DIy —p+r+1) o0y
o (@), (0),T(Ar+ W) T(1—p+ TG+ +7—p+r+1) '

The definition of Pochhammer symbol (1) allow us to write

g, = xp1-1 ') H?pzl I'(®@)) yoo I, T(xi+r) T (v+r)T(p—p+r+1)(y—p+r+1)x"
T Tz, T(xa) =7

r=0 H?:1 T(@j+7) T(04+nT(Ar+u) T (1—p+r)T (o+y+y—p+r+1).

In view of equation (3), we get the required result. [

As a special case of above theorems, next we derive the Riemann-Liouville (R-L) fractional
integrals involving (13). For this purpose, we recall the following results [8]

(1t (x) = o

A+pu—1

(MM M) (x) = Wﬂﬂ, R(u) > RN(A) > 0. 1)

Theorem 3. Let o, A, u,v € C, R(p) > 0,R(c) >0, R(A) >0,6 #0,—1,—2,---Then

) " - xPHT(6) [T, T(w;)
(1 o~ ! pE i ( )) (x> - F(V) Hf’:i F(Xi)

xp+3‘f’q+3l (i ap (v, 1), (e 1), (L) ‘x] (22)

(@j, V)1, (6,1), (wA), (p+0,1)

Proof. Interchanging the integration and summation under suitable conditions and using the definition
of (13), we have

(et B (1) ()

o e (Xl)r (Xz)r T (Xp)r (U)r o0+r—1
= L (o), (@), (@), O T 77 (177) (.

Using (20), we get

_ i (x1), (x2), - (xp), (v), T(p+r)
r=0 (wl)r ((DZ)r ce ((Dq)r (5)7 r(/\r + y) I'(p +o+ 1’)

In view of definition of (3) and (1), we obtain the required result.

r4+o—1
xp-i— + ,

O
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Theorem 4. Let A, y,v € C, R(p) > R(c) > 0, Then

T8 [T, (@)
)T, T ()

(Xi/l)l,p, (1/,1), (p—g"l), (1,1) 1
(@, D1g, (01), (A, (1) u (23)

(ke ) o

Xp+3¥q+43

Proof. The use of definition (13) and altering the order of integration and summation under the
suitable condition, we have

(m—P ﬁj;,é"’”(i)) (x)
_ i (x1), (x2)r " '. '. (Xp)r (v), (Izt*V*P) (x).

Using (21), we get

= (Xl)r (XZ);" o (Xp)r (V)r F(T—I—p—o') xI—p—r
(@1), (@2), - (@), (0),T(Ar+p) T(p+0) '

r=0 r
In view of equations (3) and (1), we get the desired result. [J

4. Generalized Fractional Kinetic Equations Involving GMLTF

This section devoted to find the application GMLTFE. Let 9 = (91;) be the arbitrary reaction
defined by a time-dependent quantity. Let the destruction rate 0 and the production rate p of 9t and the
balance between ? and p is ‘%t, that is, ‘% = —0 4+ p. In general, destruction and production depend
on the quantity N itself: 0 = 2(N) or p = p(N) (See [42]).

Since the destruction or production at time ¢ depends not only on 91; but also on the past history
N(T), T < t, of the variable 91. This can be represented by

am
=) +p (), )
where 91 described by 9% (t*) = 9T (t — t*) ,t* > 0 (see [42]). A particular case of (24) given in [42] as

an;
ar

—ci‘ﬁi (t) , (25)
with 0N; (t = 0) = Ny, ¢; > 0. It can be easily observe that, the solution of (25) is
N (t) = Nge™ it (26)

Integrating (25) gives
N(t) —No = —coD; N (1), (27)

where c is a constant and ¢®; ! is the particular case of R-L integral operator. One can generalize (27)
in terms of fractional operator as [42]

N(t) —MNg = —c” 0D, "IN(), (28)
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where (D, " defined as

09 "f (1) =

t
10) [ =5 F () ds R (0) >0 (29)
0
The Laplace transform (LT) of h(t) is defined by
H(p) = L[1(t) :6] = [ Ph(t)dt, R(p)>0. (30)
0

For more details about the fractional kinetic equation (FKE) and its developments, interesting
readers can be referred to [43-50].

Theorem 5. For A, y,v € C,6 #0,—-1,-2,---,d > 0,v > 0 then the solution of
N(t) — NopEp™ () = —d°0D; "N () (31)

is given by
_ - (Xl)r'"(xlﬂ)’ ( ) r __ U0
‘)’I(t) = mO; ((Dl)r---(@q) (§)rr()\1’+ “Ll)t Ev,r+1( d’t ) (32)

Proof. We start the proof by stating the Laplace transform of the R-L fractional operator (see, e.g., [51,52]):
LA{eD7 1 (t);p} =p "H(p) (33)

where H (p) is defined in (30). Now, taking the LT on the both sides of (31) and using (13) and (33),
we have

LN} = NoLHES™ (1)} = L{—d° 0D *N(H)}, (34)
which gives
sﬁ(p) — mo(/ —pt 2 Xl r ) (Xp)r (V)r t df) _ dvp—vm(p)’ (35)
r=0 (Dl r (i) )r "(‘@q), (5) r(/\i’—l—y)
which implies that
v —v1 = (X1)r (Xz)r' o (X )r (U)r © oty
N(p)[1+d°p"] —‘ﬁor;) @), (@2%“'(@2), GRNEET / e Pt L. (36)

X {p*(r+1) i[_(g)v]s} (37)
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The inverse LT of (37) and using the formula £~ {p~%;t} = r(v) , gives

N o (Xl)r (Xz)r e (Xp)r (U)r
N(t) = ‘ﬁo;) (@1), (@), -~ (@y), (8), T (Ar+ 1)

oY) tverr

L sy

I[(r+1)
(38)

In view of the Mittag-Leffler function definition, we arrived at the needed result. [

Note that the generating function techniques used here is potentially applicable in dealing with
percolation related issues [53,54].

Theorem 6. For A, u,v e C,6 #0,—1,—-2,---,d > 0,v > 0 then the equation
N(t) — NopEy i (d°F) = —d"oD; "N(t) (39)

has the following solution

_ - (X )7"‘(X )7’ (1/)77’!1—'(07’4—1) or 40
N(t) —‘ﬁor;) (wi)r___(w’;)r LT T ) @) B (=08, (40)

Proof. Applying the Laplace transform on the both sides of (39)
LN} = RoL{E ™ (@)} = L{= 0D "N}, @)

and using (13) and (33), we have

_ o > (Xl)r (Xz)r”' (X )r (V)r (dt)w v —0
"6 = [, &l tom (o, @ Far e~ @

which gives

U4TU] — .- (Xl)f’ (XZ)VH-(X )r (V)rdw < tyor
MO =0 R (o o) BTG b @

which can be simplified as

_ (x1), (x2), -~ (xp), (V)rd”’
m(P) *moz ( 1)7 ) ((Dq) )\r_‘_‘u)r(vr—'—l)
x {pmr i @} )
Taking the inverse LT of (44) and using £~ '{p~%;t} = L, we find
- > (Xl)r (Xz)r T (Xp)r (V)r d’r "
N(t) = fﬂor;o (@) (@), (@), (5),r(/\r+y)r(v +1)
0 vs fostor
X s;()(_ )y [(vs+ovr+1) 45

In view of the definition of the Mittag-Leffler function, we have the required result. [
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Theorem 7. For A, u,v € C,6 #0,—-1,-2,--- ,a #d,d > 0,v > 0 then the equation
N(t) — NoyEpt™ (d°1°) = —a’o D *N(t) (46)

has the solution

B 2 (x1)r-(Xp)r (v)pr!T(or +1)
MO =% X (@), (@) O T 1)

(dt)"Ey ppi1(—a®t?). (47)

Proof. Taking the Laplace transform on the both sides of (46),

LN} — %E{pEg{ﬁ;v (@°t°)} = L{=a" 0D, "N(1)}. (48)

By considering the same procedure done in Theorems 5 and 6, we find

= (Xl)r (Xz)r e (Xp)r (V)r
r=0 (‘Dl)r (wz)r e (L’Uq)r (5)r r ()\1’ + V)

<o () )

I'(or+1)

Taking the Laplace inverse of (49) and using the formula £~1{p~%;t} = %, we, obtain

ol )y () (), (), A
MO =0 X (o), (@2), — (@y), B, T r ¥ 1)

I'(or+1)

tvervr

XS;)(_ )Savsl"(vs—l—vr+1)' 50

In view of the definition of the Mittag-Leffler function, we have the desired result. [

5. Graphical Results and Discussion

Figure 1 shows the plots of solutions of (31) with parametric values M, =1, d =1,A =1,y =05
and for different values of v = 0.01, 0.02, 0.03, 0.04, and 0.05. The time interval 0 < ¢t < 3 gives the
valid region of convergence of solutions. In Figure 2 the values of v is considered as 0.1, 0.2, 0.3, and 0.4
for the same time interval. The Figures 3 and 4 shows the 2D plots of solutions of (31) by considering
the different time intervals. The graphical results demonstrate that the region of convergence of
solutions depend continuously on the fractional parameter v. Hence, by examining the behavior of the
solutions for different parameters and time interval it is observed that 91 (¢) is always positive.

20 -

T S S U S U S E SR
0.0 0.5 10 t 1.5 2.0 2.5 3.0

Figure 1. Graph of the solution (31).
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6. Conclusions

v
[ /‘i/;
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L iy
1000 | 1
L ly
[ oy
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0.0 0.5 10 t 15 2.0 25 3.0
Figure 2. Graph of the solution (31).
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Figure 3. Graph of the solution (31).
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Figure 4. Graph of the solution (31).

10 0of 13

The generalized Mittag-Leffler type function (GMLTF) is established and its fractional integral
representations are studied in this paper. The obtained results are expressed in terms of the generalized
Wright hypergeometric function. As an application of the function GMLTF given in this paper,
the solutions of a fractional kinetic equation are studied using the Laplace transform technique.
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The results achieved here are rather general and found various new and known solutions of FKEs
containing a different type of special function. The behavior of the obtained solutions is studied with
the help of graphs. As a future direction, the generalized fractional calculus operators containing
GMLTF can be studied and can be used to find the solutions of fractional kinetic or diffusion equations
involving GMLTF with the help of different integral transform techniques.
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