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Abstract: In any logical algebraic structures, by using of different kinds of filters, one can construct
various kinds of other logical algebraic structures. With this inspirations, in this paper by considering
a hoop algebra or a hoop, that is introduced by Bosbach, the notion of co-filter on hoops is introduced
and related properties are investigated. Then by using of co-filter, a congruence relation on hoops
is defined, and the associated quotient structure is studied. Thus Brouwerian semilattices, Heyting
algebras, Wajsberg hoops, Hilbert algebras and BL-algebras are obtained.
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1. Introduction

Non-classical logics (or called alternative logics) are formal systems that differ in a significant
way from standard logical systems such as propositional and predicate logic. Many-valued logics are
non-classical logics which are similar to classical logic. Bosbach [1,2] proposed the concept of hoop
which is a nice algebraic structure to research the many-valued logical system whose propositional
value is given in a lattice. For various information on hoops, refer to [3–8].

In this paper, we introduce the notion of co-filter in hoops and we get some properties of it. Then
we construct a congruence relation by using co-filters on hoops. Finally, we investigate under which
conditions the quotient structure of this congruence relation will be Brouwerian semilattice, Heyting
algebra, Wajsberg hoop, Hilbert algebra and BL-algebra.

2. Preliminaries

In this section, we recollect some definitions and results which will be used in the following and
we shall not cite them every time they are used.

Definition 1 ([9]). A hoop is an algebraic structure (H,�,→, 1) of type (2, 2, 0) such that, for all α, β, γ ∈ H
it satisfies in the following conditions:
(HP1) (H,�, 1) is a commutative monoid.
(HP2) α→ α = 1.
(HP3) (α� β)→ γ = α→ (β→ γ).
(HP4) α� (α→ β) = β� (β→ α).
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On hoop H, a binary relation ≤ is defined on H such that α ≤ β iff α→ β = 1 and (H,≤) is a poset. If
the least element 0 ∈ H exists such that, for all α ∈ H, 0 ≤ α, then H is called a bounded hoop. We let α0 = 1
and αn = αn−1 � α, for any n ∈ N. If H is bounded, then, for all α ∈ H, the operation negation ” ′ ” is defined
on H by, α′ = α→ 0. If (α′)′ = α, for all α ∈ H, then H is said to have (DNP) property.

Proposition 1 ([1,2]). Let (H,�,→, 1) be a hoop. Then, for all α, β, γ ∈ H, it satisfies in the following
conditions:
(i) (H,≤) is a meet-semilattice with α ∧ β = α� (α→ β).
(ii) α� β ≤ γ iff α ≤ β→ γ.
(iii) α� β ≤ α, β and αn ≤ α, for any n ∈ N.
(iv) α ≤ β→ α.
(v) 1→ α = α and α→ 1 = 1.
(vi) α� (α→ β) ≤ β.
(vii) α→ β ≤ (β→ γ)→ (α→ γ).
(viii) α ≤ β implies α� γ ≤ β� γ, γ→ α ≤ γ→ β and β→ γ ≤ α→ γ.

Proposition 2 ([1,2]). Let H be a bounded hoop. Then, for any α, β ∈ H, the following conditions hold:
(i) α ≤ α′′ and α� α′ = 0
(ii) α′ ≤ α→ β.
(iii) α′′′ = α′.
(iv) If H has (DNP), then α→ β = β′ → α′.
(v) If H has (DNP), then (α→ β)→ β = (β→ α)→ α.

Proposition 3 ([10]). Let H be a hoop and for any α, β ∈ H, define the operation ∨ on H as follows,

α ∨ β = ((α→ β)→ β) ∧ ((β→ α)→ α).

Then, for all α, β, γ ∈ H, the following conditions are equivalent:
(i) ∨ is associative,
(ii) α ≤ β implies α ∨ γ ≤ β ∨ γ,
(iii) α ∨ (β ∧ γ) ≤ (α ∨ β) ∧ (α ∨ γ),
(iv) ∨ is the join operation on H.

A hoop H is said to a ∨-hoop, if it satisfies one of the above equivalent conditions.

Proposition 4 ([10]). Let H be a ∨-hoop and α, β, γ ∈ H. Then ∨-hoop (H,∨,∧) is a distributive lattice and
(α ∨ β)→ γ = (α→ γ) ∧ (β→ γ).

Definition 2 ([10]). A non-empty subset F of a hoop H is called a filter of H if, for any α, β ∈ H, the following
condition hold:
(F1) α, β ∈ F implies α� β ∈ F.
(F2) α ≤ β and α ∈ F imply β ∈ F.

The set of all filters of H is denoted by F (H). Clearly, for any filter F of H, 1 ∈ F. F is called a proper
filter if F 6= H. So, if H is a bounded hoop, then a filter is proper iff it does not contain 0. It is easy to see that
F ∈ F (H) iff, for any α, β ∈ H, 1 ∈ F and if α, α→ β ∈ F, then β ∈ F.

3. Co-Filters in Hoops

From here on, if there is no mention, H denotes a bounded hoop.
We introduce the notion of co-filters on hoops, and it is proved that co-filters are not filters and

some properties of them are studied. Moreover, a congruence relation is defined by them and is
investigated the quotient structure of this congruence relation.
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Definition 3. A subset I of H is said to be a co-filter of H if, for any α, β ∈ H,
(CF1) 0 ∈ I.
(CF2) (α→ β)′ ∈ I and β ∈ I imply α ∈ I.

Example 1. Let H = {0, a, b, c, d, 1}. Define the operations � and→ on H as below,

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a b c 1 1
1 0 a b c d 1

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

Then (H,�,→, 0, 1) is a hoop and I = {0, b, d} is a co-filter of H, which is not a filter of H because 1 /∈ I.

Note. For S ⊆ H, define S′ = {α ∈ H | α′ ∈ S}.

Proposition 5. If H has (DNP) and ∅ 6= I ⊆ H, then I is a filter of H iff I′ is a co-filter of H.

Proof. (⇒) Suppose I ∈ F (H). Then 1 ∈ I, and so 0 = 1′ ∈ I′. Let α, β ∈ H such that (α → β)′ ∈ I′

and β ∈ I′. Since H has (DNP), by Proposition 2(iv), β′ → α′ = α→ β ∈ I, β′ ∈ I and since I ∈ F (H),
by Definition 2, α′ ∈ I, and so α′′ = α ∈ I′. Hence, I′ is a co-filter of H.
(⇐) Let I′ be a co-filter of H. Then 0 ∈ I′, and so 1 ∈ I. Now, suppose α, β ∈ A such that α, α→ β ∈ I.
Thus (α→ β)′ ∈ I′ and α′ ∈ I′. Since H has (DNP), by Proposition 2(iv), (β′ → α′)′ ∈ I′, α′ ∈ I′ and
since I′ is a co-filter of H, by definition, β′ ∈ I′. Hemce, by (DNP), β ∈ I. Therefore, I ∈ F (H).

If H does not have (DNP), then Proposition 5 is not true, in general. We show this in the following
example.

Example 2. Let H = {0, a, b, 1} be a chain such that 0 ≤ a ≤ b ≤ 1 and two binary operations � and→
which are given below,

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

By routine calculations, (H,�,→, 0, 1) is a hoop that does not have (DNP). It is clear that H is a co-filter
of H but H′ = {0, a, 1} is not a filter of H.

Note. If F is a proper filter of H, then by Definition 2, 0 /∈ F. Thus, F is not a co-filter of H. On the
other hand, for any proper co-filter I of H, if 1 /∈ I, then I /∈ F (H).

Proposition 6. Let I be a co-filter of H. Then the following statements hold:
(i) If α ≤ β and β ∈ I, then α ∈ I, for any α, β ∈ H.
(ii) If α ∈ I, then α� β ∈ I, for any β ∈ H.
(iii) If H is a ∨-hoop with (DNP), then α ∨ β ∈ I, for any α, β ∈ I.
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Proof. (i) Let α, β ∈ H such that α ≤ β and β ∈ I. Then α→ β = 1, and so (α→ β)′ = 0 ∈ I. Since I
is a co-filter of H, (α→ β)′ ∈ I and β ∈ I, we have α ∈ I.
(ii) Let α, β ∈ H and α ∈ I. By Proposition 1(iii), α� β ≤ α. Since α ∈ I, by (i), α� β ∈ I.
(iii) Suppose α, β ∈ I. By Proposition 4,

(α ∨ β)→ β = (α→ β) ∧ (β→ β) = α→ β,

then ((α ∨ β)→ β)′ = (α→ β)′. By Proposition 2(ii), α′ ≤ α→ β, and so, by Proposition 1(viii) and
(DNP), (α → β)′ ≤ α′′ = α. Hence, ((α ∨ β) → β)′ ≤ α. From I is a co-filter of H and α ∈ I, by (i)
((α ∨ β)→ β)′ ∈ I. Moreover, by assumption, β ∈ I and I is a co-filter of H. Therefore, α ∨ β ∈ I.

Corollary 1. If I is a co-filter of H and 1 ∈ I, then I = H.

Proof. By Proposition 6(i), the proof is straightforward.

We provide conditions for a nonempty subset to be a co-filter.

Proposition 7. Let α, β ∈ H and ∅ 6= I ⊆ H such that I has the following properties,
(i) if α, β ∈ I, then α′ → β ∈ I,
(ii) if α ≤ β and β ∈ I, then α ∈ I.
Then I is a co-filter of H.

Proof. Let α ∈ I. Since, for all α ∈ H, 0 ≤ α, by (ii), 0 ∈ I. Suppose α, β ∈ H such that (α → β)′ ∈ I
and β ∈ I. Then by (i),

β′ → (α→ β)′ = β′ → ((α→ β)→ 0) ∈ I.

By (HP3), (α → β) → β′′ ∈ I. Moreover, by Propositions 2(i) and 1(viii), β ≤ β′′ and so (α → β) →
β ≤ (α → β) → β′′. Since (α → β) → β′′ ∈ I, by (ii), (α → β) → β ∈ I. Also, by Proposition 1(vi),
α ≤ (α→ β)→ β, and by (ii), α ∈ I. Hence I is a co-filter of H.

By below example, we show that the converse of Proposition 7, is not true.

Example 3. Let H = {0, a, b, c, 1} be a set with the following Cayley tabels:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 0 0 1
b c 0 1 0 1
c c 0 0 1 1
1 0 a b c 1

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1

Then (H,�,→, 0, 1) is a hoop and I = {0, a} is a co-filter of H but a′ → 0 = b→ 0 = c /∈ I.

Proposition 8. Let H has (DNP). Then I is a co-filter of H iff for any α, β ∈ H, I has the following properties,
(i) if α, β ∈ I, then α′ → β ∈ I.
(ii) if α ≤ β and β ∈ I, then α ∈ I.

Proof. (⇒) Let I be a co-filter of H. Then by Proposition 6(i), item (ii) is clear. Suppose α, β ∈ I. By
Proposition 1(vi) and (viii), ((α′ → β) → β)′ ≤ α′′. Since H has (DNP), ((α′ → β) → β)′ ≤ α. By
assumption, α ∈ I, and so by Proposition 6(i), ((α′ → β)→ β)′ ∈ I. Moreover, since β ∈ I and I is a
co-filter of H, α′ → β ∈ I.
(⇐) The proof is similar to the proof of Proposition 7.
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Theorem 1. Let I be a co-filter of H. Then, for all α, β, γ ∈ H, the following statements hold:
(i) ((α→ β)→ α)′ ∈ I and α ∈ I imply β ∈ I.
(ii) If α→ (α→ β) ∈ I, then α→ β ∈ I.
(iii) ((β→ (β→ α))→ γ)′ ∈ I and γ ∈ I imply β→ α ∈ I.
(iv) If (α→ β)′ ∈ I, then ((α→ β)′ → β)′ ∈ I.

Proof. (i) Let α, β ∈ H such that ((α→ β)→ α)′ ∈ I and α ∈ I. Since I is a co-filter of H, α→ β ∈ I.
By Proposition 1(iv), β ≤ α→ β ∈ I. From Proposition 6(i), β ∈ I.
(ii) By Proposition 1(iii) and (viii), α2 ≤ α and α → β ≤ α2 → β = α → (α → β). Since α → (α →
β) ∈ I, by Proposition 6(i), α→ β ∈ I.
(iii) Suppose α, β, γ ∈ H such that ((β → (β → α)) → γ)′ ∈ I and γ ∈ I. Since I is a co-filter of H,
β→ (β→ α) ∈ I, and so by (ii), β→ α ∈ I.
(iv) Let α, β ∈ H such that (α→ β)′ ∈ I. Then by (HP3), we have

((α→ β)′ → β)′ → (α→ β)′ = (α→ β)→ ((α→ β)′ → β)′′ by Propositions 1(viii) and 2(i)

≥ (α→ β)→ ((α→ β)′ → β) by (HP3)

= [(α→ β)� (α→ β)′]→ β by Proposition 2(i)

= 0→ β

= 1

Thus, ((α→ β)′ → β)′ → (α→ β)′ = 1, and so ((α→ β)′ → β)′ ≤ (α→ β)′. Since (α→ β)′ ∈ I and
I is a co-filter of H, by Proposition 6(i), ((α→ β)′ → β)′ ∈ I.

If X ⊆ H, then the least co-filter of H contains X is called the co-filter generated by X of H and we
show it by [X).

Theorem 2. If H has (DNP), then, for any a ∈ H,

[a) = {α ∈ A | ∃n ∈ N such that (a′)n ≤ α′}.

Proof. Let B = {α ∈ A | ∃n ∈ N such that (a′)n ≤ α′}. Since (a′)n ≤ 1 = 0′, for all n ∈ N, we have
0 ∈ B, and so B 6= ∅. Now, suppose α, β ∈ H such that (α → β)′ ∈ B and β ∈ B. Then there exist
n, m ∈ N, such that (a′)n ≤ (α→ β)′′ and (a′)m ≤ β′. By Proposition 1(viii),

(a′)n � (a′)m ≤ (α→ β)′′ � (a′)m ≤ (α→ β)′′ � β′

By (HP3), we get

((α→ β)′′ � β′)→ α′ = β′ → ((α→ β)′′ → α′)

= β′ → (α→ (α→ β)′′′) by Proposition 2(iii)

= β′ → (α→ (α→ β)′)

= α→ (β′ → (α→ β)′)

= α→ ((α→ β)→ β′′)

= (α→ β)→ (α→ β′′) by Propositions 2(i) and 1(viii)

= 1

Then (α→ β)′′ � β′ ≤ α′, and so (a′)n � (a′)m ≤ α′. Hence, n + m ∈ N exists such that (a′)n+m ≤ α′.
Therefore, α ∈ B, and so B is a co-filter of H. Also, by Proposition 1(iii), (a′)n ≤ a′. Thus, a ∈ B and B
is a co-filter of H which containing a. Now, it is enough to prove that B is the least co-filter of H which
containing a. Suppose C is a co-filter of H that contains a. We show that B ⊆ C. Let α ∈ B. Then there
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exists n ∈ N such that (a′)n ≤ α′. Thus (a′)n → α′ = 1. Since H has (DNP), by (HP3) and Proposition
2(iv), we get

1 = (a′)n → α′

= ((a′)n−1 � (a′))→ α′

= (a′)n−1 → (a′ → α′)

= (a′)n−1 → (α→ a′′)

= (a′)n−1 → (α→ a)

= ((a′)n−2 � (a′))→ (α→ a)

= (a′)n−2 → (a′ → (α→ a))

= (a′)n−2 → ((α→ a)′ → a′′)

= (a′)n−2 → ((α→ a)′ → a)

By continuing this method, we have

1 = ((((α→ a)′ → a)′ → a)′ → ...→ a)′ → a

Hence,
[(((((α→ a)′ → a)′ → a)′)→)...)→ a)′ → a]′ = 1′ = 0 ∈ C.

Since C is a co-filter of H and a ∈ C, we obtain,

(((((α→ a)′ → a)′ → a)′)→)...)→ a)′ ∈ C.

By continuing this method, we can see that (α→ a)′ ∈ C. Since (α→ a)′ ∈ C, a ∈ C and C is a co-filter
of H, we have α ∈ C. Hence, B ⊆ C. Therefore, B = [a).

Corollary 2. Let H has (DNP), X ⊆ H and a ∈ H. Then the following statements hold:
(i) [X) = {α ∈ A | ∃ n ∈ N and a1, ..., an ∈ X s.t, a1

′ � a2
′ � ...� an

′ ≤ α′}.
(ii) [I ∪ {a}) = {β ∈ A | ∃ n, m ∈ N and α1, ..., αm ∈ I s.t, (α′1 � ...� α′m)� (a′)n ≤ β′}.

Proof. The proof is similar to the proof of Theorem 2.

Example 4. Let A be the hoop as in Example 3. It is clear that A has (DNP). Since a′ = d and d ≤ d = a′ and
d ≤ 1 = 0′, we get [a) = {0, a}. Also, since d′ = a and a ≤ 1, a, c, we have [d) = {0, b, d}.

Theorem 3. Let I be a co-filter of H. We define the relation ≡I on H as follows,

α ≡I β iff (α→ β)′ ∈ I and (β→ α)′ ∈ I, for all α, β ∈ H.

Then ≡I is a congruence relation on H.

Proof. At first, we prove that ≡I is an equivalence relation on H. Since, for all α ∈ H, α→ α = 1 and
I is a co-filter of H, (α → α)′ = 0 ∈ I. Thus, α ≡I α, and so ≡I is reflexive. It is obvious that ≡I is
symmetric. For proving transitivity of ≡I , suppose α, β, γ ∈ H such that α ≡I β and β ≡I γ. Hence,
(α→ β)′, (β→ α)′, (β→ γ)′ and (γ→ β)′ ∈ I and by Proposition 1(vii) and (viii),

(α→ γ)′ ≤ ((α→ β)� (β→ γ))
′
.
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By (HP3) and Propositions 1(vii),(viii) and 2(iii), we have,

(((α→ β)→ (β→ γ)′)→ (α→ β)′)′ = (((α→ β)→ (β→ γ)′)→ ((α→ β)→ 0))′

= ([(α→ β)� ((α→ β)→ (β→ γ)′)]→ 0)′

≤ (β→ γ)′′′

= (β→ γ)′ ∈ I.

Thus, by Proposition 6(i),

(((α→ β)→ (β→ γ)′)→ (α→ β)′)′ ∈ I.

Since (α → β)′ ∈ I and I is a co-filter of H, (α → β) → (β → γ)′ ∈ I. Moreover, (α → γ)′ ≤ (α →
β) → (β → γ)′ and (α → β) → (β → γ)′ ∈ I, by Proposition 6(i), (α → γ)′ ∈ I. By the similar way,
(γ→ α)′ ∈ I. Hence, α ≡I γ. Therefore, ≡I is an equivalence relation on H. Now, let α ≡I β, for some
α, β ∈ H. Then (α → β)′, (β → α)′ ∈ I. Thus, by Proposition 1(vi), α ≤ (α → γ) → γ, for all γ ∈ H.
So, by Proposition 1(viii), β→ α ≤ β→ ((α→ γ)→ γ). Then by Proposition 1(viii) and (HP3),

((α→ γ)→ (β→ γ))′ ≤ (β→ α)′.

Since (β → α)′ ∈ I and I is a co-filter of H, by Proposition 6(i), ((α → γ) → (β → γ))′ ∈ I. By the
similar way, ((β→ γ)→ (α→ γ))

′ ∈ I. Hence, α→ γ ≡I β→ γ. Suppose α ≡I β, for some α, β ∈ H.
Then (α→ β)′, (β→ α)′ ∈ I and by Proposition 1(vii) and (HP3), α→ β ≤ (γ→ α)→ (γ→ β), for
all γ ∈ H. Also, by Proposition 1(viii),

((γ→ α)→ (γ→ β))′ ≤ (α→ β)′.

From (α → β)′ ∈ I and I is a co-filter of H, by Proposition 6(i), ((γ → α) → (γ → β))′ ∈ I. By the
similar way, ((γ → β) → (γ → α))′ ∈ I. Hence, γ → α ≡I γ → β. Finally, if α ≡I β, for some
α, β ∈ H, then (α → β)′, (β → α)′ ∈ I. From α� γ ≤ α� γ, by Proposition 1(ii),(viii) and (HP3),
α ≤ γ→ (α� γ), and so

β→ α ≤ β→ (γ→ (α� γ)) = (β� γ)→ (α� γ).

Then by Proposition 1(viii),
((β� γ)→ (α� γ))′ ≤ (β→ α)′.

Since (β → α)′ ∈ I and I is a co-filter of H, by Proposition 6(i), ((β� γ) → (α� γ))′ ∈ I. Similarly,
((α� γ)→ (β� γ))′ ∈ I. Hence, α� γ ≡I β� γ. Therefore, ≡I is a congruence relation on H.

For any α ∈ H, Iα will denote the equivalence class of α with respect to ≡I . It is clear that

Iα = {β ∈ H | α ≡I β} = {β ∈ H | (α→ β)′ ∈ I and (β→ α)′ ∈ I}.

Easily we can see that I0 = I and I1 = {β ∈ H | β′ ∈ I}.

Theorem 4. Let H/I = {Iα | α ∈ H}. Define the operations ⊗ and on H/I as follows:

Iα ⊗ Iβ = Iα�β and Iα  Iβ = Iα→β.

Then (H/I,⊗, , I0, I1) is a bounded hoop.

Proof. The proof is straightforward.
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Note. Let α, β ∈ H. Then the binary relation ” ≤I ” is defined on H/I as follows,

Iα ≤I Iβ iff (α→ β)′ ∈ I.

Then ≤I is a partially order relation on H/I. Since (α→ α)′ = 0 ∈ I, for any α ∈ H, Iα ≤I Iα. Suppose
Iα ≤I Iβ and Iβ ≤I Iα, for any α, β ∈ H. Then (α → β)′ ∈ I and (β → α)′ ∈ I. Thus, α ≡I β, and so
Iα = Iβ. Now, let Iα ≤I Iβ and Iβ ≤I Iγ. Then (α → β)′ ∈ I and (β → γ)′ ∈ I. By Proposition 1(vii),
for α, β, γ ∈ H, we have (α→ β)� (β→ γ) ≤ α→ γ. Thus, by Proposition 1(viii) and (HP3),

(α→ γ)′ ≤ ((α→ β)� (β→ γ))′,

and so
(α→ γ)′ ≤ [((α→ β)� (β→ γ))→ 0].

Thus, (α→ γ)′ ≤ (α→ β)→ ((β→ γ)→ 0). Moreover, by Proposition 1(ii),

α→ β ≤ (α→ γ)′ → (β→ γ)′.

Hence, by Proposition 1(viii), we obtain,

((α→ γ)′ → (β→ γ)′)′ ≤ (α→ β)′ ∈ I.

Since (α → β)′ ∈ I and I is a co-filter of H, by Proposition 6(i), ((α → γ)′ → (β → γ)′)′ ∈ I. Also,
(β→ γ)′ ∈ I, then (α→ γ)′ ∈ I. Hence, Iα ≤ Iγ. Therefore, ≤I is a partially order relation on H/I.
For proving (H/I,⊗, , I0, I1) is a bounded hoop, we have Iα = Iβ and Iγ = Iδ iff α ≡I β and γ ≡I δ.
Since≡I is a congruence relation on H, so all operations are well-defined. Thus, by routine calculations,
we can see that (H/I,⊗, I1) is a commutative monoid and (HP2) holds. Let Iα, Iβ, Iγ ∈ H/I, for any
α, β, γ ∈ H. Since H is a hoop, by (HP3) and (HP4) we have,

(Iα ⊗ Iβ) Iγ = I(α�β)  Iγ = I(α�β)→γ = Iα→(β→γ) = Iα  (Iβ→γ) = Iα  (Iβ  Iγ).

Also, for any Iα, Iβ ∈ H/I, we get

Iα ⊗ (Iα  Iβ) = Iα ⊗ (Iα→β) = Iα�(α→β) = Iβ�(β→α) = Iβ ⊗ (Iβ→α) = Iβ ⊗ (Iβ  Iα).

Therefore, (H/I,⊗, , I0, I1) is a bounded hoop.

Example 5. Let A be the hoop as in Example 3. Then I = {0, b, d} is a co-filter of A. Thus, by routine
calculations, we can see that [b] = [d] = [0] = {0, b, d} and [a] = [c] = [1] = {a, c, 1}. Hence, A

≡I
=

{[0], [1]}. Therefore, A
≡I

is a bounded hoop.

Example 6. Let A be the hoop as in Example 2. We can see that A does not have (DNP) property, in general.
So by Proposition 5 and Example 2, filter and co-filter are different notions. Then A is a co-filter of A and the
quotient is A

A = {[1]} that is a hoop algebra. But F = {b, 1} is a filter of A and the quotient A
≡F

= {[0], [a], [1]}
that is a hoop with (DNP).

4. Some Applications of Co-Filters

In this section, we try to investigate under which conditions the quotient structure of this
congruence relation will be Brouwerian semilattice, Heyting algebra, Wajsberg hoop, Hilbert algebra
and BL-algebra.
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Definition 4 ([11]). A Brouwerian lattice is an algebra (H,∧,∨,→, ′) with the lattice infimum (∧) and the
lattice supremum (∨) in which two operations “ ′ ” and “→” are defined by α′ = α→ 0 and

α ∧ β ≤ γ iff α ≤ β→ γ

respectively.

Theorem 5. Let I be a co-filter of H and for all α ∈ H, α2 = α. Then H/I is a Brouwerian semilattice.

Proof. Let I be a co-filter of H. By Theorem 4, H/I is a hoop. Thus, by Proposition 1(i), (H/I,≤I)

is a meet-semilattice with Iα ∧I Iβ = Iα ⊗ (Iα  Iβ), for all Iα, Iβ ∈ H/I. Now, we prove that, for all
Iα, Iβ ∈ H/I,

Iα ∧I Iβ ≤ Iγ iff Iα ≤ Iβ  Iγ.

Since H/I is a hoop, by Proposition 1(iii), Iα ⊗ Iβ ≤ Iα ∧I Iβ ≤ Iγ. Thus, Iα ⊗ Iβ ≤ Iγ, and so by
Proposition 1(ii), Iα ≤ Iβ  Iγ. Conversely, suppose Iα ≤ Iβ  Iγ, for all Iα, Iβ, Iγ ∈ H/I. According
to definition of ≤I , (α→ (β→ γ))′ ∈ I. By Proposition 1(vii), β→ γ ≤ (α→ β)→ (α→ γ) and by
(HP3), β→ γ ≤ (α� (α→ β))→ γ. Also, by Proposition 1(viii) and (HP3), we get

α→ (β→ γ) ≤ α→ ((α� (α→ β))→ γ),

and so
α→ (β→ γ) ≤ (α� (α� (α→ β))→ γ).

Thus,
α→ (β→ γ) ≤ (((α� α)� (α→ β))→ γ).

Since for any α ∈ H, α2 = α, we obtain, α→ (β→ γ) ≤ ((α� (α→ β))→ γ) and so,

α→ (β→ γ) ≤ (α→ β)→ (α→ γ).

Hence, by Proposition 1(viii), we get ((α→ β)→ (α→ γ))′ ≤ (α→ (β→ γ))′. Since I is a co-filter
of H and (α → (β → γ))′ ∈ I, by Proposition 6(i), ((α → β) → (α → γ))′ ∈ I, so Iα  Iβ ≤ Iα  Iγ.
Thus, by Proposition 1(ii),(i) and (viii),

Iα ∧I Iβ = Iα ⊗ (Iα  Iβ) ≤ Iα ⊗ (Iα  Iγ) = Iα ∧ Iγ ≤ Iγ.

Hence, Iα ∧I Iβ ≤ Iγ. Therefore, H/I is a Brouwerian semilattice.

Example 7. Let H = {0, a, b, c, 1} be a set with two operations which are given below:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

Thus, (H,�,→, 0, 1) is a hoop and α2 = α, for all α ∈ H. Then I = {0, a} is a co-filter of H, I0 = Ia = I and
Ib = Ic = I1 = {b, c, 1}. Hence, by Theorem 5, H/I = {I0, I1} is a Brouwerian semilattice.

Theorem 6. Let H has (DNP) and H/I be a Brouwerian semilattice. Then I is a co-filter of H.
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Proof. Let Iα ⊗I Iβ = Iα ∧I Iβ, for all Iα, Iβ ∈ H/I. Then Iα ⊗I Iα = Iα ∧I Iα = Iα. Thus, Iα2 = Iα, and so
(α2 → α)′ ∈ I. By Proposition 1(iii), 0 ∈ I. Now, suppose (α→ β)′ and β ∈ I, for some α, β ∈ H. Since
I = I0, we have β ∈ I0. It means that (β→ 0)′ ∈ I, and equivalently Iβ ≤ I0. Moreover, (α→ β)′ ∈ I,
then Iα ≤ Iβ, and so Iα ≤ I0 i.e., (α → 0)′ ∈ I. Hence, α′′ ∈ I. Since H has (DNP), we get α ∈ I.
Therefore, I is a co-filter of H.

Definition 5 ([11]). A hoop (H,�,→, 1) is called Wajsberg if, for any α, β ∈ H,

(α→ β)→ β = (β→ α)→ α.

Theorem 7. Let H has (DNP). Then I is a co-filter of H iff H/I is a Wajsberg hoop.

Proof. (⇒) Since H has (DNP), by Proposition 2(v), (α → β) → β = (β → α) → α, for all α, β ∈ H.
Thus,

(((α→ β)→ β)→ ((β→ α)→ α))′ = 0 ∈ I,

and so (Iα  Iβ) Iβ ≤ (Iβ  Iα) Iα. By the similar way, (Iβ  Iα) Iα ≤ (Iα  Iβ) Iβ. Thus,
(Iα  Iβ) Iβ = (Iβ  Iα) Iα, for all Iα, Iβ ∈ H/I. Therefore, H/I is a Wajsberg hoop.
(⇐) The proof is similar to the proof of Theorem 6.

Example 8. In Example 1, H is a hoop with (DNP). Since I = {0, b, d} is a co-filter of H, I0 = Ib = Id = I
and Ia = Ic = I1 = {a, c, 1}. Hence, by Theorem 7, H/I = {I0, I1} is a Wajsberg hoop.

Definition 6 ([11]). A Heyting algebra is an algebra (A,∨,∧,→, 1), where (A,∨,∧, 1) is a distributive lattice
with the greatest element and the binary operation→ on A verifies, for any x, y, z ∈ A,

x ≤ y→ z iff x ∧ y ≤ z.

Theorem 8. Let H has (DNP) and α2 = α, for all α ∈ H. Then I is a co-filter of H iff H/I is a Heyting algebra.

Proof. (⇒) Since I is a co-filter of H and α2 = α, for all α ∈ H, by Theorem 5, H/I is a Brouwerian
semilattice. Moreover, since H has (DNP), by Theorem 7, H/I is a Wajsberg hoop. Define Iα ∨I Iβ =

(Iβ  Iα) Iα, for all Iα, Iβ ∈ H/I. Then by Propositions 3 and 4, (H/I,∧I ,∨I) is a distributive lattice.
Therefore, H/I is a Heyting algebra.
(⇐) Since H/I is a Heyting algebra, it is a Brouwerian semilattice. On the other side, H has (DNP),
then by Theorem 6, I is a co-filter of H.

Example 9. Let H = {0, a, b, 1} be a set with the following Cayley tabels,

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

� 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Then (H,�,→, 0, 1) is a hoop with (DNP) and for any α ∈ H, α2 = α. From I = {0, b} is a co-filter of H,
I0 = Ib = I and I1 = Ia = {1, a}. Then by Theorem 8, H/I = {I, I1} is a Heyting algebra.

Definition 7 ([11]). A Hilbert algebra is a tripe (A,→, 1) of type (2, 0) such that, for all x, y, z ∈ A, the
following three axioms are satisfied,
(H1) x → (y→ x) = 1.



Mathematics 2019, 7, 1243 11 of 13

(H2) x → (y→ z) = (x → y)→ (x → z).
(H3) If x → y = y→ x = 1, then x = y.
The Hilbert algebra induces a partial order ≤ on A, defined by, x ≤ y iff x → y = 1 and 1 is the greatest
element of the induced poset (A,≤). A Hilbert algebra A is bounded if there is an element 0 ∈ A such that, for
any x ∈ A, 0 ≤ x.

Lemma 1. Let α2 = α, for all α ∈ H. Then, for all α, β, γ ∈ H,

α→ (β→ γ) = (α→ β)→ (α→ γ).

Proof. Let α ∈ H such that α2 = α. Then by Proposition 1(iv), β ≤ α → β, for any α, β ∈ H and by
Proposition 1(viii), α→ ((α→ β)→ γ) ≤ α→ (β→ γ). Then by (HP3), (α→ β)→ (α→ γ) ≤ α→
(β→ γ). Conversely, by (HP3), for all α, β, γ ∈ H,

[α→ (β→ γ)]→ [(α→ β)→ (α→ γ)] = [(α→ β)� α� (α→ (β→ γ))]→ γ.

By Proposition 1(vii), α� (α→ (β→ γ)) ≤ β→ γ. Then by Proposition 1(viii) and (vii),

(α→ β)� α� (α→ (β→ γ)) ≤ (α→ β)� (β→ γ) ≤ α→ γ.

Thus, α2 � (α → β)� (α → (β → γ)) ≤ γ. Since α2 = α, we get α� (α → β)� (α → (β → γ)) ≤ γ.
Hence, by (HP3), α→ (β→ γ) ≤ (α→ β)→ (α→ γ).

Theorem 9. Let I be a co-filter of H and α2 = α, for all α ∈ H. Then H/I is a Hilbert algebra.

Proof. Since I is a co-filter of H, by Theorem 5, H/I is a hoop. Thus by Proposition 1(iv), it is clear
that Iα  (Iβ  Iα) = I1, for all Iα, Iβ ∈ H/I. Let Iα, Iβ ∈ H/I such that Iα  Iβ = Iβ  Iα = I1. Then
(α → β)′ ∈ I and (β → α)′ ∈ I and so α ≡I β. Hence, Iα = Iβ. Moreover, since α2 = α, for all α ∈ H,
by Lemma 1, α→ (β→ γ) = (α→ β)→ (α→ γ), for all α, β, γ ∈ H, and so

[(α→ (β→ γ))→ ((α→ β)→ (α→ γ))]′ = 0 ∈ I.

Thus, by definition of I1,

(Iα  (Iβ  Iγ)) ((Iα  Iβ) (Iα  Iγ)) = I1

Therefore, H/I is a Hilbert algebra.

Definition 8 ([11]). A BL-algebra is an algebra (A,∨,∧,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) that, for any
x, y, z ∈ A, it is satisfying the following axioms:
(BL1) (A,∨,∧, 0, 1) is a bounded lattice.
(BL2) (A,�, 1) is a commutative monoid.
(BL3) x� y ≤ z iff x ≤ y→ z.
(BL4) (x → y) ∨ (y→ x) = 1.
(BL5) x ∧ y = x� (x → y).

Theorem 10. Let H be a ∨-hoop such that, for all α ∈ H, α2 = α and I be a co-filter of H. Then H/I is a
BL-algebra.

Proof. Let H be a ∨-hoop. Then H/I is a ∨I-hoop. Thus, by Proposition 4, (H/I,∧I ,∨I , I0, I1) is a
bounded distributive lattice. Now, we prove that H/I is a BL-algebra. For this, it is enough to prove that
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(Iα  Iβ)∨I (Iβ  Iα) = I1, for all Iα, Iβ ∈ H/I. Equivalently, we show that ((α→ β)∨ (β→ α))′ ∈ I,
for all α, β ∈ H. Since for all α, β ∈ H,

(α→ β), (β→ α) ≤ (α→ β) ∨ (β→ α),

by Proposition 1(viii),
((α→ β) ∨ (β→ α))′ ≤ (α→ β)′ ∧ (β→ α)′.

On the other hand, by Proposition 1(iv), β ≤ α → β and by Proposition 2(ii), β′ ≤ β → α, then by
Proposition 1(viii), (α→ β)′ ≤ β′ and (β→ α)′ ≤ β′′. Thus, by Propositions 1(i), 2(i) and α2 = α, for
all α ∈ H, we have

((α→ β) ∨ (β→ α))′ ≤ (α→ β)′ ∧ (β→ α)′

≤ β′ ∧ β′′

= β′ � (β′ → β′′) by Proposition 1(i)

= β′ � (β′ → (β′ → 0)) by (HP3)

= β′ � ((β′)2 → 0) by α2 = α

= β′ � (β′ → 0) by Proposition 2(i)

= β′ � β′′

= 0.

Then ((α→ β) ∨ (β→ α))′ = 0 ∈ I. Therefore, H/I is a BL-algebra.

Theorem 11. Let H has (DNP) and α2 = α, for all α ∈ H. Then I is a co-filter of H iff H/I is a BL-algebra.

Proof. (⇒) Since H has (DNP) and I is a co-filter of H, by Theorem 7, H/I is a Wajsberg hoop. Define
Iα ∨I Iβ = (Iα  Iβ)  Iβ for all Iα, Iβ ∈ H/I. Then by Proposition 3, H/I is a ∨I-hoop, and so by
Proposition 4, (H/I,∧I ,∨I , I0, I1) is a bounded lattice. On the other side, since α2 = α, for all α ∈ H,
by Theorem 10, H/I is a BL-algebra.
(⇐) Since H has (DNP) and H/I is a BL-algebra, H/I is a distributive lattice. Thus, by Theorem 6, I is
a co-filter of H.

Remark 1. As you see in this section, we investigated the relation among the quotient hoop A
I that is made by a

co-filter I with other logical algebras such as Brouwerian semi-lattice, Heyting algebra, Hilbert algebra, Wajsberg
hoop and BL-algebra. Clearly these conditions are similar and we know that for example if A has Godel condition
(x2 = x) then A

I is Hilbert algebra and by adding (DNP) property to A we obtain that A
I is Heyting algebra.

5. Conclusions and Future Works

We have introduced the notion of co-filter of hoops and a congruence relation on hoop, and
then we have constructed the quotient structures by using co-filters. We have considered the relation
between filters and co-filters in a hoop with (DNP) property. We have provided conditions for a subset
to be a co-filter. We have discussed characterizations of a co-filter. We have studied the relation among
this structure and other algebraic structures. Using the notion of co-filters, we have established the
quotient Brouwerian semilattice, the quotient Hilbert algebra and the quotient BL-algebra. We have
induced a co-filter from a quotient Brouwerian semilattice. In our subsequent research, we will study
some kinds of co-filter such as, implicative, ultra and prime one and investigate the relation between
them. Also, we will discuss fuzzy co-filters and fuzzy congruence relation by them and study the
quotient structure of this fuzzy congruence relation.
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