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Abstract: In this work, our aim is to obtain conditions to assure polynomial approximation in Hilbert
spaces L2(µ), with µ a compactly supported measure in the complex plane, in terms of properties of
the associated moment matrix with the measure µ. To do it, in the more general context of Hermitian
positive semidefinite matrices, we introduce two indexes, γ(M) and λ(M), associated with different
optimization problems concerning theses matrices. Our main result is a characterization of density
of polynomials in the case of measures supported on Jordan curves with non-empty interior using
the index γ and other specific index related to it. Moreover, we provide a new point of view of
bounded point evaluations associated with a measure in terms of the index γ that will allow us to
give an alternative proof of Thomson’s theorem, by using these matrix indexes. We point out that our
techniques are based in matrix algebra tools in the framework of Hermitian positive definite matrices
and in the computation of certain indexes related to some optimization problems for infinite matrices.

Keywords: Hermitian moment problem; orthogonal polynomials; smallest eigenvalue; measures;
polynomial density

1. Introduction

In this paper, we consider positive Borel measures µ, which are finite and compactly supported
in the complex plane. We always consider non-trivial measures, that is, measures with an infinite
amount of points in their support. The problem of completeness of polynomials in the Hilbert space
L2(µ) is the following: For a certain measure µ, are polynomials dense in the space L2(µ)? In other
words, denote by P2(µ) the closure of the polynomials in the space L2(µ); the question is under what
conditions the equality L2(µ) = P2(µ) is true. In the particular case of µ being the two-dimensional
Lebesgue measure on an arbitrary domain G and L2(G) the associated Hilbert space, the classical
results of approximation by polynomials can be seen in, e.g., the work of Gaier [1], who explored
the question of which assumptions on G will be assumed to have polynomials density in L2(G).
The related questions about the existence of approximation rational, entire, or meromorphic were
solved by the great theorem of Mergelyan in 1951, which completes a long chain of theorems about
approximation by polynomials.

The problem of density of polynomials is also an interest topic in the theory of orthogonal
polynomials associated with a measure. Indeed, in the particular case of orthogonal polynomials in
the unit circle the well-known Szegö theory (see, e.g., [2,3]) deals with the problem of polynomial
approximation using proper tools of orthogonal polynomials.
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On the other hand, in [4], a necessary condition was provided to assure polynomial approximation
using the behavior of the smallest eigenvalues of the finite sections of the moment matrix associated
with a measure. Along this work, we follow this matrix approach in order to obtain the main results in
this paper.

Throughout this paper, we consider infinite Hermitian positive definite matrices M = (ci,j)
∞
i,j=0.

As in [4,5], a Hermitian positive definite matrix (HPD matrix) defines an inner product 〈 , 〉 in the
space P[z] of all polynomials with complex coefficients in the following way: if p(z) = ∑n

k=0 vkzk and
q(z) = ∑m

k=0 wkzk, then

〈p(z), q(z)〉 = vMw∗,

being v = (v0, . . . , vn, 0, 0, . . . ), w = (w0, . . . , wm, 0, 0, . . . ) ∈ c00, where c00 is the space of all complex
sequences with only finitely many non-zero entries. The associated norm is ‖p(z)‖2 = 〈p(z), p(z)〉 for
every p(z) ∈ P[z].

An interesting class of HPD matrices are those which are moment matrices with respect to a
measure µ, i.e., HPD matrices M = (ci,j)

∞
i,j=0 such that there exists a measure µ with infinite support

on C and finite moments for all i, j ≥ 0,

ci,j =
∫

zizjdµ.

Our aim here is to obtain conditions to assure polynomial approximation in Hilbert spaces L2(µ),
with µ a compactly supported measure in the complex plane, in terms of properties of the associated
matrix M. To do it, in the more general context of Hermitian positive semidefinite matrices, we introduce
two matrix indexes γ(M) and λ(M), each related with different optimization matrix problems. Among
these indexes, we highlight the index γ that is essential to characterize the polynomial density in our
context. The other index λ is related to the asymptotic behavior of the smallest eigenvalues in our
previous works (see [4]). These indexes are introduced in Section 2 and some of their properties are
given. We also provide an application to the index λ to some problems of perturbations of measures in
the same direction as in [6].

In Section 3, we consider the case when the Hermitian positive semidefinite matrices are moment
matrices associated with a measure µ with compact support in the complex plane. Our main result
is a characterization of completeness of polynomials in the associated space L2(µ), in the case of
Jordan curves with 0 in its interior, in terms of the index γ of the moment matrix associated with the
measure µ.

In Section 4, we give our main result, which is the characterization of density of polynomials on
Jordan curves with non-empty interior in terms of another index related to the index γ. Moreover,
we provide a matrix algebra point of view of the notion of bounded point evaluation of a measure.
This leads us to obtain a new proof of Thomson’s theorem in [7,8], in the particular context of Jordan
curves with non-empty interior, using our techniques and our results.

Finally, we point out that our approach is based in matrix algebra tools in the frame of general
HPD and in the computation of certain indexes related to some optimization problems for infinite
matrices. This point of view would allow solving certain matrix optimization problems in terms of
the theory of orthogonal polynomials and on the other hand would let obtaining results of interest
concerning orthogonal polynomials using the matrix optimization tools.

2. New Indices of an HPD Matrix and Connections with the Polynomial Approximation

In this section, we introduce some indices associated with general Hermitian positive semidefinite
matrices. Let M = (ci,j)

∞
i,j=0 be an infinite Hermitian matrix, i.e., ci,j = cj,i. We recall that an infinite

HPD M matrix verifies that |Mn| > 0 for all n ≥ 0, where Mn is the truncated matrix of size (n + 1)×
(n + 1) of M. In an analogous way, if |Mn| ≥ 0 for all n ≥ 0, we say that M is a Hermitian positive
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semidefinite matrix (HPSD). In the sequel, we use the same notation as in [4]; we denote by (1, v) ≡
(1, v1, . . . , vn, 0, 0, . . .) for every v = (v1, v2, . . . ) ∈ c00 and by (v, 1, 0, . . . ) ≡ (v0, . . . , vn−1, 1, 0, . . . )

Definition 1. Let M be an infinite Hermitian positive semidefinite matrix. We define

γ(M) = inf{(1, v)M

(
1
v∗

)
, v ∈ c00}.

This index always exists and γ(M) ≥ 0.

Definition 2. Let M be an infinite Hermitian positive semidefinite matrix. We define

λ(M) = inf{vMv∗; vv∗ = 1, v ∈ c00}.

This index always exists and λ(M) ≥ 0.

Remark 1. Note that an important link between eigenvalue problems and optimization is the Rayleigh quotients.

Indeed, for Hermitian matrices Mn, it is well-known that, if we define Qn(v) =
vMnv∗

vv∗
for 0 6= v ∈ Cn, then

min{Qn(v) : v ∈ Cn} and max{Qn(v) : v ∈ Cn} gives the extreme eigenvalues of Mn. We denote by λn the
smallest eigenvalue of Mn as in [4]; that is, if ‖ · ‖2 is the euclidean norm in Cn+1,

λn = inf{vMnv∗; v ∈ Cn+1, ‖v‖2 = 1},

moreover, the sequence {λn}∞
n=0 is an non-increasing sequence and

λ(M) = lim
n→∞

λn.

Next, we relate these indexes.

Proposition 1. Let M be an infinite Hermitian semi-definite positive matrix. Then,

λ(M) ≤ γ(M).

Proof. Let 0 6= v ∈ c00 and consider the normalized sequence
v

(vv∗)1/2 . By the definition of λ(M) we

have that

v
(vv∗)1/2 M

v∗

(vv∗)1/2 ≥ λ(M).

By taking in mind that, for any t > 0, (tv)M(tv)∗ = t2vMv∗ holds, then it easily follows that

vMv∗ ≥ λ(M)vv∗.

Consequently,

(1, v)M

(
1
v∗

)
≥ λ(M)(1, v)(1, v)∗ ≥ λ(M).

By taking the infimum, we obtain λ(M) ≤ γ(M).

Remark 2. The equality λ(M) = γ(M) is not true in general, even for Toeplitz matrices. For instance,
consider the matrix
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T =



1 −1/2 1/4 −1/8 1/16 . . .

−1/2 1 −1/2 1/4 −1/8 . . .

1/4 −1/2 1 −1/2 1/4 . . .

−1/8 1/4 −1/2 1 −1/2 . . .

1/16 −1/8 1/4 −1/2 1 . . .
...

...
...

...
...

. . .


.

By induction, we obtain that |Tn|/|Tn−1| = 3n/4n; consequently, κ2 = limn |Tn−1|/|Tn| = 4/3, where
κn is the leading coefficient of orthonormal polynomial sequence and κ = limn κn. We obtain ρ(t), which is the
absolutely continuous part of the associated measure of the Toeplitz matrix T,

ρ(t) =
∞

∑
n=−∞

(−1)n

2|n|
eint =

3eit

(2 + eit)(2eit + 1)
=

3
5 + 4 cos(t)

.

It follows from [9] that

λ(T) = min
t∈[0,2π]

ρ(t) =
1
3

.

Therefore, according to [4], it can be obtained that

γ(T) =
1
κ2 =

3
4

.

Note that this example shows how to use our techniques to solve certain matrix optimization problem.

In the set of infinite Hermitian positive semidefinite matrices, we may define an order in the
following way: we say that M1 ≤ M2 if vM1v∗ ≤ vM2v∗ for every v ∈ c00. The following results are
directly obtained from the definition.

Lemma 1. Let M1, M2 be infinite Hermitian positive semidefinite matrices with M1 ≤ M2; then:

1. λ(M1) ≤ λ(M2).
2. γ(M1) ≤ γ(M2).

We give some applications of the above result to some perturbation results in the same lines
as [6]. Let σ be a non-trivial positive measure with support in T = {z ∈ C : |z| = 1}, which verifies
Szegö condition, that is

∫ 2π
0 ln(ρ(θ))dθ > −∞, where ρ(θ) is the absolutely continuous part of σ in the

Lebesgue decomposition (see [10]). In [6], it is obtained that, if the measure σ verifies Szegö condition
and σ̃ is the perturbed measure of σ by the normalized Lebesgue measure in the unit circle, that is

dσ̃ = dσ + r
dθ

2π
for r > 0, then σ̃ also verifies Szegö condition. Using our techniques, we generalize this

result pointing out that there is no need to require that σ verifies Szegö condition since the conclusion
is true always. Indeed we have the next result.

Corollary 1. Let σ1, σ2 positive measures with support on T Assume that one of them verifies Szegö condition,

then the measure σ := σ1 + σ2 verifies Szegö condition. In particular, if dσ̃ = dσ + r
dθ

2π
with r > 0 for some

positive measure with support in T, then σ̃ verifies Szegö condition.

Proof. Let T1, T2, Tσ be the Toeplitz positive semidefinite moment matrices associated with σ1, σ2, σ.
Assume that σ1 verifies Szegö condition, then γ(T1) > 0. By Lemma 1, it follows that γ(Tσ) ≥
γ(T1) > 0 and consequently σ verifies Szegö condition.
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Remark 3. Note that, in Corollary 1, it is not required that both measures are non-trivial; indeed, we may
consider a perturbation by a finite amount of atomic points.

In the particular case of dσ̃ = dσ + r
dθ

2π
, obviously the normalized Lebesgue measure in the unit

circle verifies Szegö condition and consequently σ̃ also verifies Szegö condition independently of σ.
From now on, we consider an infinite HPD matrix M. This matrix induces an inner product in the

vector space c00. In this way, the space c00 endowed with such a norm is a vector space with an inner
product that is not necessarily complete. The norm induced by the inner product

‖v‖2
M = vMv∗.

We consider the completion of this space with such norm that we denote by P2(M); we may
apply Gram–Schmidt orthogonalization procedure to the canonical algebraic basis {en}∞

n=0 in c00 and
we obtain the unique orthonormal basis {vi}∞

i=0 with vi = (v0,i, . . . , vi,i, 0, . . . ) for i ∈ N0 and vi,i > 0.

Consider wn =
vn

vn,n
the orthogonal monic vector. It is clear that ‖wn‖M =

1
vn,n

for every n ∈ N0.

We denote by [e1, e2, . . . ]
M

the closed vector subspace generated by the set of vectors e′ns with the
norm induced by the matrix M. We denote the distance of a vector v to a subspace E ⊂ P2(M) as
dis(v, E) = inf{‖v− w‖M : w ∈ E}.

Proposition 2. Let M be a Hermitian definite positive matrix. Let {en}∞
n=0 be the canonical basic sequence in

c00; then,
γ(M) = dis2(e0, [e1, e2, . . . ]

M
).

From the results in [4], we have the following infinite dimensional version of the result in the case
of Hermitian positive definite matrices.

Proposition 3. Let M be an HPSD matrix and let {v0, v1, v2, . . . } be the orthonormal basis in P2(M) with
respect the inner product induced by M with vi = (v0,i, . . . , vi,i, 0, . . . ) for i ∈ N0 and vi,i > 0. Then,

γ(M) =
1

∑∞
i=0 |v0,i|2

,

where the left side is zero if ∑∞
i=0 |v0,i|2 = ∞.

3. HPSD Matrices Which Are Moment Matrices

In this section, we consider the most important example of HPD matrices which are the moment
matrices with respect to a Borel non-trivial compactly supported measure µ in the complex plane
M(µ). In this case, the space c00 is replaced by the space of polynomials P[z] via the identification

v = (v0, . . . , vn, 0, 0, . . . ) ≡ p(z) = v0 + v1z + · · ·+ vnzn.

The associated norm in P[z] with respect to M := M(µ) is the usual norm of the polynomials in
the space L2(µ), that is for every p(z) ∈ P[z].

‖p(z)‖2
P2(M) =

∫
|p(z)|2dµ.

As usual, the completion of the space of polynomials in the space L2(µ) is denoted by P2(µ),
{ϕn(z)}∞

n=0 is the sequence of orthonormal polynomials, and {Φn(z)}∞
n=0 is the associated sequence of

monic orthogonal polynomials. We denote by P2
0 (µ) the completion of polynomials vanishing at zero.

The well-known extremal properties of the monic polynomials and the n-kernels are just obtained
by reformulating in this context Proposition 3 above, which, as pointed out, are results obtained
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by algebraic proofs in the more general context of the general Hermitian definite matrices. Indeed,
rewriting the definition of γ(M) in terms of polynomials, we obtain:

Lemma 2. Let µ be a measure compactly supported measure with infinite support in the complex plane and let
M := M(µ) be the associated moment matrix. Then,

γ(M) = dis
(

1, P2
0 (µ)

)
,

where 1 denotes Φ0(z).

We need the following lemma:

Lemma 3. Let µ be a non-trivial positive compactly supported measure in C with 0 /∈ supp(µ). The following
are equivalent,

1. γ(M) = 0.

2. For all k ∈ Z, zk ∈ [zk+1, zk+2, . . . ]
L2(µ)

.

Proof. First, there exist R > 0 and α > 0 such that α ≤ |z| ≤ R for every z ∈ supp(µ). Consequently,
for every k ∈ Z and for every v0, v1, . . . , vn ∈ C, n ∈ N, it follows that

α2k
∫
|1− v0 − v1z− · · · − vnzn|2dµ ≤

∫
|z|2k|1− v0 − v1z− · · · − vnzn|2dµ =∫

|zk − v0zk+1 − v1zk+1 − · · · − vnzk+n|2dµ ≤ R2k
∫
|1− v0 − v1z− · · · − vnzn|2dµ.

Therefore, 1 ∈ P2
0 (µ) if and only if zk ∈ [zk+1, zk+2, . . . ]

L2(µ)
, for all k ∈ Z.

Consequently, for compactly supported measures with 0 /∈ supp(µ), the condition γ(M) = 0
characterizes completeness of polynomials in the closed subspace of Laurent polynomials in L2(µ)

denoted by C[z, z−1] = [1, z, 1
z , z2, 1

z2 , . . . ]
L2(µ)

:

Corollary 2. Let µ be a non-trivial positive compactly supported measure in T with 0 /∈ supp(µ). The
following are equivalent,

1. γ(M) = 0.
2. P2(µ) = C[z, z−1].

In particular, for non-trivial positive measures σ supported in the unit circle, it is well-known
that Laurent polynomials are dense in L2(σ) and therefore the condition γ(M) = 0 characterizes
completeness of polynomials in L2(σ). More generally, Corollary 2 will be true whenever Laurent
polynomials are dense in L2(µ). Moreover, we have:

Theorem 1. Let Γ be a Jordan curve such that 0 ∈ int Γ and let µ be a measure with support in Γ and associated
moment matrix M. The following are equivalent:

1. γ(M) = 0.
2. P2(µ) = L2(µ).

Proof. In [1], the following consequence of Mergelyan’s theorem is given: if Γ is a Jordan curve,
0 ∈ int Γ, and f is continuous on Γ, then for every ε > 0 there exists a P(z) = ∑N

n=−N anzn such
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that | f (z)− P(z)| < ε for every z ∈ Γ. This means that C[z, z−1] is dense in the space of continuous
functions on Γ with the uniform norm. Therefore,∫

| f (z)− P(z)|2 ≤ ε2µ(Γ),

and, consequently, C[z, z−1] is dense in the space of continuous functions in L2(µ). Since, for compactly
supported measures, continuous functions are dense in L2(µ), we obtain that P2(µ) = C[z, z−1] =

L2(µ) if and only if γ(M) = 0 as we required.

As a consequence of the above results, we have the well-known consequence of Szegö theorem
for measures supported in the unit circle:

Corollary 3. Let σ be a non-trivial positive measure with support in T and {ϕn(z)}∞
n=0 the associated

orthonormal polynomial sequence. Then, the following conditions are equivalent

1. Polynomials are dense in L2(T).
2. ∑∞

k=0 |ϕk(0)|2 = ∞.

Proof. The result is a consequence of Theorem 1 and Proposition 3 since

γ(M) =
1

∑∞
n=0 |ϕn(0)|2

,

where γ(M) = 0 whenever ∑∞
n=0 |ϕn(0)|2 = ∞.

4. Bounded Point Evaluations from the Matrix Algebra Point of View: Thomson’s
Theorem Revisited

We first recall the definitions of bounded point evaluation. Let µ be a non-trivial positive measure
with support on C. Recall (see, e.g., [11]) that a point z0 ∈ C is a bounded point evaluation (bpe) for P2(µ)

if there exists a constant C > 0 such that for every polynomial p(z)

|p(z0)| ≤ C
(∫
|p(z)|2dµ

)1/2
.

Moreover, the point z0 ∈ C is an analytic bounded point evaluation ( abpe) if there exists a constant
C > 0 and ε > 0 such that for every w ∈ C with |w− z0| < ε and for every polynomial p(z) it holds

|p(w)|2 ≤ C
∫
|p(z)|2dµ.

Remark 4. Of course, an analytic bounded point evaluation is a bounded point evaluation. The converse is
not true; indeed, any atomic isolated point is a bounded point evaluation but it is not an analytic bounded
point evaluation.

It is well-known that, if a point z0 ∈ supp(µ) is an atomic point of µ, that is µ({z0}) > 0, then it is
a bounded point evaluation for P2(µ). We prove it for the sake of completeness

Lemma 4. Let z0 be an atomic point of a measure µ with µ({z0}) = α > 0. Then, z0 is a bounded point
evaluation for P2(µ) with constant C = α−1/2.

Proof. Let p(z) be a polynomial. Then,

|p(z0)|2µ({z0}) =
∫
{z0}
|p(z)|2dµ ≤

∫
|p(z)|2dµ.

Therefore,
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|p(z0)| ≤
1

α1/2

(∫
|p(z)|2dµ

)1/2
.

Our aim in this section is to prove a theorem that is close in spirit to Thomson’s theorem [7,8],
but for measures supported in Jordan curves, with the novelty of using techniques from the matrix
algebra and using infinite HPD matrices. To do it, we first give a new approach of bounded point
evaluations for a measure, and, more generally, for infinite HPD matrices.

Definition 3. Let M be an HPD matrix and let P2(M) be the closure of the polynomials with the inner product
induced by M. Let z0 ∈ C; we say that z0 is a bounded point evaluation for P2(M) if there exists a constant
C > 0 such that for every polynomial p(z) it holds that

|p(z0)| ≤ C‖p(z)‖P2(M).

Remark 5. Obviously, in the case of M being a moment matrix associated with a measure µ, the notion of
bounded point evaluation for P2(M) coincides with the usual of bounded point evaluation for P2(µ).

We need to introduce a new index for a given z0 ∈ C:

Definition 4. Let M be an HPD matrix, z0 ∈ C, and kz0 = {zk
0}∞

k=0. We define

γz0(M) = inf{vMv∗ :
∞

∑
k=0

vkzk
0 = 1, v ∈ c00}.

Remark 6. Note that γz0(M) ≥ 0 for every z0 ∈ C and in the particular case that z0 = 0, then
γz0(M) = γ(M).

Next we prove:

Lemma 5. Let M be an HPD matrix. Then, the following statements are equivalent:

1. z0 is a bounded point evaluation for P2(M).
2. γz0(M) > 0.

Proof. Assume first that z0 is a bounded point evaluation of P2(M) with constant C; then, for every
(v0, v1, . . . , vn, 0, 0, . . . ) and p(z) = v0 + v1z + . . . vnzn,

|vkz0 | = |v0 + v1z0 + · · ·+ vnzn
0 | ≤ C‖p(z)‖P2(M) = C‖v‖M.

In particular, if vkz0 = 1, it holds that ‖v‖M ≥
1
C

and consequently γz0(M) ≥ 1
C

> 0. On the

other hand, if γz0(M) > 0 and p(z) = ∑n
k=0 vkzk with (v0, . . . , vn, 0, . . . ) ∈ c00, either p(z0) = 0 and

obviously p(z0) ≤ ‖p(z)‖P2(M), or p(z0) 6= 0 and the vector w = (wi)i=0 ∈ c00 defined by wi =
vi

p(z0)
for each i ≥ 0 verifies wkz0 = 1 and consequently

γz0(M) ≤ wMw∗ =
1

|p(z0)|2
vMv∗ =

1
|p(z0)|2

‖p(z)‖2
M.

Therefore,

|p(z0)|2 ≤
1

γz0(M)
‖p(z)‖2

P2(M).
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and z0 is a bounded point evaluation for P2(M) with constant
1

(γz0(M))1/2 .

Remark 7. Note that proof of the above Lemma gives us information about the constant of the bounded point
evaluation; indeed, z0 is bounded point evaluation for P2(M) with constant γz0(M).

We may generalize the notion of kernels in the context of infinite HPD matrices. More precisely,
for an infinite HPD matrix M, we may define the associated kernels:

KM(z, w) =
∞

∑
n=0

ϕn(z)ϕn(w),

for every z, w such that the series converges. In this context, the extremal property for polynomials can
be reformulated as:

Lemma 6. Let M be an HPD matrix and let {ϕn(z)}∞
n=0 the sequence of orthonormal polynomials associated

with M. For every z0 ∈ C,

γz0(M) =
1

∑∞
k=0 |ϕk(z0)|2

.

Proof. Using the notation for polynomials, we may rewrite:

γz0(M) = inf{‖p(z)‖2
P2(M) : p(z) ∈ P[z], p(z0) = 1}.

First, consider a polynomial q(z) = ∑n
k=0 vkzk and we express it in terms of the orthonormal basis,

that is, q(z) = ∑n
k=0 wk ϕk(z). Then, by using the Cauchy–Schwartz inequality,

1 = |q(z0)| ≤
(

n

∑
k=0
|wk|2

)1/2( n

∑
k=0
|ϕk(z0)|2

)1/2

.

Then,

1
∑n

k=0 |ϕk(z0)|2
≤

n

∑
k=0
|wk|2 = ‖q(z)‖2

P2(M).

By taking the infimum all over the polynomials of degree n,

1
∑n

k=0 |ϕk(z0)|2
≤ inf{‖q(z)‖2, q(z) ∈ Pn[z], q(z0) = 1}.

On the other hand, if we consider the polynomial q(z) = KM(z, z0) = ∑n
k=0 ϕk(z)ϕk(z0), the

above infimum is reached at this polynomial since

‖q(z)‖2
P2(M) =

1
∑n

k=0 |ϕk(z0)|2
.

Then, for every n ∈ N,

γz0(M) = inf
n

min{‖q(z)‖2, q(z) ∈ Pn[z], q(z0) = 1}

= inf
n

1
∑n

k=0 |ϕk(z0)|2
=

1
∑∞

k=0 |ϕk(z0)|2
.

We summarize all the equivalent notions of bounded point evaluations for an HPD matrix in the
following proposition:
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Corollary 4. Let M be an HPD matrix and let {ϕn(z)}∞
n=0 be the orthonormal polynomial sequence associated

with M. Then, the following are equivalent:

1. z0 is a bounded point evaluation of P2(M).
2. KM(z0, z0) = ∑∞

n=0 |ϕn(z0)|2 < ∞
3. γz0(M) > 0.

4.
1

γz0(M)
= lim

n→∞
(1, z0, z2

0, . . . , zn
0 )M

−1
n


1
z0
...

zn
0

 > 0.

Proof. We only need to prove (2) ⇐⇒ (4). In [2], the expression of the n-kernel by determinants is
given as follows

Kn(y, z) = − 1
∆n

∣∣∣∣∣∣∣∣∣∣∣∣

c00 c10 . . . cn,0 1
c01 c11 . . . cn,1 z
...

...
. . .

...
...

c0,n c1,n . . . cn,n zn

1 y . . . yn 0

∣∣∣∣∣∣∣∣∣∣∣∣
= (1, y, . . . , yn)M−1

n


1
z
...

zn

 ,

the last identity is the Schur complement, which says

∣∣∣∣∣ A b
ct 0

∣∣∣∣∣ = |A|〈c, A−1b〉.

As a consequence of this result, we obtain our main result, which is the following proof of
Thomson’s theorem for measures supported in Jordan curves via an algebraic way. This allows us to
provide an algebraic characterization of density of polynomials in terms of an index of the moment
matrix associated with the measure:

Theorem 2. Let Γ be a Jordan curve such that z0 ∈ int Γ and let µ be a measure with infinite support in Γ with
associated moment matrix M. Then, the following statements are equivalent

1. γz0(M) > 0.
2. P2(µ) 6= L2(µ).
3. z0 is a bounded point evaluation of P2(M).

Proof. Let M̃ be the moment matrix associated with image measure µ̃ obtained after a similarity map,
ϕ(z) = αz + β onto C, is applied to the measure µ and Γ̃ the image Jordan curve.
We first prove that

γ(M̃) = γz0(M).

An expression that relates the matrices Mn and M̃n is known, which is given by (see, e.g., [12])

M̃n = A∗n(α, β)MnAn(α, β),

where An(α, β) is defined as in [12],

An(α, β) =


(0

0)α
0β0 (1

0)α
0β1 (2

0)α
0β2 (3

0)α
0β3 . . .

0 (1
1)α

1β0 (2
1)α

1β1 (3
1)α

1β2 . . .
0 0 (2

2)α
2β0 (3

2)α
2β1 . . .

0 0 0 (3
3)α

3β0 . . .
...

...
...

...
. . .

 .
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Note that, if we choose α = 1 and a translation β = −z0, then 0 ∈ int(Γ̃), and we obtain:

M̃n = A∗n(1,−z0) Mn An(1,−z0).

Since M is HPD, all its sections are invertible, and we can write

M̃−1
n = A−1

n (1,−z0) M−1
n [A∗n]

−1(1,−z0).

It is clear that

An(1,−z0) =


1 −z0 z2

0 −z3
0 . . . ±(n

n)z
n
0

0 1 −2z0 3z2
0 . . . ∓( n

n−1)z
n−1
0

0 0 1 −3z0 . . . ±( n
n−2)z

−1
0

...
...

...
...

...
0 0 0 0 . . . (n

0)z
0

 ⇒

A−1
n (1,−z0) =


1 z0 z2

0 z3
0 . . . (n

n)z
n
0

0 1 2z0 3z2
0 . . . ( n

n−1)z
n−1
0

0 0 1 3z0 . . . ( n
n−2)z

−1
0

...
...

...
...

...
0 0 0 0 . . . (n

0)z
0

 .

It is immediate that

γ(M̃) = lim
n

1

et
0M̃−1

n e0
,

and

et
0M̃−1

n e0 = et
0

(
A−1

n (1,−z0) M−1
n [A∗n]

−1(1,−z0)
)

e0.

We have also that

et
0A−1

n (1,−z0) = (1, z0, z2
0, . . . , zn

0 ), [A∗n]
−1(1,−z0)e0 = (1, z0, z2

0, . . . , zn
0 )

t.

Consequently,

γ(M̃) = γz0(M).

Now, the result is consequence of Theorem 1.

We finish with some applications to our results:

Corollary 5. Let Γ be an analytic Jordan curve with non-empty interior and let µ be a measure with support in
Γ. Let dµ = ρ(z)|dz|, where ρ(z) is positive and continuous function on Γ. Then, L2(µ) 6= P2(µ).

Proof. Let z0 be an arbitrary interior point of Γ; by using the results in [2], it follows that KM(z0, z0) <

∞. Therefore, γz0(M) > 0, and ,by using Theorem 1, we may conclude L2(µ) 6= P2(µ).

In addition, from Theorem 3, the following result is obvious:

Corollary 6. Let Γ be a Jordan curve and µ be a measure with support in Γ. Assume that L2(µ) 6= P2(µ), then
every z0 ∈ int Γ is a bounded point evaluation of µ.
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