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Abstract: The purpose of this article is to obtain geometric conditions in terms of gradient Ricci
curvature, both necessary and sufficient, for a warped product semi-slant in a Kenmotsu space form,
to be either CR-warped product or simply a Riemannian product manifold when a basic inequality
become equality. The next purpose of this paper to find the necessary condition admitting gradient
Ricci soliton, that the warped product semi-slant submanifold of Kenmotsu space form, is an Einstein
warped product. We also discuss some obstructions to these constructions in more detail.

Keywords: warped products; Kenmotsu space forms; Euler-Lagrange equation; Ricci curvature;
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1. Introduction and Motivations of the Main Results

As a generalization of Riemannian product manifolds, the warped product manifolds are defined
as follows:

Definition 1. Let (N1, g1) and (N2, g2) be two Riemannian manifolds and f : N1 → (0, ∞), a positive
differentiable function on N1 which is known as the warping function. Then consider the product manifold
N1 × N2 with its canonical projections γ1 : N1 × N2 → N1, γ2 : N1 × N2 → N2 and the projection maps
given by γ1(t, s) = t and γ2(t, s) = s for every l = (t, s) ∈ N1 × N2. The warped product M = N1 × f N2

is the product manifold N1 × N2 equipped with the Riemannian structure such that ||X||2 = ||γ1∗(X)||2 +
f 2(γ1(t))||π2∗(X)||2 with the Riemannian metric on M g = g1 + f 2g2, for any tangent vector X ∈ X(Tt M).

The following definitions can be seen as a conclusion of the warped product manifolds:

Definition 2. If the warping function f is constant, then the warped product manifold M = N1 × f N2 is said
to be trivial or in other words is called simply a Riemannian product.

By applying a new method under the assumption of the Gauss equation instead of the Codazzi
equation, it was proved in [1], every warped product semi-slant submanifold Mn = Nn1

T × f Nn2
θ

isometrically immersed of a Kenmotsu space form M̃2m+1(c) with constant holomorphic sectional
curvature c satisfied the following optimal inequality

||h||2 ≥ 2n2

(
||∇ ln f ||2 + c− 3

4
n1 −

c + 1
4
− ∆(ln f )

)
. (1)
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Moreover, the equality sign holds in (1) if and only if Nn1
T is totally geodesic and Nn1

θ is totally umbilical
submanifolds of M̃2m+1(c), respectively and Mn is minimal submanifold in M̂2m+1(c). By considering
the equality case in the statement of the inequality (1), we proved some results on the triviality of the
warped product semi-slant submanifolds of Kenmotsu space forms.

Theorem 1. [1] Assume that χ : Mn = Nn1
T × f Nn2

θ −→ M̃2m+1(c) is an isometric immersion of a compact
oriented proper warped product semi-slant submanifold Nn1

T × f Nn2
θ into a Kenmotsu space form M̃2m+1(c).

Then Mn is simply a Riemannian product if and only if

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 = n2

(
c− 3

4
n1 −

c + 1
4

+ 2 cot2 θ + 1

)
, (2)

where θ is a slant angle defined on TM and hµ is the second fundamental form of the component in Γ(µ).

The above classification comes from the motivation of case study [2–8]. Moreover, such results
are also presented in [1,4,9] of different ambient space forming and some of them as corollaries.
We continue our study of ends of connected and compact manifolds, with a focus on the case that the
derived inequality satisfys the equality condition. That observation leads to the further analysis of the
equality conditions with compact boundary. We obtain a complete classification of compact warped
product which admits steady and shrinking gradient Ricci Soliton, and gradient Ricci curvature
structure, thereby expanding our previous work.

Furthermore, very much attention has been paid to hypothesizing the Einstein metric and its
generalization from recent years, for instance, Ricci soliton and quasi-Einstein metrics. Einstein
manifolds have been discussed extensively due to their connection with scalar curvature, positive
mass theorem, and general relativity. In this direction, Ricci solitons are fixed points of Ricci flow
as a dynamical system on the space of Riemannian metric modulo diffeomorphism and scaling.
In the context of the fundamental equation, they are the natural generalization of Einstein manifolds.
Moreover, Ricci soliton is important to understand singularities of Ricci flow as they appear as the
self-similar solution of the Ricci flow ∂

∂ g(t) = −2Ric(t). The uniqueness of Ricci flow on closed
manifolds was originally proved by Hamilton in [10] and for more detail (see [11,12]). If there exists a
smooth vector field X such that the Ricci tensor satisfies the following condition.

Ric +
1
2
LX g = λ, (3)

for any constant λ, where LX is the Lie derivative, then Riemannian metric g on a complete Riemannian
manifold Mn is called a Ricci soliton. A Ricci soliton is called expanding, steady and shrinking if
λ < 0, λ = 0, and λ > 0, respectively. If we choose X = ∇ f for a smooth function f defined
on Mn, then Mn is called gradient Ricci soliton with f being the potential function. In this case,
the fundamental equation can be rewritten as:

Ric +∇2 f = λg, (4)

where ∇2 f denotes the Hessian of f . Due to the relation of the Laplacian ∆ and the gradient ∇2 such
that ∆ = ∇2. Thus, Equation (4) can be modified as;

Ric = λg + Hess( f ). (5)

It is also called the fundamental equation of Ricci tensor in terms of Hessian tensor. For the
gradient, Ricci soliton can be classified as:
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Remark 1. If the potential function f is a constant on gradient Ricci soliton, then (M, g,∇ f , λ) is an
Einstein manifold.

Gradient Ricci solitons are extensively studied and a few results on classifications of gradient Ricci
soliton and some of them with warped product structures have been studied in [13–23]. Our aim of this
paper to find the classification of derived inequality (1) attaining the equality cases by using the tool of
gradient Ricci solitons, in terms of the squared norm of second fundamental form and constant sectional
curvature. Consequently, we consider the following question: “What are necessary and sufficient
conditions for warped product immersions in Kenmotsu space forms to be an Einstein warped product
manifold with the impact of gradient Ricci soliton by using inequality (1)?” The answer, by assuming
the equality case in the inequality (1) and a vector field X is the gradient of the warping function of
warped product manifold. We prove the following result which is one of the most important results in
this direction.

Theorem 2. Let χ : Mn = Nn1
T × f Nn2

θ be an isometric immersion of a warped product semi-slant submanifold
Nn1

T × f Nn2
θ admitting gradient Ricci soliton into a Kenmotsu space form M̃2m+1(c)with the following equality holds

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 + n1n1λ =n2

d1

∑
i=1

(
Ric(ei, ei) + Ric(ϕei, ϕei)

)

+

(
c− 3

4

)
n1n2−

(
c + 1

4

)
n2 + 1,

(6)

for any positive constant λ > 0. Then one of the following conditions holds

(i) The warped product semi-slant submanifold Nn1
T × f Nn2

θ is an Einstein warped product of a Kenmotsu
space form.

(ii) The slant angle of warped product semi-slant submanifold is satisfied θ = cos−1(
√

n2).

If Mn admitting steady gradient Ricci soliton, we obtain such a classification theorem.

Theorem 3. Let χ : Mn = Nn1
T × f Nn2

θ be an isometric immersion of a warped product semi-slant submanifold
Nn1

T × f Nn2
θ admitting steady gradient Ricci soliton into a Kenmotsu space form M̃2m+1(c). If the following

equality satisfies
n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 =n2

d1

∑
i=1

(
Ric(ei, ei) + Ric(ϕei, ϕei)

)

+

(
c− 3

4

)
n1n2−

(
c + 1

4

)
n2 + 1,

(7)

Then the warped product semi-slant submanifold Nn1
T × f Nn2

θ is an Einstein warped product submanifold
of Kenmotsu space forms or the slant angle of warped product semi-slant submanifold satisfies the condition
θ = cos−1(

√
n2).

We shall study Ricci curvature on the structure of warped products. One fundamental question
arises: What is the geometric meaning of Ricci curvature in Riemannian Geometry? Answer:
Geometrically, Ricci flat means solving the Einstein field equation of Riemannian manifold with
vanishing cosmological constant. In fact, the Ricci tensor is related to the matter content of the universe
via Einstein’s field equation in general relativity theory. It is a part of the curvature of space-time that
classifies the degree to which matter will tend to converge or diverge in time. Therefore, Ricci curvature
is more important than Riemannian curvature in physics. We shall find geometric obstructions of
the Ricci curvature and Ricci tensor in the warped product manifolds ( for detail see [17,21,24] and
references therein). Our purpose is to study the physical significance of these problems in terms of
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warping functions, so that our study may find the useful applications of derived inequality in physics
as we present the following result.

Theorem 4. Assume that χ : Mn = Nn1
T × f Nn2

θ is an isometric immersion of a compact warped product
semi-slant submanifold Nn1

T × f Nn2
θ into Kenmotsu space form M̃2m+1(c) with satisfying the following equality

for warped product submanifold Mn

∫
M
Ric(∇ ln f , •)dV =

{(
c− 3

4

)
n1−

(
c + 1

4

)
+ cot2 θ + csc2 θ

}

− 1
n2

n1

∑
i=1

n2

∑
j=1
||hµ(ei, e∗j )||2.

(8)

Then at least one of the statement is true for Mn,

(i) The warped product semi-slant Nn1
T × f Nn2

θ is a CR-warped product in a Kenmotsu space form M̃2m+1(c).
(ii) The non-trivial warped product semi-slant submanifold Nn1

T × f Nn2
θ into a Kenmotsu space form M̃2m+1(c)

is a simply Riemannian product of Nn1
T and Nn2

θ .

As its application to the Euler-Lagrange equation, we prove the following interesting result.

Theorem 5. Assume that χ : Mn = Nn1
T × f Nn2

θ be an isometric immersion of a compact warped product
semi-slant into Kenmotsu space form M̃2m+1(c). If the warping function has solution of the Euler-Lagrange
equation, then the necessary and sufficient condition of the warped product Nn1

T × f Nn2
θ is trivial such that

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 = n2

{(
c− 3

4

)
n1−

(
c + 1

4

)
+ cot2 θ + 1

}
. (9)

Moreover, we shall also prove other results related to the above study.

2. Preliminaries

The classifications of (2m + 1)-dimensional almost contact metric manifold and Kenmotsu
manifolds are widely defined in [1]. Moreover, a Kenmotsu manifold M̃2m+1 is said to be a Kenmotsu
space form M̃2m+1(c) with constant ϕ-sectional curvature c if and only if the Riemannian curvature
tensor R̃ is given by (see [25])

R̃(X, Y, Z, W) =
c− 3

4

(
g(Y, Z)g(X, W)− g(X, Z)g(Y, W)

)

+
c + 1

4

(
η(X)η(Z)g(Y, W) + η(W)η(Y)g(X, Z)− η(Y)η(Z)g(X, W)

− η(X)g(Y, Z)η(W) + g(ϕY, Z)g(ϕX, W)− g(ϕX, Z)g(ϕY, W)

+ 2g(X, ϕY)g(ϕZ, W)

)
,

(10)

for any X, Y, Z, W ∈ X(TM̃), where the symbol X(TM̃) to denote the Lie algebra of vector fields on a
manifold M̃2m+1. Assume that Mn is a submanifold of an almost contact metric manifold M̃2m+1 with
induced metric g. If∇ and∇⊥ are the induced connections on the tangent bundle TM and the normal
bundle T⊥M of Mn, respectively. Thus the Gauss and Weingarten formulas are given by

(i) ∇̃UV = ∇UV + h(U, V), (ii) ∇̃U N = −ANU +∇⊥U N, (11)
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for each U, V ∈ X(TM) and N ∈ X(T⊥M), where h and AN are the second fundamental form and
the shape operator corresponding to the normal vector field N for the immersion of Mn into M̃2m+1,
respectively. They are related as g(h(U, V), N) = g(ANU, V), where g is Riemannian metric on M̃2m+1

as well as the metric induced on M.
Now, let φ be a differential function defined on compact submanifold Mn without boundary such

that ∂Mn = ∅. Thus we have ∫
Mn

∆φdV = 0, (12)

such that dV denotes the volume of Mn [26]. In case, let Mn be a compact Riemannian manifold with
or without boundary. Then the kinetic energy function is defined in [27] as follows:

E(φ) =
1
2

∫
Mn
‖∇φ‖2dV. (13)

The Euler-Lagrange equation which corresponds to the above function is defined as:

L =
1
2
||φ||2. (14)

Theorem 6. [27] The Euler-Lagrange equation for the Lagrangian function (14)

∆φ = 0. (15)

We refer to [1] for some definitions related to submanifolds in Kenmotsu manifolds such as totally
umbilical submanifolds, totally geodesic submanifolds, CR-submanifolds and slant submanifolds.

Cabrerizo et al. [28] proved a characterization for a slant submanifold in a contact metric manifold.

Lemma 1. [28] Let Mn be a submanifold of an almost contact metric manifold M̃2m+1. Then Mn is slant if and
only if there exists a constant λ ∈ [0, 1] such that

P2 = −δ
(

I + η⊗ ξ
)
. (16)

Furthermore, in such a case, we have δ = cos2 θ.

Similarly, Cabrerizio, et al. [29] defined the semi-slant submanifolds such that

Definition 3. A submanifold Mn of an almost contact metric manifold (Kenmotsu manifold) M̃2m+1, is said to
be a semi-slant submanifold if there exists two orthogonal distributions D and Dθ such that

(i) TM = D⊕Dθ⊕ < ξ >, where < ξ(p) > is a 1-dimensional distribution spanned by ξ(p).
(ii) D is invariant, i.e., ϕ(D) ⊆ D,
(iii) Dθ is a slant distribution with slant angle θ.

Assuming n1 and n2 denote the dimensions ofD andDθ of semi-slant submanifold in a Kenmotsu
manifold M̃2m+1, respectively. Then the following remarks and definitions are useful to prove our
main results.

Definition 4. Mn is called invariant and slant with n2 = 0 and n1 = 0, respectively.

Definition 5. Mn is defined as a contact CR-submanifold if the slant angle θ = π
2 .

Definition 6. A proper semi-slant submanifold Mn is characterized by the slant angle θ ∈ (0, π
2 ).
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Remark 2. The normal bundle T⊥M for semi-slant submanifold can be decomposed as: T⊥M = FDθ ⊕ µ

where µ be an invariant subspace under ϕ of normal bundle T⊥M.

3. Main Results for Warped Product Semi-Slant and Their Applications

In this section, we will discuss some geometric applications in various physical terms such
as Euler-Lagrange equation, Ricci curvature and divergence of Hessian. Throughout the study of
this paper, we consider warped product semi-slant submanifold of type Nn1

T × f Nn2
θ of a Kenmotsu

manifold, for classifications when structure vector ξ is tangent to the base manifold Nn1
T . In this

direction we have the following important result;

Lemma 2. Let χ : Mn = Nn1
T × f Nn2

θ −→ M̃2m+1(c) be an isometric immersion of a proper warped product
semi-slant submanifold Nn1

T × f Nn2
θ into a Kenmotsu space form M̃2m+1(c). If the equality is satisfied in the

inequality (1), then we have(
c− 3

4

)
n1n2−

(
c + 1

4

)
n2 + n2 + n2 cot2 θ =

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2

+ 2 cot2 θ||∇ ln f ||2 + n2∆(ln f ).

(17)

1
n1

n2

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 =

α

∑
i=1

(
Hess(ln f )(ei, ei) + Hess(ln f )(ϕei, ϕei)

)

+
1
n2

+ 2
(

n2− cot2 θ
)
||∇ ln f ||2

+

(
c− 3

4

)
n1−

(
c + 1

4

)
+ 2 cot2 θ + 1.

(18)

Proof. The proof of the above lemma can seen in (see [1], Equation (6.4) and the proof Theorem 1.2)
when the equality sign holds in the inequality (1).

Applications of the Inequality (1) to Euler-Lagrange Equation

Theorem 7. Assume that χ : Mn = Nn1
T × f Nn2

θ is an isometric immersion of a warped product semi-slant
into Kenmotsu space form M̃2m+1(c). If the warping function has the solution of Euler-Lagrange equation.
Then, the necessary condition of Mn to be a trivial warped product, i.e.,

||h||2 ≥
(

c− 3
2

)
n1n2−

(
c + 1

2

)
n2. (19)

Proof. Due to satisfying the condition of the Euler-Lagrange equation and from Theorem 6, we
conclude that

∆(ln f ) = 0, (20)

Thus from (1) and (20), we derive

||h||2 ≥
(

c− 3
2

)
n1n2−

(
c + 1

4

)
n2 + n2||∇ ln f ||2. (21)

If the inequality (19) is satisfied, then (21) implies the warping function ||∇ ln f ||2 ≤ 0. This means that
f must be constant on Mn. The proof is completed.
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Corollary 1. Let χ : Mn = Nn1
T × f Nn2

θ is an isometric immersion of a warped product semi-slant into
Kenmotsu space form M̃2m+1(c). If the warping function has the solution of Euler-Lagrange equation, then the
necessary condition of Mn to be a trivial warped product is

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 = n2

{(
c− 3

4

)
n1−

(
c + 1

4

)
+ 1+ cot2 θ

}
. (22)

Proof. The proof follows from Theorem 6 and using (17) when equality holds in the inequality (1).

3.1. Proof of the Theorem 5

The proof of the above theorem follows the Theorem 7 by using (17) and Theorem 6 in case when
the equality holds in inequality (1). This completes proof of the theorem.

Applications to gradient Ricci soliton

If Mn is a gradient Ricci soliton warped product semi-slant submanifold of Kenmotsu space forms
M̂2m+1(c) with the potential function is a warping function ln f , then we prove some classification
theorems such as:

3.2. Proof of the Theorem 2

Assume that the warped product semi-slant submanifold Mn of Kenmotsu space form M̃2m+1(c)
satisfies fundamental Equations of the Ricci tensor or gradient Ricci soliton equation such that σ = ln f

Ric = λg + Hess(σ), (23)

for any positive constant λ > 0 and Hessian tensor Hess(σ) for the warping function ln f . As we
know that Ricci tensor and Hessian tensor are symmetric (0, 2) tensor fields, then for any vector fields
X and Y are tangent to Nn1

T , then (23) implies that

Ric(X, Y) = λg(X, Y) + Hess(σ)
(
X, Y

)
. (24)

Assume that {e1, · · · en1} be an orthonormal frame for Nn1
T such that {e1, e2, · · · ed1 , ed1+1 = ϕe1, · · · e2d1 =

ϕed1 , e2d1+1ξ}. Let us substitute X = Y = ei, for 1 ≤ i ≤ d1 in (24) and taking summation over the
vector fields Nn1

T , then it implies that

d1

∑
i=1

Ric
(
ei, ei

)
= λd1 +

d1

∑
i=1

Hess(σ)
(
ei, ei

)
. (25)

Replacing ei by ϕei in the above equation, we get

d1

∑
i=1

Ric
(

ϕei, ϕei
)
= λd1 +

d1

∑
i=1

Hess(σ)
(

ϕei, ϕei
)
. (26)

Thus from (25) and (26) it is easy to obtain that

d1

∑
i=1

(
Ric(ei, ei) + Ric(ϕei, ϕei)

)
=2d1λ +

d1

∑
i=1

{
Hess(σ)(ei, ei) + Hess(σ)(ϕei, ϕei)

}
. (27)



Mathematics 2019, 7, 112 8 of 11

As the hypothesis of theorem, the equality case of the inequality (1) holds, we have the following
equation from (18) of Lemma 2, i.e.,

1
n2

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 =

d1

∑
i=1

[Hess(σ)(ei, ei) + Hess(σ)(ϕei, ϕei)]

+ 2
(

n2− cot2 θ
)
||∇ ln f ||2

+

(
c− 3

4

)
n1n2−

(
c + 1

4

)
n2 + 1.

(28)

Follows to (27) and (28), we get

n1

∑
i=1

n2

∑
j=1
||hµ(ei, ej)||2 + n1n1λ =n2

d1

∑
i=1

(
Ric(ei, ei) + Ric(ϕei, ϕei)

)

+ 2n2

(
n2− cot2 θ

)
||∇ ln f ||2

+

(
c− 3

4

)
n1n2−

(
c + 1

4

)
n2 + 1.

(29)

As the hypothesis Mn is a warped product submanifold and satisfies the Equation (23), then Equation (29)

provides two conditions such
(

n2 − cot2 θ
)

= 0, or ||∇ ln f ||2 = 0. If we choose ||∇ ln f ||2 = 0,

then we get grad(ln f ) = 0, i.e., f must be constant on Mn. Hence, by classification of gradient Ricci
soliton with Remark 1, Mn is an Einstein warped product semi-slant submanifold in a Kenmotsu space
form. On the other hand ||∇ ln f ||2 6= 0, we get slant angle cot2 θ =

√
n2, which proves our assertion.

It completes the proof of the theorem.

3.3. Proof of the Theorem 3

If we consider λ = 0 in Equation (23) for steady gradient Ricci soliton, then proof follows the
proof of Theorem 2.

Applications to Ricci Curvature and Divergence of Hessian tensor

In this section, we study some applications of derived inequality with equality cases and consider
Mn to be a compact Riemannian manifold with boundary.

3.4. Proof of the Theorem 4

Applying warping function σ = ln f to the well known Ricci identity from ([30], see page 159),
we have

D2d(σ)(Y, X, U)−D2d(σ)(X, Y, U) = d(σ)RXYU, (30)

for every X, Y, U ∈ X(TNT). Since f is a smooth function defined on Nn1
T and D2

XY = DXDY −DDXY is
the second order covariant differentiable operator. Moreover, curvature tensor working as a derivative
is defined by RXY = −DXDY + DYDX + D[X,Y]. As dσ is closed, then it can be easily proved that
D2d(σ)(Y, X, U) = D2d(σ)(X, Y, U), for any vector fields X, Y, and U are tangent to Nn1

T . Now we
consider {e1, e2, · · · en1} is a local orthonormal frame on Nn1

T and fixed the point x ∈ Nn1
T such that

Dei ej(t) = 0, f or 1 ≤ i, j ≤ n1. If we choose Dei X(t) = 0, for any vector field X and taking the trace
with respect to Y and U in D2d(ln f )(Y, X, U) = D2d(ln f )(X, Y, U). Thus using (30), we get

n1

∑
i=1

(
D2d(σ)

)
(ei, ej, X) = −d

(
∆(σ)

)
(X) +Ric(∇σ, X). (31)
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Now we easily solved the left hand side of the above equation, we get

n1

∑
i=1

(
D2d(σ)

)
(ei, ej, X) = div(Hess(σ))(X). (32)

Thus follows from (30) and (32), we derive

div(Hess(σ))(X) + d
(
∆(σ)

)
(X) = Ric(∇σ, X),

which implies that

div(Hess(σ)) + d
(
∆(σ)

)
= Ric(∇σ, •), (33)

As hypothesis of the theorem, Mn is to be compact warped product submanifold with boundary,
then taking integration along the volume element dM, we get

∆(σ) +
∫

M
div(Hess(σ))dM =

∫
M
Ric(∇σ, •)dM. (34)

Assuming that the equality holds in the inequality (1), then from Equation (18) of Lemma 2, we have

n2∆(σ) + 2n2 cot2 θ||∇σ||2 +
2d1

∑
i=1

2d2

∑
j=1
||hµ(ei, e∗j )||2 =

(
c− 3

4

)
n1n2 −

(
c + 1

4

)
n2

+ n2 csc2 θ + n2 cot2 θ.

(35)

It follows from (34) and (35), we find the following relation

n2

∫
M
Ric(∇σ, •)dM− n2

∫
M

div(Hess(σ))dM+2n2 cot2 θ||∇σ||2

=

(
c− 3

4

)
n1n2 −

(
c + 1

4

)
n2 + n2 csc2 θ

+ n2 cot2 θ−
2d1

∑
i=1

2d2

∑
j=1
||hµ(ei, e∗j )||2.

Using the Green theorem on a compact manifold Mn and the given smooth function f : M → R,
one has

∫
M ∆ f dV = 0. Using the results of K. Yano and M. Kon from (see [26]), immediately follows:

∆ f = −div(∇ f ) and from Green lemma
∫

M div(X)dV = 0, for any arbitrary vector field X on Mn.
Thus, we get

∫
M div(Hess(ln f ))dV = 0, Hessln f is Hessian tensor of warped function (or Laplacian of

ln f ), then last equation implies that

∫
M
Ric(∇σ, •)dM+

1
n2

2d1

∑
i=1

2d2

∑
j=1
||hµ(ei, e∗j )||2 + 2 cot2 θ||∇ ln f ||2

=

(
c− 3

4

)
n1 −

(
c + 1

4

)
+ csc2 θ + cot2 θ.

(36)

Let the equality (8) satisfy, then from (36), we get the following condition

2 cot2 θ||∇σ||2 = 0.

Therefore, from the above equation, we find two cases such that cot2 θ = 0, or ||∇σ||2 = 0. If we
consider cot2 θ = 0 =⇒ cos2 θ

sin2 θ
= 0, which implies that cos θ = 0 =⇒ θ = π

2 . From the Definition
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5, we conclude that Mn is a CR-warped product submanifold of Kenmotsu space form M̃2m+1(c).
This completes the proof of (i) of the theorem.

If we assume that ||∇ ln f ||2 = 0, which means that∇ ln f = 0, i.e., grad ln f = 0. It implies that f
is a constant function on Mn. Hence, from the Definition 2, it concludes that Mn is a trivial warped
product semi-slant submanifold of Kenmotsu space form M̃2m+1(c). This is the second part (ii) of
the theorem.

We prove another interesting theorem in terms of gradient scalar curvature as follows.

Theorem 8. Assume that χ : Mn = Nn1
T × f Nn2

θ be an isometric immersion of a compact warped product
semi-slant Nn1

T × f Nn2
θ into Kenmotsu space form M̃2m+1(c). Let the following equality be satisfied for warped

product submanifold Mn

1
n2

n1

∑
i=1

n2

∑
j=1
||hµ(ei, e∗j )||2 +

1
2

∫
M
(∇R)dV =

{(
c− 3

4

)
n1 −

(
c + 1

4

)

+ cot2 θ + csc2 θ

}
.

(37)

Then at one of the following cases holds for Mn,

(i) The warped product semi-slant Nn1
T × f Nn2

θ is a CR-warped product isometrically immersed into Kenmotsu
space form M̃2m+1(c).

(ii) The non-trivial warped product semi-slant submanifold Nn1
T × f Nn2

θ into Kenmotsu space form M̃2m+1(c)
is a simply Riemannian product of Nn1

T and Nn2
θ or trivial warped product submanifold.

Proof. The following relation was proved in [10] for steady Ricci soliton and gradient Ricci tensor
such that

∇R = 2Ric(∇ f , •). (38)

Thus using Equation (38) in Theorem 4, we get the proof of the required theorem.
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