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1. Introduction

The Banach contraction principle is one of the most famous and important results in metric fixed
point theory. It is a useful tool in establishing existence results in nonlinear analysis. This principle
has been extended and generalized by several authors in many directions (see e.g., [1–15], and the
references therein).

In [16], the author introduced the class of F-contractions, and established a fixed point result for
this class of mappings, which generalizes the Banach contraction principle. The main result in [16] can
be stated as follows.

Theorem 1. Let (X, d) be a complete metric space, and let T : X → X be a mapping satisfying

τ + F(d(Tx, Ty)) ≤ F(d(x, y)), (1)

for all (x, y) ∈ X × X with d(Tx, Ty) > 0, where τ > 0 is a constant and F : (0,+∞) → R is a function
satisfying

(a) F is nondecreasing.
(b) For every sequence {tn} ⊂ (0,+∞), we have

lim
n→+∞

F(tn) = −∞⇐⇒ lim
n→+∞

tn = 0.

(c) There exists k ∈ (0, 1) such that lim
t→0+

tkF(t) = 0.

Then T has a unique fixed point. Moreover, for any x ∈ X, the Picard sequence {Tnx} converges to this
fixed point.

Observe that, if T : X → X is a q-contraction for some 0 < q < 1, i.e.,

d(Tx, Ty) ≤ qd(x, y), (x, y) ∈ X× X,
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then T satisfies (1) with F(t) = ln t, t > 0, and τ = − ln q. Therefore, the Banach contraction principle
follows from Theorem 1.

For different extensions and generalizations of Theorem 1, we refer the reader to [17–27], and the
references therein.

In [5], Ćirić introduced a class of mappings with a non-unique fixed point and he established the
following fixed point result.

Theorem 2. Let (X, d) be a complete metric space, and let T : X → X be a continuous mapping satisfying

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(y, Tx)} ≤ qd(x, y), (2)

for all (x, y) ∈ X × X, where 0 < q < 1 is a constant. Then, for any x ∈ X, the Picard sequence {Tnx}
converges to a fixed point of T.

An example was presented in [5] to show that the set of fixed points of mappings satisfying the
condition of Theorem 2 contains in general more than one element.

In this paper, we first introduce the class of generalized Ćirić-contractions by combining the ideas
in [5,16]. Next, a fixed point result is established for this class of mappings. Our result generalizes
Theorem 2 and extends Theorem 1. Next, we introduce a more general class of mappings using the
concept of α-admissibility introduced in [28] (see also [29]). Our fixed point result for this class of
mappings has several consequences. It is not only a generalization of Theorems 1 and 2, but generalizes
most fixed point theorems dealing with F-contractions, linear contractions, and many others. Several
examples are presented to illustrate this fact.

Throughout this paper, we denote by N the set of natural numbers, that is, N = {0, 1, 2, · · · }.
We denote by N∗ the set N\{0}. Let T : X → X be a certain self-mapping on X. For n ∈ N, we denote
by Tn the nth-iterate of T (we suppose that T0 is the identity mapping on X).

2. The Class of Generalized Ćirić-Contractions

Let Ψ be the set of functions ψ : [0,+∞)→ (−∞, 0) such that ψ is upper semi-continuous from
the right. We denote by Φ the set of functions ϕ : (0,+∞)→ R such that

(Φ1) ϕ is non-decreasing, i.e., 0 < t < s =⇒ ϕ(t) ≤ ϕ(s).
(Φ2) For every sequence {tn} ⊂ (0,+∞),

lim
n→+∞

ϕ(tn) = −∞

if and only if
lim

n→+∞
tn = 0.

(Φ3) There exists k ∈ (0, 1) such that lim
t→0+

tk ϕ(t) = 0.

Let (X, d) be a metric space. For a given mapping T : X → X, let

MT(x, y) = min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(y, Tx)}, (x, y) ∈ X× X.

Definition 1. A mapping T : X → X is said to be a generalized Ćirić-contraction, if there exists (ϕ, ψ) ∈
Φ×Ψ such that

ϕ(MT(x, y)) ≤ ϕ(d(x, y)) + ψ(d(x, y)), (3)

for all (x, y) ∈ X× X with MT(x, y) > 0.

We have the following fixed point result.
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Theorem 3. Let (X, d) be a complete metric space, and let T : X → X be a continuous mapping. If T is
a generalized Ćirić-contraction for some (ϕ, ψ) ∈ Φ× Ψ, then for any x ∈ X, the Picard sequence {Tnx}
converges to a fixed point of T.

Proof. Let x ∈ X be fixed, and let {xn} ⊂ X be the sequence defined by

xn = Tnx, n ∈ N.

If xp+1 = xp for some p ∈ N, then xp will be a fixed point of T. Therefore, we may assume that

d(xn, xn+1) > 0, n ∈ N. (4)

On the other hand, for every n ∈ N, we have

MT(xn, xn+1) = MT(Tnx, Tn+1x)

= min{d(Tn+1x, Tn+2x), d(Tnx, Tn+1x), d(Tn+1x, Tn+2x)}
−min{d(Tnx, Tn+2x), d(Tn+1x, Tn+1x)}

= min{d(xn+1, xn+2), d(xn, xn+1)}.

Therefore, from (4), we have

MT(xn, xn+1) > 0, n ∈ N.

From (3), we obtain

ϕ(MT(xn, xn+1)) ≤ ϕ(d(xn, xn+1)) + ψ(d(xn, xn+1)), n ∈ N.

If for some n ∈ N, we have MT(xn, xn+1) = d(xn, xn+1), then we obtain

ϕ(d(xn, xn+1)) ≤ ϕ(d(xn, xn+1)) + ψ(d(xn, xn+1)),

that is,
0 ≤ ψ(d(xn, xn+1)),

which is a contradiction with the fact that ψ(t) < 0, for all t > 0. As a consequence, we have

MT(xn, xn+1) = d(xn+1, xn+2), n ∈ N.

Hence, we find

ϕ(d(xn+1, xn+2)) ≤ ϕ(d(xn, xn+1)) + ψ(d(xn, xn+1)), n ∈ N. (5)

Taking n = 0 in (5), we obtain

ϕ(d(x1, x2)) ≤ ϕ(d(x0, x1)) + ψ(d(x0, x1)).

Taking n = 1 in (5) and using the above inequality, we obtain

ϕ(d(x2, x3)) ≤ ϕ(d(x1, x2)) + ψ(d(x1, x2))

≤ ϕ(d(x0, x1)) + ψ(d(x0, x1)) + ψ(d(x1, x2)).
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Continuing this process, by induction we have

ϕ(d(xn, xn+1)) ≤ ϕ(d(x0, x1)) +
n−1

∑
i=0

ψ(d(xi, xi+1)), n ∈ N∗. (6)

Next, let us denote by {un} the real sequence defined by

un = d(xn, xn+1), n ∈ N.

Observe that from (5), and using (Φ1) and the fact that ψ(t) < 0 for all t > 0, we deduce that {un}
is a decreasing sequence. Therefore, there exists some r ≥ 0 such that

un ↓ r as n→ +∞.

Since ψ is upper semi-continuous from the right, there exists some N ∈ N such that

ψ(up) < ψ(r)− ψ(r)
2

=
ψ(r)

2
, p ≥ N. (7)

Further, using (6) and the fact that ψ(t) < 0 for all t > 0, we obtain

ϕ(un) ≤ ϕ(u0) +
n−1

∑
i=N

ψ(ui), n ≥ N + 1.

Therefore, from (7) we deduce that

ϕ(un) ≤ ϕ(u0) +
(n− N)

2
ψ(r), n ≥ N + 1. (8)

Let n→ +∞ in (8) and we obtain

lim
n→+∞

ϕ(un) = −∞,

which implies from (Φ2) that
lim

n→+∞
un = 0 = r. (9)

Next, we prove that {xn} is a Cauchy sequence. From (Φ3) and (9), there exists some k ∈ (0, 1)
such that

lim
n→+∞

uk
n ϕ(un) = 0. (10)

Using (8), we obtain

uk
n ϕ(un)− uk

n ϕ(u0) ≤
(n− N)

2
ψ(r)uk

n ≤ 0, n ≥ N + 1.

Let n→ +∞, and using (9) and (10), we deduce that

lim
n→+∞

nuk
n = 0.

Then there exists some q ∈ N such that

un <
1

n1/k , n ≥ q. (11)
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Using (11) and the triangle inequality, for n ≥ q and m ∈ N∗, we have

d(xn, xn+m) ≤
n+m−1

∑
i=n

ui ≤
+∞

∑
i=n

1
i1/k .

The convergence of the Riemann series ∑n
1

n1/k (since 0 < k < 1) yields {xn} is a Cauchy sequence.
Since (X, d) is complete, there exists some ω ∈ X such that

lim
n→+∞

d(Tnx, ω) = lim
n→+∞

d(xn, ω) = 0.

The continuity of T yields
lim

n→+∞
d(Tn+1x, Tω) = 0.

Finally, the uniqueness of the limit implies that ω = Tω, i.e., ω is a fixed point of T.

Let us give some examples to illustrate the result given by Theorem 3.

Example 1. Let (X, d) be a complete metric space, and let T : X → X be a continuous mapping. Let
F : (0,+∞)→ R be a function that belongs to Φ. Suppose that there exists a constant τ > 0 such that

τ + F(MT(x, y)) ≤ F(d(x, y)), (12)

for all (x, y) ∈ X × X with MT(x, y) > 0. Then for any x ∈ X, the Picard sequence {Tnx} converges to a
fixed point of T. In order to prove this result, we apply Theorem 3 with (ϕ, ψ) = (F,−τ).

Example 2. Suppose that all the assumptions of Theorem 2 are satisfied. Then T satisfies (3) with ϕ(t) = ln t,
t > 0, and ψ ≡ ln q. Therefore, the result of Theorem 2 follows from Theorem 3.

Example 3. Let

X =

{
xn =

n(n + 1)
2

: n ∈ N∗
}

.

We endow X with the metric

d(x, y) = |x− y|, (x, y) ∈ X× X.

Then (X, d) is a complete metric space. Consider the mapping T : X → X defined by

Tx1 = x1 and Txn+1 = xn, n ∈ N∗.

One observes easily that

{(x, y) ∈ X× X : MT(x, y) > 0} = {(xn, xn+1) : n ∈ N∗}.

Furthermore, for all n ∈ N∗, one has

MT(xn, xn+1)

d(xn, xn+1)
=

n
n + 1

→ 1 as n→ ∞,

which shows that (2) is not satisfied. Hence Theorem 2 cannot be applied in this case. On the other hand, taking
τ = 1 and

F(t) = t + ln t, t > 0,
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one obtains

τ + F(MT(xn, xn+1)) = 1 + F(n)

= 1 + n + ln n

≤ 1 + n + ln(n + 1)

= F(d(xn, xn+1)),

for all n ∈ N∗. Hence (12) is satisfied for all (x, y) ∈ X × X with MT(x, y) > 0. Therefore, by Example 1,
one deduces that T has a fixed point x∗ ∈ X. In this case, one observes that x∗ = x1 = 1.

3. A Larger Class of Mappings

In this part, we discuss the existence of fixed points for a larger class of mappings than the one
studied in the previous section. First, let us recall some concepts introduced recently by Samet in [29]
(see also [28]).

Let (X, d) be a metric space, and let α : X× X → R be a given function.

Definition 2. Let {xn} ⊂ X be a given sequence. We say that {xn} is α-regular if

α(xn, xn+1) ≥ 1, n ∈ N.

Definition 3. We say that T : X → X is α-admissible if

(x, y) ∈ X× X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Definition 4. We say that T : X → X is α-continuous if for every α-regular sequence {xn} ⊂ X and u ∈ X,

lim
n→+∞

d(xn, u) = 0

implies that there exists a sub-sequence {xnk} of {xn} such that

lim
k→+∞

d(Txnk , Tu) = 0.

Definition 5. Let {xn} ⊂ X be a given sequence. We say that {xn} is α-Cauchy if

(i) {xn} is α-regular.
(ii) {xn} is a Cauchy sequence.

Definition 6. We say that (X, d) is α-complete if every α-Cauchy sequence is convergent.

Next, we introduce the following class of mappings.
Let Tα be the class of mappings T : X → X satisfying the following conditions:

(T1) T is α-continuous.
(T2) There exists (ϕ, ψ) ∈ Φ×Ψ such that for all (x, y) ∈ X× X with d(Tx, Ty) > 0,

α(x, y) exp (ϕ(d(Tx, Ty))) ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .

We now give some examples of mappings T : X → X that belong to the set Tα, for some
α : X× X → R. Let (X, d) be a metric space.

Proposition 1 (The class of generalized Ćirić-contractions). Let T : X → X be a continuous mapping. If T
is a generalized Ćirić-contraction, then there exists a function α : X× X → R such that T ∈ Tα.
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Proof. Let us consider the function α : X× X → R defined by

α(x, y) =


1 if y = Tx,

0 if y 6= Tx.
(13)

Let (x, y) ∈ X× X be such that d(Tx, Ty) > 0. We discuss two possible cases.
Case 1: y 6= Tx. In this case,

α(x, y) exp (ϕ(d(Tx, Ty))) = 0 ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .

Case 2: y = Tx. In this case, we have

MT(x, y) = MT(x, Tx)

= min{d(Tx, T2x), d(x, Tx)}.

Since d(Tx, T2x) = d(Tx, Ty) > 0, we have d(x, Tx) > 0. Therefore, MT(x, y) > 0. Using the fact
that T is a generalized Ćirić-contraction, we deduce that

ϕ(MT(x, Tx)) ≤ ϕ(d(x, Tx)) + ψ(d(x, Tx)),

that is,
ϕ(min{d(Tx, T2x), d(x, Tx)}) ≤ ϕ(d(x, Tx)) + ψ(d(x, Tx)),

which yields (since ψ(t) < 0, for all t > 0)

ϕ(d(Tx, T2x)) ≤ ϕ(d(x, Tx)) + ψ(d(x, Tx)).

Hence, we obtain

α(x, Tx) exp
(

ϕ(d(Tx, T2x))
)
≤ exp (ϕ(d(x, Tx)) + ψ(d(x, Tx))) .

Therefore, T satisfies (T2) with α given by (13). Obviously, since T is continuous, then T is
α-continuous. Then T satisfies (T1). As a consequence, we have T ∈ Tα.

Proposition 2 (The class of F-contractions). Let T : X → X be an F-contraction, for some F ∈ Φ, that is,
there exists a constant τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)),

for all (x, y) ∈ X× X with d(Tx, Ty) > 0. Then there exists a function α : X× X → R such that T ∈ Tα.

Proof. Let
α(x, y) = 1, (x, y) ∈ X× X. (14)

Let ϕ = F and ψ ≡ −τ. Then (ϕ, ψ) ∈ Φ× Ψ. Let (x, y) ∈ X × X be such that d(Tx, Ty) > 0.
Then

ϕ(d(Tx, Ty)) ≤ ϕ(d(x, y)) + ψ(d(x, y)),

which yields

α(x, y) exp (ϕ(d(Tx, Ty))) ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .
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Then T satisfies T2 with α given by (14). On the other hand, it can be easily seen that any
F-contraction is continuous, so it is α-continuous. Then T satisfies also T1. As a consequence, we have
T ∈ Tα.

Proposition 3. Let T : X → X be an orbitally continuous mapping, that is, for every x ∈ X, if

lim
n→+∞

d(Tnx, u) = 0, u ∈ X,

then
lim

n→+∞
d(TTnx, Tu) = 0.

Suppose that there exist F ∈ Φ and a constant τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(NT(x, y)), (15)

for all (x, y) ∈ X× X with d(Tx, Ty) > 0, where

NT(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}
.

Then there exists a function α : X× X → R such that T ∈ Tα.

Proof. Let α : X×X → R be the function defined by (13). Let ϕ = F and ψ ≡ −τ. Then (ϕ, ψ) ∈ Φ×Ψ.
Let (x, y) ∈ X× X be such that d(Tx, Ty) > 0. We discuss two possible cases.
Case 1. y 6= Tx. In this case,

α(x, y) exp (ϕ(d(Tx, Ty))) = 0 ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .

Case 2. y = Tx. In this case,

NT(x, y) = max
{

d(x, Tx), d(Tx, T2x),
d(x, T2x)

2

}
.

On the other hand, by the triangle inequality, we have

d(x, T2x)
2

≤ d(x, Tx) + d(Tx, T2x)
2

≤ max{d(x, Tx), d(Tx, T2x)}.

Therefore,
NT(x, y) = max

{
d(x, Tx), d(Tx, T2x)

}
.

Suppose that NT(x, y) = d(Tx, T2x). Then by (15), we have

τ + ϕ(d(Tx, T2x)) ≤ ϕ(d(Tx, T2x)),

which yields τ ≤ 0, which is a contradiction. Then we have NT(x, y) = d(x, Tx). Again, by (15),
we deduce that

ϕ(d(Tx, T2x)) ≤ ϕ(d(x, Tx)) + ψ(d(x, Tx)),

which yields
α(x, Tx) exp

(
ϕ(d(Tx, T2x))

)
≤ exp (ϕ(d(x, Tx)) + ψ(d(x, Tx))) .

Then T satisfies T2 with α given by (13). Next, we prove that T is α-continuous. Let {xn} ⊂ X be
an α-regular sequence. By the definition of α, this means that
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xn+1 = Txn, n ∈ N,

that is,
xn = Tnx0, n ∈ N.

Suppose that there exists u ∈ X such that

lim
n→+∞

d(xn, u) = lim
n→+∞

d(Tnx0, u) = 0.

Since T is orbitally continuous, we obtain

lim
n→+∞

d(Txn, Tu) = 0.

Then T is α-continuous, and it satisfies (T1). As a consequence, we have T ∈ Tα.

Remark 1. Let T : X → X be a given mapping. Suppose that there exists a constant 0 < q < 1 such that

d(Tx, Ty) ≤ qNT(x, y), (x, y) ∈ X× X.

It can be easily seen that T is orbitally continuous mapping, and it satisfies (15) with τ = − ln q and
F(t) = ln t, t > 0. Therefore, T ∈ Tα, where α is given by (13) and (φ, ψ) = (F,− ln q).

Proposition 4. Let T : X → X be an orbitally continuous mapping. Suppose that there exist F ∈ Φ and a
constant τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(µT(x, y)), (16)

for all (x, y) ∈ X× X with d(Tx, Ty) > 0, where

µT(x, y) = max
{

d(x, y), d(y, Ty)
1 + d(x, Tx)
1 + d(x, y)

}
.

Then there exists a function α : X× X → R such that T ∈ Tα.

Proof. Let α : X×X → R be the function defined by (13). Let ϕ = F and ψ ≡ −τ. Then (ϕ, ψ) ∈ Φ×Ψ.
Let (x, y) ∈ X× X be such that d(Tx, Ty) > 0. We discuss two possible cases.
Case 1. y 6= Tx. In this case, we have

α(x, y) exp (ϕ(d(Tx, Ty))) = 0 ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .

Case 2. y = Tx. In this case,

µT(x, y) = max
{

d(x, Tx), d(Tx, T2x)
}

.

If µT(x, y) = d(Tx, T2x), then by (16), we have

τ + F(d(Tx, T2x)) ≤ F(d(Tx, T2x)),

that is
τ ≤ 0,

which is a contradiction. Therefore, µT(x, y) = d(x, Tx). Again, by (16), we deduce that

ϕ(d(Tx, T2x)) ≤ ϕ(d(x, Tx)) + ψ(d(x, Tx)),
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which yields
α(x, Tx) exp

(
ϕ(d(Tx, T2x))

)
≤ exp (ϕ(d(x, Tx)) + ψ(d(x, Tx))) .

Then T satisfies T2 with α given by (13). Since T is orbitally continuous, from the proof of
Proposition 3, T is α-continuous, and it satisfies T1. As a consequence, we have T ∈ Tα.

Remark 2. Let T : X → X be a given mapping. Suppose that there exists a constant 0 < q < 1 such that

d(Tx, Ty) ≤ qµT(x, y), (x, y) ∈ X× X.

It can be easily seen that T is orbitally continuous mapping, and it satisfies (16) with τ = − ln q and
F(t) = ln t, t > 0. Therefore, T ∈ Tα, where α is given by (13) and (φ, ψ) = (F,− ln q).

Proposition 5 (The class of almost F-contractions). Let T : X → X be an almost F-contraction (see [22]),
that is, there exist F ∈ Φ, τ > 0 and L ≥ 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(y, Tx)), (17)

for all (x, y) ∈ X× X with d(Tx, Ty) > 0. Then there exists a function α : X× X → R such that T ∈ Tα.

Proof. Let α : X×X → R be the function defined by (13). Let ϕ = F and ψ ≡ −τ. Then (ϕ, ψ) ∈ Φ×Ψ.
Let (x, y) ∈ X× X be such that d(Tx, Ty) > 0. We discuss two possible cases.
Case 1. y 6= Tx. In this case, we have

α(x, y) exp (ϕ(d(Tx, Ty))) = 0 ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .

Case 2. y = Tx. In this case, from (17), we have

ϕ(d(Tx, T2x)) ≤ ϕ(d(x, y)) + ψ(d(x, y)),

which yields
α(x, Tx) exp

(
ϕ(d(Tx, T2x))

)
≤ exp (ϕ(d(x, Tx)) + ψ(d(x, Tx))) .

Then T satisfies T2 with α given by (13). Next, we shall prove that T is α-continuous. Let {xn} ⊂ X
be an α-regular sequence, i.e.,

xn+1 = Txn, n ∈ N.

Suppose that there exists u ∈ X such that

lim
n→+∞

d(xn, u) = 0.

Let us define the set
I = {n ∈ N : d(xn, Tu) = 0}.

If |I| < +∞, then there exists some N ∈ N such that

d(xn+1, Tu) > 0, n ≥ N.

From (17) and (Φ1), we have

d(xn+1, Tu) ≤ d(xn, u) + Ld(u, xn+1), n ≥ N.

Let n→ +∞ and we obtain
lim

n→+∞
d(xn+1, Tu) = 0.
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If |I| = +∞, then there exists a sub-sequence {xnk} of {xn} such that

d(xnk , Tu) = 0, k ∈ N.

Therefore, we have
lim

k→+∞
d(Txnk , Tu) = lim

k→+∞
d(xnk+1, Tu) = 0.

Then T is α-continuous, and it satisfies T1. As a consequence, we have T ∈ Tα.

Remark 3. Let T : X → X be a mapping that belongs to the class of Berinde mappings (see [2]), that is, there
exist 0 < q < 1 and ` ≥ 0 such that

d(Tx, Ty) ≤ qd(x, y) + `d(y, Tx), (x, y) ∈ X× X.

It can be easily seen that T is an almost F-contraction with F(t) = ln t, t > 0, and (τ, L) = (− ln q, `/q).
Therefore, T ∈ Tα, where α is given by (13) and (φ, ψ) = (F,− ln q).

Now, we state and prove the main result of this section.

Theorem 4. Let (X, d) be a metric space, and let T : X → X be a given mapping. Suppose that

(i) There exists α : X× X → R such that (X, d) is α-complete.
(ii) There exists (ϕ, ψ) ∈ Φ×Ψ such that T ∈ Tα.

(iii) T is α-admissible.
(iv) There exists some x0 ∈ X such that α(x0, Tx0) ≥ 1.

Then there exists a sub-sequence {Tnk x0} of {Tnx0} that converges to a fixed point of T.

Proof. Let {xn} be the Picard sequence defined by

xn = Tnx0, n ∈ N.

Without loss of generality, we may suppose that

d(xn, xn+1) > 0, n ∈ N.

From (T2), we have

α(xn−1, xn) exp (ϕ(d(xn, xn+1))) ≤ exp (ϕ(d(xn−1, xn)) + ψ(d(xn−1, xn))) , n ∈ N∗.

On the other hand, from (iii) and (iv), we have

α(xn−1, xn) ≥ 1, n ∈ N∗. (18)

Therefore, we obtain

exp (ϕ(d(xn, xn+1))) ≤ exp (ϕ(d(xn−1, xn)) + ψ(d(xn−1, xn))) , n ∈ N∗,

which yields
ϕ(d(xn, xn+1)) ≤ ϕ(d(xn−1, xn)) + ψ(d(xn−1, xn)), n ∈ N∗.

Next, following the same argument as in the proof of Theorem 3, we can prove that {xn} is
a Cauchy sequence. Moreover, from (18), {xn} is α-Cauchy. Since (X, d) is α-complete, there exists
some ω ∈ X such that

lim
n→+∞

d(xn, ω) = 0.
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From (T1), there exists a sub-sequence {xnk} of {xn} such that

lim
k→+∞

d(xnk+1, Tω) = 0.

The uniqueness of the limit yields Tω = ω, i.e., ω is a fixed point of T.

Remark 4. From the proof of Theorem 4, it can be easily seen that if we replace (T1) by the continuity of T,
then the Picard sequence {Tnx0} converges to a fixed point of T.

Next, we will show that most fixed point results from the literature involving F-contraction
mappings follow easily from Theorem 4.

The following lemma will be used later.

Lemma 1. Let T : X → X be a given mapping. Let α : X× X → R be the function defined by (13). Then T is
α-admissible.

Proof. Let (x, y) ∈ X × X be such that α(x, y) ≥ 1. By the definition of α, this means that y = Tx.
Then Ty = T2x, which yields α(Tx, Ty) = 1. This proves that T is α-admissible.

Corollary 1. Theorem 4 =⇒ Theorem 3.

Proof. Suppose that all the assumptions of Theorem 3 are satisfied. By Proposition 1, we know that
T ∈ Tα, where α : X × X → R is given by (13). Since (X, d) is complete, then it is α-complete. From
Lemma 1, T is α-admissible. From the definition of α, we have α(x, Tx) = 1, for all x ∈ X. Therefore,
all the assumptions of Theorem 4 are satisfied. In particular (iv) is satisfied for every x ∈ X. Taking in
consideration Remark 4, we obtain that for any x ∈ X, the Picard sequence {Tnx} converges to a fixed
point of T.

Corollary 2. Theorem 4 =⇒ Theorem 1.

Proof. It follows from Proposition 2, Lemma 1 and Remark 4.

Corollary 3. Let (X, d) be a complete metric space, and let T : X → X be an orbitally continuous mapping.
Suppose that there exist F ∈ Φ and a constant τ > 0 such that (15) is satisfied. Then, for any x ∈ X, there
exists a sub-sequence {Tnk x} of {Tnx} such that {Tnx} converges to a fixed point of T.

Proof. It follows from Proposition 3, Lemma 1, and Theorem 4.

Remark 5. By Remark 4, if we replace the assumption T is orbitally continuous with T is continuous, then for
any x ∈ X, the Picard sequence {Tnx} converges to a fixed point of T. Such a result was established by
Wardowski and Van Dung in [27].

Corollary 4. Let (X, d) be a complete metric space, and let T : X → X be an orbitally continuous mapping.
Suppose that there exist F ∈ Φ and a constant τ > 0 such that (16) is satisfied. Then, for any x ∈ X, there exists
a sub-sequence {Tnk x} of {Tnx} such that {Tnx} converges to a fixed point of T.

Proof. It follows from Proposition 4, Lemma 1, and Theorem 4.

The next result was established by Minak et al. [22].
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Corollary 5. Let (X, d) be a complete metric space, and let T : X → X be an almost F-contraction, that is,
there exit F ∈ Φ, τ > 0 and L ≥ 0 such that (17) is satisfied. Then, for any x ∈ X, there exists a sub-sequence
{Tnk x} of {Tnx} such that {Tnx} converges to a fixed point of T.

Proof. It follows from Proposition 5, Lemma 1, and Theorem 4.

Next, we will show that we can deduce easily from Theorem 4 several fixed point results in
partially ordered metric spaces.

Corollary 6. Let (X, d) be a complete metric space, and let T : X → X be continuous mapping. Suppose that
X is partially ordered by a certain binary relation �. Suppose that

(i) T is non-decreasing with respect to �, i.e.,
Tx � Ty,

for all (x, y) ∈ X× X with x � y.
(ii) There exists x0 ∈ X such that x0 � Tx0.

(iii) There exist F ∈ Φ and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)),

for all (x, y) ∈ X× X with x � y and d(Tx, Ty) > 0.

Then {Tnx0} converges to a fixed point of T.

Proof. Let α : X× X → R be the function defined by

α(x, y) =


1 if x � y,

0 if x 6� y.
(19)

From (i) and the definition of α, it can be easily seen that T is α-admissible. Since T is continuous,
it is α-continuous. Since (X, d) is complete, it is α-complete. On the other hand, from (iii), we have

exp (F(d(Tx, Ty))) ≤ exp (F(d(x, y))− τ) ,

for all (x, y) ∈ X × X with x � y and d(Tx, Ty) > 0. Let (ϕ, ψ) = (F,−τ). Then (ϕ, ψ) ∈ Φ × Ψ.
Further, by the definition of α, for all (x, y) ∈ X× X with (d(Tx, Ty) > 0, we have

α(x, y) exp (ϕ(d(Tx, Ty))) ≤ exp (ϕ(d(x, y)) + ψ(d(x, y))) .

Therefore, T ∈ Tα, where α is given by (19). Note that by (ii), we have α(x0, Tx0) = 1. Applying
Theorem 4 and taking in consideration Remark 4, we obtain the desired result.

Corollary 7 (Ran–Reurings fixed point theorem [13]). Let (X, d) be a complete metric space, and let
T : X → X be continuous mapping. Suppose that X is partially ordered by a certain binary relation �.
Suppose that

(i) T is non-decreasing with respect to �.
(ii) There exists x0 ∈ X such that x0 � Tx0.

(iii) There exists 0 < q < 1 such that for all (x, y) ∈ X× X with x � y,

d(Tx, Ty) ≤ qd(x, y).

Then {Tnx0} converges to a fixed point of T.
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Proof. We have observe that T satisfies the condition (iii) of Corollary 6 with F(t) = ln t, t > 0, and
τ = − ln q. Therefore, the result follows immediately from Corollary 6.

Remark 6. Note that several other fixed point results can be deduced from Theorem 4. For example, we mention
the Banach fixed point theorem, the Berinde fixed point theorem [2], the Dass–Gupta fixed point theorem [7],
the Chatterjea fixed point theorem [4], the Kannan fixed point theorem [11], the Reich fixed point theorem [14],
the Hardy–Rogers fixed point theorem [8], etc.
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