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Abstract: The Maslov form is a closed form for a Lagrangian submanifold of Cm, and it is a conformal
form if and only if M satisfies the equality case of a natural inequality between the norm of the
mean curvature and the scalar curvature, and it happens if and only if the second fundamental form
satisfies a certain relation. In a previous paper we presented a natural inequality between the norm
of the mean curvature and the scalar curvature of slant submanifolds of generalized Sasakian space
forms, characterizing the equality case by certain expression of the second fundamental form. In this
paper, first, we present an adapted form for slant submanifolds of a generalized Sasakian space form,
similar to the Maslov form, that is always closed. And, in the equality case, we studied under which
circumstances the given closed form is also conformal.

Keywords: slant submanifolds; generalized Sasakian space forms; closed form; conformal form;
Maslov form

1. Introduction

It was proven by V. Borrelli, B.-Y. Chen and J. M. Morvan [1], and independently by A. Ros and F.
Urbano [2], that if M is a Lagrangian submanifold, with dim(M) = m, of Cm, with mean curvature

vector H and scalar curvature τ, then ‖H‖2 ≥ 2(m + 2)
m2(m− 1)

τ, with equality if and only if M is either

totally geodesic or a (piece of a) Whitney sphere. Moreover, they proved that M satisfies the equality
case at every point if and only if its second fundamental form σ is given by

σ(X, Y) =
m

m + 2
{g(X, Y)H + g(JX, H)JY + g(JY, H)JX}, (1)

for any tangent vector fields X and Y. Thus, they found a simple relationship between one of the main
intrinsic invariants, τ, and the main extrinsic invariant H.

It was also proven in [2], that the Maslov form, which is a closed form for a Lagrangian
submanifold of Cm, is a conformal form if and only if M satisfies (1).

Later, D. E. Blair and A. Carriazo [3] established an analogue inequality for anti-invariant
submanifolds in R2m+1 with its standard Sasakian structure and characterized the equality case with a
specific expression of the second fundamental form, similar to Equation (1). In a previous paper [4],
we studied the corresponding inequality for slant submanifolds of generalized Sasakian space forms;
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we also characterized the equality case with an specific expression of the second fundamental form;
and finally, we presented some examples satisfying the equality case.

Both B.-Y. Chen, [5] and A. Carriazo, [6], have studied the existence of closed forms for slant
submanifolds in different environments. The existence of closed forms is particularly interesting, as
they provide conditions about submanifolds admitting an immersion in a certain environment.

The purpose of this paper was to obtain some results similar to those of [2] for slant submanifolds
of a generalized Sasakian space form. After a section with the main preliminaries, we show that
for a slant submanifold of a generalized Sasakian manifold, the Maslov form is not always closed.
Therefore, in the following section, we present a form that is always closed for a slant submanifold,
so it really plays the role of the Maslov form in the cited papers. Later, if the submanifold satisfies the
equality case in the corresponding inequality, that is, if the second fundamental form takes a particular
expression [4], we study if the vector field associated with the given form is a conformal vector field.

2. Preliminaries

Given a Riemannian manifold (M̃, g), a tangent vector field X on M̃ is called closed if its dual
1-form is closed. That is equivalent to

g(Y, ∇̃ZX) = g(Z, ∇̃YX), (2)

for all Y and Z on M̃, where ∇̃ is the Levi–Civita connection.
Moreover, X is called conformal if LX g = ρg, for ρ a function on M̃, where L is the Lie derivative.

A closed vector field X is conformal in and only if

∇̃YX = f Y, (3)

for any tangent vector field Y on M̃ and for certain function f on M̃.
In such a case, considering an orthonormal basis {e1, . . . , em} on M̃, it holds that ∇̃ei X = f ei,

for i = 1, . . . , m.
Now, we will recall some notions about almost-contact Riemannian geometry. For more details

about this subject, we recommend the book [7].
An odd-dimensional Riemannian manifold (M̃, g) is said to be an almost contact metric manifold if

there exists on M̃, a (1, 1) tensor field φ, a unit vector field ξ (called the structure or Reeb vector field) and
a 1-form η, such that

η(ξ) = 1, φ2(X) = −X + η(X)ξ

and
g(φX, φY) = g(X, Y)− η(X)η(Y),

for any vector fields X and Y on M̃. In particular, in an almost contact metric manifold we also have

φξ = 0, η ◦ φ = 0 and η(X) = g(X, ξ).

Such a manifold is said to be a contact metric manifold if dη = Φ, where Φ(X, Y) = g(X, φY) is
called the fundamental 2-form of M̃. The almost contact metric structure of M is said to be normal if
[φ, φ](X, Y) = −2dη(X, Y)ξ, for any X and Y. A normal contact metric manifold is called a Sasakian
manifold. It can be proven that an almost contact metric manifold is Sasakian if an only if

(∇̃Xφ)Y = g(X, Y)ξ − η(Y)X,

for any X and Y on M.
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In [8], J.A. Oubiña introduced the notion of a trans-Sasakian manifold. An almost contact metric
manifold M̃ is a trans-Sasakian manifold if there exists two functions α and β on M̃ such that

(∇̃Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX), (4)

for any X and Y on M̃. If β = 0, M̃ is said to be an α-Sasakian manifold. Sasakian manifolds appear
as examples of α-Sasakian manifolds, with α = 1. If α = 0, M̃ is said to be a β-Kenmotsu manifold.
Kenmotsu manifolds are particular examples with β = 1. If both α and β vanish, then M̃ is a
cosymplectic manifold. In particular, from (4) it is easy to see that the following equation holds for a
trans-Sasakian manifold:

∇̃Xξ = −αφX + β(X− η(X)ξ). (5)

It was proven by J.C. Marrero that, for dimensions greater or equal than 5, the only existing
trans-Sasakian manifolds are α-Sasakian and β-Kenmotsu ones [9].

In [10], P. Alegre, D.E. Blair and A. Carriazo introduced the notion of a generalized Sasakian space
form as an almost contact metric manifold (M̃, φ, ξ, η, g) whose curvature tensor is given by

R̃(X, Y)Z = f1 {g(Y, Z)X− g(X, Z)Y}
+ f2 {g(X, φZ)φY− g(Y, φZ)φX + 2g(X, φY)φZ}
+ f3 {η(X)η(Z)Y− η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ} ,

(6)

where f1, f2 and f3 are differential functions on M̃. These manifolds are denoted by
M̃( f1, f2, f3); generalize the notion of Sasakian space form, M̃(c), whose curvature tensor satisfies
the expression (6), with

f1 =
c + 3

4
, f2 = f3 =

c− 1
4

,

where c is the constant φ-sectional curvature.
Now we recall some general definitions and facts about submanifolds. Let M be a submanifold

isometrically immersed in a Riemannian manifold (M̃,g). We denote by ∇ the induced Levi–Civita
connection on M. Thus, the Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X, Y),

∇̃XV = −AV X + DXV,

for vector fields X and Y tangent to M and a vector field V normal to M, where σ denotes the
second fundamental form, AV the shape operator in the direction of V and D the normal connection.
The second fundamental form and the shape operator are related by

g(AV X, Y) = g(σ(X, Y), V). (7)

M is called a totally geodesic submanifold if σ vanishes identically.
We denote by R and R̃, the curvature tensors of M and M̃, respectively. They are related by Gauss

and Codazzi’s equations

R̃(X, Y; Z, W) = R(X, Y; Z, W)

+ g(σ(X, Z), σ(Y, W))− g(σ(X, W), σ(Y, Z)),
(8)

(R̃(X, Y)Z)⊥ = (∇̃Xσ)(Y, Z)− (∇̃Yσ)(X, Z), (9)

where (R̃(X, Y)Z)⊥ denotes the normal component of R̃(X, Y)Z and

(∇̃Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ),
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is the derivative of Van der Waerden-Bortolotti.
On the other hand, the mean curvature vector H is defined by

H = (1/dimM) trace σ, (10)

and M is said to be minimal if H vanishes identically.
The scalar curvature τ of M at p ∈ M is defined by

τ = ∑
1≤i<j≤dimM

K(ei, ej), (11)

where K(ei, ej) denotes the sectional curvature of M associated with the plane section spanned by ei
and ej, for any tangent vector fields ei and ej in a local orthonormal frame of M.

For a submanifold of an almost contact manifold, we denote

φX = TX + NX and φV = tV + nV

the tangent and normal part of φX and φV for any X tangent vector field and V normal vector field.
If the ambient space is trans-Sasakian, taking the tangent and normal part at (4) we obtain:

(∇XT)Y− tσ(X, Y)− ANYX =α(g(X, Y)ξ − η(Y)X)

+β(g(TX, Y)ξ − η(Y)TX),
(12)

(∇X N)Y + σ(X, TY)− nσ(X, Y) = −βη(Y)NX, (13)

(∇Xt)V − AnV X + TAV X = βg(NX, V)ξ, (14)

(∇Xn)V + σ(X, tV) + NAV X = 0. (15)

And from (5):
∇Xξ = −αTX + β(X− η(X)ξ), (16)

σ(X, ξ) = −αNX. (17)

Now, we recall the definition of slant submanifolds. These submanifolds were defined by B.-Y.
Chen in [5] on almost Hermitian geometry. Later, A. Lotta defined slant submanifolds on the almost
contact metric setting in [11]: given a submanifold M tangent to ξ, for each nonzero vector X tangent
to M at p, such that X is not proportional to ξp, we denote by θ(X) as the angle between φX and Tp M.
Then, M is said to be slant if the angle θ(X) is a constant, which is independent of the choice of p ∈ M
and X ∈ Tp M− < ξp >. The angle θ of a slant immersion is called the slant angle of the immersion.
Invariant and anti-invariant immersions are slant immersions with slant angles θ = 0 and θ = π/2,
respectively. A slant immersion, which is neither invariant nor anti-invariant, is called a proper slant
immersion. Slant submanifolds of Sasakian manifolds were studied by J.L. Cabrerizo, A. Carriazo,
L.M. Fernández and M. Fernández in [12,13].

From now on, we denote by m + 1 = 2n + 1 the dimension of M and 2m + 1 = 4n + 1 the
dimension of M̃. We assume m ≥ 2. Then, for a slant submanifold holds:

T2X = cos2 θ(−X + η(X)ξ), (18)

tNX = sin2 θ(−X + η(X)ξ), (19)

NTX + nNX = 0, (20)

and because of the dimensions,

n2V = − cos2 θV, NtV = − sin2 θV and TtV + tnV = 0,
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for any X, Y tangent vector fields and V normal vector field.
Given a proper slant submanifold M2n+1, with slant angle θ, immersed in an almost contact

manifold M̃4n+1, we considered an adapted slant reference, [6]; it was built as follows. Given e1 a unit
tangent vector field, orthogonal to ξ, we took:

e2 = (sec θ)Te1, e1∗ = (csc θ)Ne1, e2∗ = (csc θ)Ne2.

For k > 1, then proceeding by induction, for each l = 1, . . . , n− 1, we chose a unit tangent vector
field e2l+1 of M, such as e2l+1, which is orthogonal to e1, e2, . . . , e2l−1, e2l , ξ and took:

e2l+2 = (sec θ)Te2l+1, e(2l+1)∗ = (csc θ)Ne2l+1, e(2l+2)∗ = (csc θ)Ne2l+2.

In this way
{e1, . . . , em, ξ, e1∗, . . . , em∗} (21)

is an orthonormal reference such that e1, . . . , em belong to the contact distribution, D and e1∗, . . . , em∗
are normal to M. Moreover, it can be directly computed that:

Te2j−1 = (cos θ)e2j, Te2j = −(cos θ)e2j−1, j = 1, . . . , k;
Nei = (sin θ)ei∗, tei∗ = −(sin θ)ei, i = 1, . . . , m;
ne(2j−1)∗ = −(cos θ)e(2j)∗, ne(2j)∗ = (cos θ)e(2j−1)∗, j = 1, . . . , k.

Finally, a slant submanifold of an (α, β) trans-Sasakian generalized Sasakian space form
M̃2m+1( f1, f2, f3), is called ∗-slant submanifold, [4], if its second fundamental form σ is given by the
following expression:

σ(X, Y) =
m + 1
m + 2

{
(g(X, Y)− η(X)η(Y)) H

+

(
1

sin2 θ
g(φX, H)− α

m + 2
m + 1

η(X)

)
NY

+

(
1

sin2 θ
g(φY, H)− α

m + 2
m + 1

η(Y)
)

NX
}

.

(22)

They are specially interesting because it was proven in [4] that this expression of the second
fundamental form characterizes the equality case of the following inequality involving the squared
mean curvature ‖H‖2 and the scalar curvature τ:

(m + 1)2‖H‖2 − 2
m + 2
m− 1

τ ≥ −m(m + 2)
m− 1

((m + 1) f1 + 3 f2 cos2 θ − 2 f3 − 2α sin2 θ). (23)

3. The Maslov Form

For any submanifold of any almost contact manifold, we consider the Maslov form ωH as the
dual form of φH; that is

ωH(X) = g(X, φH),

for any X tangent vector field in the submanifold. We can also define a canonical 1-form on M by

Θ =
m

∑
1=1

ωi∗
i ,

where ωi∗
i are the connection forms given by Cartan’s structure equations.
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We can relate these two forms for certain slant submanifolds. In [12], proper slant submanifolds
such as for any tangent vector fields X and Y were studied with:

(∇XT)Y = cos2 θ(g(X, Y)ξ − η(Y)X). (24)

They were called slant Sasakian submanifolds in [6]; however, we can point that they are α-Sasakian
manifolds with the induced structure φ = sec θT. That aims us to defined slant trans-Sasakian
submanifolds as those verifying:

(∇Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX). (25)

For a slant trans-Sasakian submanifold of a trans-Sasakian manifold the relation between the
structure functions is given by

sec θα = α and β = β. (26)

From (25) and (12) it is deduced that

ANYX = ANXY + α sin2 θ(η(Y)X− η(X)Y), (27)

for any X, Y tangent vector fields.

Then, for such a submanifold, the relation between Θ and the Maslov form is given in the
following theorem.

Theorem 1. Let Mm+1 be a slant trans-Sasakian submanifold of a generalized Sasakian space form
M̃2m+1( f1, f2, f3) endowed with an (α, β) trans-Sasakian structure. Then:

ωH = − sin θ

m + 1
(Θ + mα sin θη). (28)

Proof. Considering an adapted slant basis, it holds

ωH(ei) = g(ei, φH) = −g(Nei, H) = − sin θg(ei∗ , H), (29)

for i = 1, . . . , m. Moreover,

Θ =
2n

∑
l=1

2n

∑
i=1

σl∗
li ωi +

2n

∑
l=1

σl∗
lξ η. (30)

But,
σl∗

lξ = g(σ(el , ξ), el∗) = − csc θg(Nel , Nel) = − sin θ, (31)

and

σl∗
li =g(σ(el , ei), el∗) = csc θg(σ(el , ei), Nel)

= csc θg(ANel ei, el) = csc θg(ANei el , el)

=g(σ(el , el), ei∗) = σi∗
ll ,

(32)

where we have used (27); that is, M is a slant trans-Sasakian submanifold.
And therefore, from (30)–(32),

Θ + mα sin θη = ∑
i=1

2n(trσi∗)ωi.
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As σ(ξ, ξ) = 0:

H =
1

m + 1

m

∑
j=1

σ(ej, ej). (33)

Now, from (29) and (33), it holds that

ωH(ei) = −
sin θ

m + 1

2k

∑
j=1

σi∗
jj = − sin θ

m + 1
(Θ + mα sin θη)(ei),

for i = 1, . . . , m. Finally, as ωH(ξ) = g(tH, ξ) = 0, the proof is finished.

Following the same steps that [5] did for slant submanifolds of an almost Hermitian manifold or
[6] for an almost contact manifold, and after a long computation, the differentials of θ and η can be
proven. The proof is straightforward so we have omitted it.

Lemma 1. Let Mm+1, a proper slant submanifold of a generalized Sasakian space, form M̃2m+1 endowed with
an (α, β) trans-Sasakian structure, with M tangent to ξ and m ≥ 2. Then, the 1-forms Θ and η satisfy:

dΘ =− 2 sin θ cos θ(α2 + f2(m + 1))

(
k

∑
j=1

ω2j−1 ∧ω2j −
k

∑
j=1

ω(2j−1)∗ ∧ω(2j)∗
)

+(−2 sin2 θ(α2 + f2(m + 1))+α2 + f2 − f1 − β2)(
k

∑
j=1

ω2j−1 ∧ω(2j−1)∗ +
k

∑
j=1

ω2j ∧ω(2j)∗
)

,

(34)

and

dη =− 2α cos θ
k

∑
j=1

ω2j−1 ∧ω2j − 2α sin θ
k

∑
j=1

ω2j−1 ∧ω(2j−1)∗−

− 2α sin θ
k

∑
j=1

ω2j ∧ω(2j)∗ + 2α cos θ
k

∑
j=1

ω(2j−1)∗ ∧ω(2j)∗ ,

(35)

where θ is the slant angle of M.

As we are considering a trans-Sasakian manifold with a dimension greater or equal than 5,
from [9], it must be an α-Sasakian or a β-Kenmotsu manifold. So we distinguish both two cases in the
following theorems.

Theorem 2. Let Mm+1 be a proper slant trans-Sasakian submanifold of a connected generalized Sasakian space
form M̃2m+1( f1, f2, f3) endowed with an α-Sasakian structure. Then, the Maslov form is closed if and only if
f1 = 0. In such a case, it holds f2 = f3 = −α2.

Proof. As M̃2m+1 is α-Sasakian, from Proposition 4.1 of [14], α is constant. From (28),

dωH = − sin θ

m + 1
(dΘ + mα sin θdη).

Then, from (34) and (35), it is deduced that dωH = 0 if and only if it holds α2 + f2 = 0 and f1 = 0.
Moreover, Theorem 4.2 of [14] establishes that both conditions are equivalent, as f1− α2 = f2 = f3.

Remark 1. If the ambient space is a Sasakian space form M̃2m+1(c), the Maslov form is closed if and only if
c = −3, as it was proved in [6].
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Theorem 3. Let Mm+1 be a proper slant trans-Sasakian submanifold of a generalized Sasakian space form
M̃2m+1( f1, f2, f3) endowed with a β-Kenmotsu structure. Then, the Maslov form is closed if and only if

f1 = −β2 and f2 = 0.

In such a case, it holds f3 = ξ(β).

Proof. Again from (28), (34) and (35), dωH = 0 if and only if f2 = 0 and f1 + β2 = 0. The last condition
is obtained from Proposition 4.3 in [14], where it was proven that f1 − f3 + ξ(β) + β2 = 0.

Remark 2. We note that on the opposite that for Lagrangian submanifold of Cn, [2], or totally real submanifolds
of R2m+1, [3], the Maslov is not always closed. That aims us to look for an adapted form that is closed in
more cases.

4. An Adapted Closed Form

As the Maslov form is not always closed for slant submanifolds it is necessary to find a new form
related with this Maslov form but including the special slant character of the submanifold.

Both the Maslov form and Θ can be considered forms at M̃ or M. As both η and Θ vanish at
TM⊥, it is the same defining them on M̃ or M; however, it is not the same considering dη or dηeM and
dΘ or dΘeM. Although both B.-Y. Chen and A. Carriazo, [5] and [6], studied conditions for dωH and
dΘ vanishing at the manifold; their real interest was finding a closed form at the submanifold, not at
the manifold.

Therefore, we consider the restrictions of Θ and η at the submanifold. From (34) and (35) it
is deduced:

dηeM = −2α cos θ
m

∑
j=1

ω2j−1 ∧ω2j (36)

and

dΘeM = −2 sin θ cos θ(α2 + f2(m + 1))
m

∑
j=1

ω2j−1 ∧ω2j. (37)

So we find that, for obtaining a closed form, the relation between Θ and η is not the given by the
Maslov form at (28).

Again, we particularize to α-Sasakian or a β-Kenmotsu manifolds. Firstly, we consider an
α-Sasakian manifold. It was proven in [14], that if α 6= 0 and M̃( f1, f2, f3) is connected, then α is
constant, and the functions are constant and related by f1 − α2 = f2 = f3. We can write:

f1 =
c + 3α2

4
, f2 = f3 =

c− α2

4
.

From now on, we suppose M̃ is connected.

Lemma 2. Let Mm+1 be a slant submanifold of an α-Sasakian generalized Sasakian space form

M̃2m+1( f1, f2, f3), with α 6= 0. Then, the form Θ− sin θ
α2 + f2(m + 1)

α
η is closed at M.

Proof. It is directly deduced from (36) and (37) that αdΘ− sin θ(α2 + f2(m + 1))dη = 0, and as α is
constant, the result is proven.

Moreover, the field associated to the closed form is

− m + 1
sin θ

tH − sin θ

(
m +

α2 + f2(m + 1)
α

)
ξ, (38)
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so we already have the following theorem.

Theorem 4. Let Mm+1 be a slant submanifold of an α-Sasakian generalized Sasakian space form

M̃2m+1( f1, f2, f3), with α 6= 0. Then, the field tH +
sin2 θ

m + 1
mα + α2 + f2(m + 1)

α
ξ is closed.

Corollary 1. Let Mm+1 a slant submanifold of a Sasakian space form M̃2m+1(c); the field tH + sin2 θ
c + 3

4
ξ

is closed.

Note that this result improves the one obtained by A. Carriazo in [6] giving a closed form for a
slant submanifold of any Sasakian space form.

Corollary 2. Let M2m+1 be a compact and simply connected manifold. Then, M can not be immersed in a
generalized Sasakian space form, M̃4m+1(0,−α2,−α2), endowed with an α-Sasakian structure, α 6= 0, like a
slant submanifold.

Proof. If Mm+1 is a slant submanifold of M̃4m+1(0,−α2,−α2), with an α-Sasakian structure.
By Theorem 4 the vector field

tH +
sin2 θ

m + 1
mα + α2 + f2(m + 1)

α
ξ 6= 0,

is closed, and the corresponding form is also closed. Therefore it represents a cohomology class in
H1(M;R). But, as M is compact, it can not be an exact form. So H1(M;R) is a nontrivial cohomology
class and M could not be simply connected what is a contradiction.

On the other hand, for a β-Kenmotsu manifold dη = 0 and from Theorem 1, ωH = − sin θ

m + 1
Θ.

The following lemma studies when it is a closed form.

Lemma 3. Let Mm+1 be a proper slant submanifold of a β-Kenmotsu generalized Sasakian space form M̃2m+1,
with M tangent to ξ and m ≥ 2. Then, the Maslov form at M is closed if and only if f2 = 0.

Proof. For a β-Kenmotsu manifold ωH = − sin θ

m + 1
Θ. And writing (37) for α = 0,

dΘeM = −2 sin θ cos θ f2(m + 1)
m

∑
j=1

ω2j−1 ∧ω2j. (39)

Therefore, the Maslov form is closed in M if and only f2 = 0.

Note, that in such a case f1− f3 + ξ(β) + β2 = 0 ([14], Proposition 4.3). Moreover, we observe that,
on the opposite that for α-Sasakian manifolds, we cannot find a closed form for a slant submanifold of
any generalized Sasakian space form with a β-Kenmotsu structure.

However, for f2 = 0, we have obtained a closed vector field as follows.

Theorem 5. Let Mm+1 be a slant submanifold of an β-Kenmotsu generalized Sasakian space form
M̃2m+1( f1, 0, f3). Then, the field tH + sin2 θ

m
m + 1

ξ is closed.

Again, we can present a topological obstruction for slant immersions:
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Corollary 3. Let M2m+1 be a compact and simply connected manifold. Then, M cannot be immersed in
a generalized Sasakian space form, M̃4m+1( f1, 0, f3), endowed with an β-Kenmotsu structure, as a slant
submanifold.

From now on, we will write tH + aξ and tH + bξ, with

a =
sin2 θ

m + 1
mα + α2 + f2(m + 1)

α
and b = sin2 θ

m
m + 1

,

for the correspondent closed vector fields.

5. About Conformal Forms for α-Sasakian Space Forms

As we said in the Introduction, for those Lagrangian submanifolds of Cm verifying the equality
case, the Maslov form, that is closed, is also conformal. Now we study if the closed form presented in
the previous section is conformal for those slant submanifolds verifying the equality case at (23).

We are considering a connected manifold, so α, f1, f2 and f3 are constant functions.
We want to compute ∇X(tH + aξ), for any X tangent vector field. It is a long computation.

Firstly, we compute∇N for later use. Using the expression of the second fundamental form of a *-slant
submanifold, (22), and (20) in (13):

(∇X N)Y =
m + 1
m + 2

{
(g(X, Y)− η(X)η(Y))nH − g(X, TY)H

+ 2
(

1
sin2 θ

g(φX, H)− m + 2
m + 1

η(X)

)
nNY

+

(
1

sin2 θ
g(φY, H)− m + 2

m + 1
η(Y)

)
nNX

− 1
sin2 θ

g(φTY, H)NX
}

.

(40)

Lemma 4. Let M be *-slant submanifold of an generalized Sasakian space form M̃( f1, f2, f3) endowed with an
α-Sasakian structure. For every X tangent vector field belonging to the contact distribution it holds:

∇X(tH + aξ) =− g(DX H, NX)X +

(
1

sin2 θ

m + 1
m + 2

g2(H, NX)− a
)

TX

− 3
sin2 θ

m + 1
m + 2

g(H, NX)tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH + g(H, nNX)ξ.

(41)

Proof. Firstly, from Codazzi’s equation we will compute DX H, and after, ∇X(tH + aξ).
Writing Codazzi’s equation, (9), for a generalized Sasakian space form, for any unit orthogonal
X, Y tangent vector fields in the contact distribution, using (3) (6), R(X, Y)Y)⊥ gives:

3
m + 2
m + 1

f2g(X, TY)NY = DX H + 3
m + 2
m + 1

g(Y, TX)NY

+
2

sin2 θ
{g((∇X N)Y, H)NY + g(NY, DX H)NY + g(NY, H)(∇X N)Y}

+
1

sin2 θ
{−g((∇Y N)X, H)NY− g((∇Y N)Y, H)NX− g(NX, H)(∇Y N)Y

−g(NX, DY H)NY− g(NY, DY H)NX− g(NY, H)(∇Y N)X} .

(42)
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Then, using (40), we obtain:

3
m + 2
m + 1

( f2 + 1)g(X, TY)NY = DX H

+
1

sin2 θ
{2g(NY, DX H)NY− g(NX, DY H)NY− g(NY, DY H)NX}

+
1

sin2 θ

m + 1
m + 2

{
−g(NX, H)nH − 2

sin2 θ
g(NY, H)g(nNY, H)NX− 3g(NY, H)g(X, TY)H(

−3g(X, TY)‖H‖2 +
4

sin2 θ
g(NX, H)g(nNY, H)− 2

sin2 θ
g(NY, H)g(nNX, H)

)
NY
}

.

(43)

At this point, we use that, taking into account Corollary 1, tH + aξ is a closed vector field.

g(∇X(tH + aξ), Y) = g(∇Y(tH + aξ), X).

Then, using (16)
g(∇XtH, Y) = g(∇YtH, X)− 2ag(TY, X),

and therefore, (14) gives

g(NX, DY H) = −g(X, tDY H) = −g(X,∇YtH − AnHY + TAHY)

= g(NY, DX H) + 2ag(TX, Y)− g(σ(TY, X), H) + g(σ(Y, TX), H).
(44)

Now, using (22) carries to

g(NX, DY H) =g(NY, DX H) + 2ag(TX, Y) +
m + 1
m + 2

2g(Y, TX)‖H‖2

+
m + 1
m + 2

2
sin2 θ

(g(NY, H)g(NTX, H)− g(NX, H)g(NTY, H)).
(45)

So (43) gives

3
m + 2
m + 1

( f2 + 1)g(X, TY)NY = DX H +
1

sin2 θ
{g(NY, DX H)NY− g(NY, DY H)NX}

+
1

sin2 θ

m + 1
m + 2

{(
−2a

m + 2
m + 1

g(TX, Y) + g(Y, TX)‖H‖2 +
2

sin2 θ
g(NX, H)g(nNY, H)

)
NY

−g(NX, H)nH − 2
sin2 θ

g(NY, H)g(nNY, H)NX + 3g(NY, H)g(Y, TX)H
}

.

(46)

Now, for dimensions over or equal than 5, we can consider X orthogonal to Y and TY. Multiplying
by NX,

0 = g(DX H, NX)− g(NY, DY H)

+
1

sin2 θ

m + 1
m + 2

{−g(NX, H)g(nNX, H)− 2g(NY, H)g(nNY, H)}.
(47)

Interchanging X and Y at (47), and adding it to the previous equation:

g(NX, H)g(nNX, H) = −g(NY, H)g(nNY, H). (48)

For TY, that is also orthogonal to X, TX,

g(NX, H)g(nNX, H) = −g(NTY, H)g(nNTY, H) = cos2 θg(NY, H)g(nNY, H). (49)
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From (48) and (51), we get g(NX, H)g(nNX, H) = 0 for every X unit vector field in the contact
distribution. Moreover, developing 0 = g(N(X + Y), H)g(nN(X + Y), H), we obtain

g(NX, H)g(nNY, H) = −g(NY, H)g(nNX, H). (50)

Also, at (47), we get
g(DX H, NX) = g(NY, DY H), (51)

so g(DX H, NX) is independent of X unit vector field in the contact distribution.
Now, multiplying (46) by NY,

0 = 2g(DX H, NY) +
3

sin2 θ

m + 1
m + 2

g(NX, H)g(nNY, H). (52)

But (44) for any X, a unitary vector field orthogonal to Y, TY, in the contact distribution it states:

g(NX, DY H)− g(σ(TX, Y), H) = g(NY, DX H)− g(σ(TY, X), H). (53)

Using (52) and (22) at (53)

−7
2 sin2 θ

m + 1
m + 2

g(NX, H)g(nNY, H) =
−7

2 sin2 θ

m + 1
m + 2

g(NY, H)g(nNX, H), (54)

where X, Y can be interchanged. Comparing (50) with (54) it is proven that

g(NX, H)g(nNY, H) = 0, (55)

and consequently, by (52),
g(DX H, NY) = 0, (56)

for each X orthogonal to Y and TY at the contact distribution.
It only rests on us to compute g(DX H, NTX) in order to know DX H. Multiplying (46) by NTX

we obtain:

g(DX H, NTX) = −cos2 θ

sin2 θ

m + 1
m + 2

g(H, NX)2. (57)

Therefore, taking an orthogonal basis {e∗1 , ..., e∗n} at T⊥M,

DX H = ∑ g(DX H, e∗j )e
∗
j =

=
1

sin2 θ
g(DX H, NX)NX− 1

sin4 θ

m + 1
m + 2

g(H, NX)2NTX,
(58)

for any X unit tangent field orthogonal to ξ.
Finally, for any X at the contact distribution, and any Z tangent vector field,

g(∇X(tH + aξ), Z) = g(∇XtH, Z)− ag(TX, Z)

= g(t∇X H + AnHX− TAHX, Z)− ag(TX, Z)

= −g(DX H, NZ) + g(nH, h(X, Z)) + g(H, h(X, TZ))− ag(TX, Z)

= −g
(

g(DX H, NX)NX− 1
sin4 θ

m + 1
m + 2

g(H, NX)2NTX, NZ
)

+
m + 1
m + 2

(
1

sin2 θ
g(NX, H)g(NZ, nH) +

(
1

sin2 θ
g(NZ, H)− m + 2

m + 1
η(Y)

)
g(NX, nH)

)
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+
m + 1
m + 2

(
1

sin2 θ
g(NX, H)g(NTZ, H) +

1
sin2 θ

g(NTZ, H)g(NX, H)

)
− ag(TX, Z), (59)

where we used (22). This last equation, using (19), direct gives the desired expression of ∇XtH +
c− 1

4
cos2 θξ.

The quid point of the above proof is to deduce, from Codazzi’s equation and the expression of the
second fundamental form, that g(DX H, NX) is independent of X and also that g(DX H, NY) = 0 for Y
orthogonal to X, TX. This is the same sketch than A. Ros and F. Urbano did in [2].

Now, we repeat the same steps in order to obtain ∇ξ(tH + aξ).

Lemma 5. Let M be *-slant submanifold of a Sasakian space form M̃(c); it holds:

∇ξ(tH + aξ) = −TtH. (60)

Proof. Using that, from Corollary 1, tH + aξ is a closed vector field,

g(∇ξ(tH + aξ), Y) = g(∇Y(tH + aξ), ξ),

so using (16),

g(∇ξ tH, X) = g(∇XtH, ξ) = −g(tH,∇Xξ) = g(tH, TX) = −g(TtH, X),

for any X tangent vector field, which finishes the proof.

Theorem 6. Let M be *-slant submanifold of a generalized Sasakian space form M̃( f1, f2, f3), endowed with
an α-Sasakian structure. Then, for every X tangent vector field it holds:

∇X(tH + aξ) = (−g(DX H, NX) + η(X)g(H, nNX)) (X− η(X)ξ)

+

(
1

sin2 θ

m + 1
m + 2

g(H, NX)2 − a
)

TX

+

(
−3

sin2 θ

m + 1
m + 2

g(H, NX) + η(X)

)
tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH + g(H, nNX)ξ.

Proof. It is a direct consequence of Lemmas 4 and 5.

So, in general, for a *-slant submanifold of a generalized Sasakian space form, the closed form is
not conformal. However, for the corresponding vector field, the covariant derivative with respect to X
is in the direction of X, TX, tnH and ξ.

6. About Conformal Forms for β-Kenmotsu Space Forms

At Section 4 we obtained that, for a β-Kenmotsu generalized Sasakian space form M̃( f1, 0, f3),

the vector field tH + sin2 θ
m

m + 1
ξ = tH + bξ is always closed. So, the associated form plays the role

of the Maslov form for Lagrangian submanifolds of Kaehler manifolds. In this section we study if it is
conformal for a *-slant submanifold.

The study is similar to the one made at Section 5, so we omit the proofs.
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Lemma 6. Let M be *-slant submanifold of a β-Kenmotsu generalized Sasakian space form M̃( f1, 0, f3).
Then, for every X tangent vector field belonging to the contact distribution it holds:

∇X(tH + bξ) =

(
−g(DX H, NX) + β sin2 θ

m
m + 1

)
X

+
m + 1
m + 2

(
1

sin2 θ
g(H, NX)2 − ‖H‖2

)
TX

− 3
sin2 θ

m + 1
m + 2

g(H, NX)tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH + βg(NX, H)ξ.

(61)

Again, the quid point of the proof is to deduce, from Codazzi’s equation and the expression of
the second fundamental form, that g(DX H, NX) is independent of X and that g(DX H, NY) = 0 for X
orthogonal to Y.

Now, we repeat the same steps in order to obtain ∇ξ(tH + bξ).

Lemma 7. Let M be *-slant submanifold of a β-Kenmotsu space form M̃( f1, 0, f3); it holds:

∇ξ tH = −βtH. (62)

Finally, we get:

Theorem 7. Let M be *-slant submanifold of a β Kenmotsu space form M̃( f1, 0, f3). Then, for every X tangent
vector field it holds:

∇X(tH + bξ) =

=

(
−g(DX H, NX) + βη(X)g(H, nNX) + β sin2 θ

m
m + 1

)
(X− η(X)ξ)

+
m + 1
m + 2

(
1

sin2 θ
g(H, NX)2 − ‖H‖2

)
TX− 3

sin2 θ

m + 1
m + 2

g(H, NX)tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH − βη(X)tH + βg(NX, H)ξ.

Proof. It is a direct consequence from Lemmas 6 and 7.

Again, for a *-slant submanifold of a β-Kenmotsu generalized Sasakian space form, the closed
form is not conformal. However, for the corresponding vector field, the covariant derivative with
respect to X is in the direction of X, TX, tH, tnH and ξ.
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