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Abstract: If G is a graph, its Laplacian is the difference between the diagonal matrix of its vertex
degrees and its adjacency matrix. A one-edge connection of two graphs G1 and G2 is a graph G =

G1 �uv G2 with V(G) = V(G1) ∪ V(G2) and E(G) = E(G1) ∪ E(G2) ∪ {e = uv} where u ∈ V(G1)

and v ∈ V(G2). In this paper, we study some structural conditions ensuring the presence of 2 in the
Laplacian spectrum of bicyclic graphs of type G1 �uv G2. We also provide a condition under which
a bicyclic graph with a perfect matching has a Laplacian eigenvalue 2. Moreover, we characterize
the broken sun graphs and the one-edge connection of two broken sun graphs by their Laplacian
eigenvalue 2.

Keywords: laplacian eigenvalue; multiplicity; eigenvector; unicyclic graph; bicyclic graph

1. Introduction

All graphs in this paper are finite and undirected with no loops or multiple edges. Let G be a graph
with n vertices. The vertex set and the edge set of G are denoted by V(G) and E(G), respectively. The
Laplacian matrix of G is L(G) = D(G)− A(G), where D(G) = diag(d(v1), . . . , d(vn)) is the diagonal
matrix and d(v) denotes the degree of the vertex v in G and A(G) is the adjacency matrix of G.
Denoting its eigenvalues by λ1(G) ≥ · · · ≥ λn(G) = 0, we shall use the notation λk(G) to denote the
kth Laplacian eigenvalue of the graph G. Also, the multiplicity of the eigenvalue λ of L(G) is denoted
by mG(λ). For any v ∈ V(G), let N(v) be the set of all vertices adjacent to v. A vertex of degree one
is called a leaf vertex. A matching of G is a set of pairwise disjoint edges of G. The matching number
of G, denoted α

′
(G), is the maximum possible cardinality for a matching in G. Clearly, n ≥ 2α

′
(G).

In particular, if n = 2α
′
(G), then G has a perfect matching.

Connected graphs in which the number of edges equals the number of vertices are called unicyclic
graphs. Therefore, a unicyclic graph is either a cycle or a cycle with some attached trees. Let Un,g be the
set of all unicyclic graphs of order n with girth g. Throughout this paper, we suppose that the vertices
of the cycle Cg are labeled by v1, ..., vg, ordered in a natural way around Cg, say in the clockwise
direction. A rooted tree is a tree in which one vertex has been designated as the root. Furthermore,
assume that Ti is a rooted tree of order ni ≥ 1 attached to vi ∈ V(Ti), where ∑

i=g
i=1 ni = n. This unicyclic

graph is denoted by C(T1, ..., Tg). The sun graph of order 2n is a cycle Cn with an edge terminating in a
leaf vertex attached to each vertex. A broken sun graph is a unicyclic subgraph of a sun graph.

A one-edge connection of two graphs G1 and G2 is a graph G with V(G) = V(G1) ∪ V(G2) and
E(G) = E(G1) ∪ E(G2) ∪ {e = uv}, where u ∈ V(G1) and v ∈ V(G2). We denote it by G = G1 �uv G2.
In this manuscript, we would like to study the eigenvalue 2 in bicyclic graphs with just 2 cycles. We
provide a necessary and sufficient condition under which a bicyclic graph with a perfect matching
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has 2 as its Laplacian eigenvalue, for more see [1]. For more about Laplacians of some parameters
of graphs we refer to [2–5]. In the last couple of years there has been a renewed interest toward the
Laplacian spectral properties of bicyclic graphs (see [6,7]), and it is very likely that many techniques
employed in this paper could be also helpful to solve the correspondent problems in the context of
signed graphs.

2. Preliminary Results

By [8] (Theorem 13) due to Kelmans and Chelnokov, the Laplacian coefficient, ξn−k, can be
expressed in terms of subtree structures of G, for 0 ≤ k ≤ n. Suppose that F is a spanning forest of G
with components Ti of order ni, and γ(F) = Πk

i=1ni. The Laplacian characteristic polynomial of G turns
out to be LG(x) = det(xI − L(G)) = Σn

i=0(−1)iξixn−i.

Theorem 1 ([9], Theorem 7.5). The Laplacian coefficient ξn−k of a graph G of order n is given by ξn−k =

∑F∈Fk
γ(F), where Fk is the set of all spanning forest of G with exactly k components.

In particular, we have ξ0 = 1, ξ1 = 2m, ξn = 0, and ξn−1 = nτ(G), in which τ(G) denotes the
number of spanning trees of G.

Let G be a graph with n vertices. It is convenient to adopt the following terminology from [10]: for
a vector X = (x1, . . . , xn)t ∈ Rn, we say that X gives a valuation of the vertex of V, and to each vertex vi
of V, we associate the number xi, which is the value of the vertex vi; that is, x(vi) = xi. Then λ is an
eigenvalue of L(G) with the corresponding eigenvector X = (x1, . . . , xn) if and only if X 6= 0 and

(d(vi)− λ)xi = ∑
vj∈N(vi)

xj for all i = 1, . . . , n. (1)

It has been shown that if T is a tree containing a perfect matching, then T has 2 among its Laplacian
eigenvalues and λ

α
′ (T)(T) = λn/2(T) = 2, [11] (Theorem 2). In [12] (Theorem 2) the author proved

that, if T is a tree with a perfect matching, M, a vector X 6= 0 is an eigenvector of L(T) corresponding
to the eigenvalue 2 if and only if X has exactly two distinct entries −1 and 1. Moreover, x(u) = −x(v)
for each uv ∈ M, and x(u) = x(v) for each uv /∈ M.

3. The Eigenvector of the Laplacian Eigenvalue 2

In what follows, we study some results on broken sun graphs and unicyclic graphs. Furthermore,
we establish the eigenvector of these types of graphs that have two among their Laplacian eigenvalues.
First, we cite a theorem from [13].

Theorem 2 ([13], Theorem 3.2). Let G be a graph on n vertices and e be an edge of G. Let λi(G), (1 ≤ i ≤ n)
be the eigenvalues of L(G). Then the following holds:

λ1(G) ≥ λ1(G− e) ≥ λ2(G) ≥ λ2(G− e) ≥ · · · ≥ λn(G) ≥ λn(G− e).

Remark 1. Let T be a tree of order n ≥ 3 with a perfect matching, and let X be a Laplacian eigenvector of T
corresponding to the eigenvalue 2. Then, by [12] (Theorem 2), T has n

2 vertices with value 1 and n
2 vertices

with value −1 given by X. Let V1 and V2 be the sets of the former n
2 and the latter n

2 vertices, respectively.
By [14] (Theorem 3.1), if we add edges between any two non-incident vertices in V1 or V2, then 2 is also an
eigenvalue of the result graph. Hence, if u and v belong to V1 (or V2), then G = T ∪ {uv} has 2 among its
Laplacian eigenvalues and X = (x1, . . . , xn)t is an eigenvector of L(G) corresponding to the eigenvalue 2 where
xi ∈ {−1, 1}.

Let ni(G) be the number of vertices of degree i in G. Now we have the following Theorem.



Mathematics 2019, 7, 1233 3 of 9

Theorem 3. Let G be a broken sun graph containing a perfect matching which has 2 among its Laplacian
eigenvalues. Thus, there exists an eigenvector corresponding to the eigenvalue 2, like X = (x1, . . . , xn)t such
that xi ∈ {−1, 1}.

Proof. By induction on g and using Remark 1, we prove that x(u) = x(v) for uv /∈ M, where X is
an eigenvector of L(G) corresponding to the eigenvalue 2. Assume that M is a perfect matching in
G. The following Figures 1–4 show that for all broken sun graphs with 3 ≤ g ≤ 6, that contain a
perfect matching and have 2 among their Laplacian eigenvalues, for each arbitrary edge e = uv /∈ M,
by removing e, we have a tree T = G− e with a perfect matching. Thus, assume that X = (x1, . . . , xn)t

be an eigenvector of L(T) corresponding to the eigenvalue 2 such that xi ∈ {−1, 1}, by [12] (Theorem 2)
and xT(u) = xT(v). Also X is an eigenvector of L(G) corresponding to the eigenvalue 2, by Remark 1.

u v

1

−1

1 1−1 −1

=⇒

Figure 1. g = 3; xT(u) = xT(v); bold edges represent those in the perfect matching M.
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Figure 2. g = 4; xT(u) = xT(v).
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Figure 3. g = 5; xT(u) = xT(v) and xT′ (u′) = xT′ (v′).
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Figure 4. g = 6; xT(u) = xT(v), xT′ (v) = xT′ (w) and xT′′ (u′) = xT′′ (v′).
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Now assume that g ≥ 7. We can find two pairs of adjacent vertices of degree 2 in G, because of G
has a perfect matching. Also n2(G) ≥ 4, by [2] (Theorem 8). We suppose that uk, uk+1 and ul , ul+1 are
these vertices. Suppose that G

′
obtained from G by identifying three vertices uk−1, uk, uk+1 as one vertex

uk−1 and also by identifying three vertices ul , ul+1, ul+2 as one vertex ul+2, where l ≥ k + 2. Obviously,
G
′

is a broken sun graph with a perfect matching M
′

whose girth is g− 4 and n2(G′) ≡ 0(mod 4).
Thus, using induction hypothesis in G

′
by removing e = uv /∈ M

′
, x(u) = x(v). So G

′
has 2 among

its Lapalcian eigenvalues with the eigenvector X = (x1, . . . , xk−1, xk+2, xk+3, . . . , xl−1, xl+2, . . . , xn)t ∈
Rn−4 such that xi ∈ {−1, 1}. If l ≥ k + 3, then we define the vector Y = (y1, . . . , yn)t ∈ Rn as

yi =



xi, if 1 ≤ i ≤ k− 1;

xk+2, if i = k;

−xk−1, if i = k + 1;

−xi, if k + 2 ≤ i ≤ l − 1;

−xl+2 if i = l;

xl−1 if i = l + 1;

xi if l + 2 ≤ i ≤ n;

also assign to each leaf vertex the negative value of its neighbor. If l = k + 2, then we define the vector
Y = (y1, . . . , yn)t ∈ Rn as

yi =



xi, if 1 ≤ i ≤ k− 1;

xk+4, if i = k;

−xk−1, if i = k + 1;

−xk+4, if i = k + 2 = l;

xk−1 if i = k + 3 = l + 1;

xi if k + 4 ≤ i ≤ n;

also assign to each leaf vertex the negative value of its neighbor. One may check that in both cases,
the vector Y satisfies in Equation (1). Therefore, Y is an eigenvector of L(G) corresponding to the
eigenvalue 2 such that yi ∈ {−1, 1} and the proof is complete.

In what follows, we wish to prove the correspondence of Theorem 3 to any unicyclic graphs
containing a perfect match for which the Theorem 3 plays as an induction basis.

Theorem 4. Let G = C(T1, . . . , Tg) be a unicyclic graph containing a perfect matching which has 2 among
its Laplacian eigenvalues. It holds that there exists the eigenvector corresponding to the eigenvalue 2 like
X = (x1, . . . , xn)t, such that xi ∈ {−1, 1}.

Proof. First note that, for broken sun graphs, the proof is clear by Theorem 3. So, let |V(Ti)| ≥ 3, for
some i, 1 ≤ i ≤ g. We prove the theorem by induction on n = |V(G)|. Let d(u, vi) = maxx∈V(Ti)

d(x, vi),
where vi is the root of Ti. Since G has a perfect matching, u is a leaf vertex and its neighbor, say
v, has degree 2. Thus G = (G \ {u, v}) �uv S2, where S2 is a star on 2 vertices. G \ {u, v} has
2 among its Laplacian eigenvalues because mG(2) = m(G\{u,v})(2), by [15] (Theorem 2.5). So, by
the induction hypothesis, X = (x1, . . . , xn−2)

t is the eigenvector of L(G \ {u, v}) corresponding to
the eigenvalue 2 such that xi ∈ {−1, 1} for all i = 1, . . . , n − 2. Let w 6= u be a neighbor of v.
Z = (z1, . . . , zn)t = (X, x(w),−x(w))t is an eigenvector of L(G) corresponding to the eigenvalue 2,
where zi ∈ {−r, r} for all i = 1, . . . , n. This is because



Mathematics 2019, 7, 1233 5 of 9

(dG\{u,v}(w)− 2)xG\{u,v}(w) = ∑
vi∈NG\{u,v}(w)

x(vi)

(dG\{u,v}(w)− 2)xG\{u,v}(w) + x(w) = ∑
vi∈NG\{u,v}(w)

x(vi) + x(w)

(dG(w)− 2)zG(w) = ∑
vi∈NG(w)

z(vi),

and for vertex v

dG(v) = 2⇒

(dG(v)− 2)z(u) = 0

∑vj∈NG(v) z(vj) = z(w) + z(u) = x(w)− x(w) = 0
.

Additionally, for the vertex u

dG(u) = 1⇒

(dG(u)− 2)z(u) = −z(u) = x(w)

∑vj∈NG(u) z(vj) = z(v) = x(w)
.

By noting the fact that dG(p) = dG\{u,v}(p) for the other vertices of G, we have

(dG(v)− 2)zG(v) = ∑
vj∈NG(v)

z(vj), for all v ∈ V(G),

and the proof is complete.

4. The Laplacian Eigenvalue 2 of Bicyclic Graphs

In this section, we study the multiplicity of the Laplacian eigenvalue 2 of a bicyclic graphs G with
just two cycles C1 and C2. Let gi be the girth of Ci (i = 1, 2).

Lemma 2. Let G be a bicyclic graph and λ > 1 be an integral eigenvalue of L(G). It holds that mG(λ) ≤ 3.

Proof. On the contrary, if mG(λ) ≥ 4, then using Theorem 2, for every unicyclic subgraph G′ of G we
have mG′(λ) ≥ 3. This contradicts [2] (Lemma 4) and the result follows.

Theorem 5. Let G be a bicyclic graph of odd order n. It holds that mG(2) ≤ 2. In particular, if g1 and g2 are
odd, then mG(2) = 0.

Proof. On the contrary, suppose that mG(2) ≥ 3. Let C1 and C2 be two cycles of G. Let G′ = G− e,
where e ∈ E(C1). Then, G′ is a unicyclic graph. So mG′(2) ≥ 2, by Theorem 2. If mG′(2) > 2, this
contradicts [2] (Lamma 4). Thus, mG′(2) = 2. Let T be a spanning tree of G

′
. Therefore T has 2 among

its Laplacian eigenvalues, by Theorem 2. By applying [15] (Theorem 2.1), we conclude that 2 | n is
a contradiction. Therefore, mG(2) ≤ 2. Moreover, Theorem 1 implies that ξn−2 = ∑F∈F2

γ(F). Since n
is odd, for each F ∈ F2, the value of γ(F) is even. So, ξn−2 is an even number. Thus, if G has 2 among
its Laplacian eigenvalues, then 4 | ξn−1 = nτ(G) = 2ng1g2, and hence, 2 | ng1g2. Therefore, 2 | g1g2,
a contradiction, and the proof is complete.

Remark 3. Let G = G1 �uv G2 be a bicyclic graph such that G1 and G2 contain a perfect matching. It is
obvious that G has a perfect matching.

Theorem 6. Let G1 = C(T1, . . . , Tg1) and G2 = C(T′1, . . . , T
′
g2
) be unicyclic graphs containing a perfect

matching. Let M be the perfect matching of a one-edge connected graph G = G1 �uv G2 that has 2 as Laplacian
eigenvalue. It holds that G− e has 2 among its Laplacian eigenvalues such that e ∈ Cg1 or e ∈ Cg2 and e /∈ M.
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Proof. Let |V(G1)| = n1 and |V(G2)| = n2. Without loss of generality, we can assume that e ∈ Cg1

and λk(G) = 2. So, by Theorem 2, we have,

λk−1(G) ≥ λk−1(G− e) ≥ λk(G) ≥ λk(G− e) =⇒ 2 ≥ λk(G− e).

Now, let e′ ∈ Cg2 . Therefore, by Theorem 2, we have,

2 ≥ λk(G− e) ≥ λk(G− e− e′).

Assume that n = n1 + n2 = 2k′. Since G− e− e′ has a perfect matching, λk′(G− e− e′) = 2, and
hence, 2 = λk′(G− e− e′) ≥ λk(G− e− e′) and k ≥ k′ by Theorem 2. If k = k′, then 2 ≥ λk(G− e) ≥ 2
so λk(G − e) = 2 and the proof is complete. On the other hand, if k > k′, then λk(G − e− e′) 6= 2.
So we have,

2 = λk′(G− e− e′) ≥ λk′+1(G− e− e′) ≥ λk−1(G− e) ≥ λk(G) = 2,

and therefore, λk′+1(G− e− e′) = 2. This is a contradiction, by [15] (Theorem 2.1) and the result holds.

As an immediate result we have the following corollary.

Corollary 4. Let G1 = C(T1, . . . , Tg1) and G2 = C(T′1, . . . , T
′
g2
) be unicyclic graphs containing a perfect

matching. Let G = G1 �uv G2 and λk(G) = 2. Thus λk(G) = λk(G − e) = λk(G − e− e′) = 2, where
e ∈ Cg1 and e′ ∈ Cg2 and {e, e′} ∩M = ∅.

In what follows, we state the condition under which the bicyclic graphs have 2 among their
Laplacian eigenvalues.

Theorem 7. Let G1 = C(T1, . . . , Tg1) and G2 = C(T
′
1, . . . , T

′
g2
) be unicyclic graphs containing a perfect

matching which have 2 among their Laplacian eigenvalues and G = G1 �uv G2 be a bicyclic graph. Let s1 and
s2 be the number of Ti and T′j of odd orders of G1 and G2, respectively. It holds that s1 ≡ s2 ≡ 0(mod 4) if and
only if G has 2 among its Laplacian eigenvalues.

Proof. Assume X and Y are eigenvectors of L(G1) and L(G2) corresponding to the eigenvalue 2,
respectively. So vectors X and Y satisfy Equation (1). Let u and v be two vertices of V(G1) and
V(G2) with uv ∈ E(G). Now let X′ = (X, x(u)

y(v)Y). We show that X′ satisfies Equation (1) for λ = 2.
First, note that dG(p) = dG1(p) for all p ∈ V(G1)− {u} and dG(q) = dG2(q) for all q ∈ V(G2)− {v}.
So Equation (1) holds for all vertices V(G)− {u, v}. Also,

(dG(u)− 2)x′(u) = (dG1(u)− 2)x′(u) + x′(u)

= (dG1(u)− 2)x(u) + x(u)

= ∑
vj∈NG1

(u)
x(vj) + x(u)

= ∑
vj∈NG1

(u)
x′(vj) +

x(u)
y(v)

y(v)

= ∑
vj∈NG1

(u)
x′(vj) + x′(v)

= ∑
vj∈NG(u)

x′(vj)
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and
(dG(v)− 2)x′(v) = (dG2(v)− 2)x′(v) + x′(v)

= (dG2(v)− 2)
x(u)
y(v)

y(v) + y(v)
x(u)
y(v)

=
x(u)
y(v) ∑

vj∈NG2 (u)
y(vj) + x(u)

= ∑
vj∈NG2 (v)

(y(vj)
x(u)
y(v)

) + x′(u)

= ∑
vj∈NG2 (u)

x′(vj) + x′(u)

= ∑
vj∈NG(u)

x′(vj).

Thus, the proof of the "only if" part of the theorem is complete.
Conversely, assume that G has 2 among its Laplacian eigenvalues. Suppose e = uv is a joining

edge of G with u ∈ V(Ti) and v ∈ V(T′j ). The unicyclic graph G − e1 has 2 among its Laplacian
eigenvalues, where e1 ∈ Cg1 or e1 ∈ Cg2 and e1 is not in the perfect matching M of G, by Theorem 6.
Without loss of generality, let e1 ∈ Cg1 . Then s ≡ 0 (mod 4), where s is the number of trees of odd
orders in G− e1 = C(T′1, . . . , T′j−1, T′j ∪ {e} ∪ {G1 − e1}, T′j+1, . . . , T′g2

), by [2] (Theorem 9). If |V(T′j )| is
an even number, then T′j ∪ {e} ∪ {G1 − e1} is an even number. So the trees of odd orders in G2 are
the same as the trees of odd orders in G− e1, and hence, s2 ≡ 0 (mod 4). If |V(T′j )| is an odd number,
then T′j ∪ {e} ∪ {G1 − e1} is an odd number. So the trees of odd orders in G2 are T′j and all trees of
odd orders in G − e1 except T′j ∪ {e} ∪ {G1 − e1} (see Figure 5). Therefore, s2 ≡ 0 (mod 4) and this
completes the proof.

Ti

u v

T′j

e1 e2

G1 G2

Figure 5. G = G1 �uv G2.

As an immediate result from Theorems 3 and 7, we have the following corollary.

Corollary 5. Let G1 and G2 be broken sun graphs containing perfect matchings and G = G1 �uv G2 be a
bicyclic graph. Then, n2(G1) ≡ n2(G2) ≡ 0(mod 4) if and only if G has 2 among its Laplacian eigenvalues.

Let G1 and G2 be two unicyclic graphs. Assume L(G1) (L(G2)) has 2 among its eigenvalues and
G = G1 �uv G2. Even if L(G) has 2 as eigenvalue, the same thing does not necessarily happen for
L(G2) (L(G1)).

Example 6. Let G1 and G2 be the unicyclic graphs in Figure 6. Then G1 and G have 2 among their Laplacian
eigenvalues, but G2 has not 2 as a Laplacian eigenvalue.
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G1 G2

Figure 6. G = G1 �uv G2.

Here we establish some conditions on the degree of vertices of some bicyclic graphs having 2 as
Laplacian eigenvalues.

Theorem 8. Let G1 and G2 be broken sun graphs of orders n1 and n2 with no perfect matching. If g1 ≡ g2 ≡
0 (mod 4) and there are odd numbers of vertices of degree 2 between any pair of consecutive vertices of degree 3,
then G = G1 �uv G2 has 2 among its Laplacian eigenvalues.

Proof. Assume that g1 ≡ g2 ≡ 0 (mod 4) and there are odd numbers of vertices of degree 2 between
any pair of consecutive vertices of degree 3 in G1 and G2; therefore, G1 and G2 have 2 among their
Laplacian eigenvalues, by [2] (Theorem 10). Let the edge of G joining G1 and G2 be e = uv, where
v ∈ V(G1) and u ∈ V(G2). We can assign {−1, 0, 1} to the vertices of Cg1 and Cg2 , by the pattern
0, 1, 0,−1 consecutively, starting with a vertex of degree 3, and assign to eachleaf vertex the negative
of value of its neighbor to obtain eigenvectors X and Y of L(G1) and L(G2) corresponding to the
eigenvalues 2, respectively. If u and v are two leaf vertices or two vertices of degree 3 or 1 of them is a
leaf vertex and the other is of degree 3, then Z = (X, Y) is an eigenvector of L(G) corresponding to
the eigenvalue 2 (note that Equation (1) is satisfied). If u is a vertex of degree 1 or degree 3 and v is
a vertex of degree 2, Z = (X,

−→
0 ) is an eigenvector of L(G) corresponding to the eigenvalue 2 (note

that Equation (1) is satisfied). If u and v are two vertices of degree 2, and consequently, if x(u) = y(v),
then Z = (X, Y). If x(u) = 0 and y(v) 6= 0, Z = (X,

−→
0 ). If x(u) 6= y(v) and both of them are other

than 0, Z = (X,−Y). Therefore, Z satisfies Equation (1) for λ = 2 and G has 2 among its Laplacian
eigenvalues. Therefore, the result follows.

Theorem 9. Let G1 be a broken sun graph of orders n1 with no perfect matching and G2 be a unicyclic graph of
order n2 with a perfect matching. If G1 and G2 have 2 among their Laplacian eigenvalues, then G1 �uv G2 has 2
as a Laplacian eigenvalue.

Proof. It is proven like Theorem 8, by a similar method.
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