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Abstract: In 1915, Ramanujan stated the following formula [;~ +*~! (i) gy (0“3

(=)o sin nx.(q,ag*x;q)w’
where 0 < g < 1, x > 0, and 0 < a < g*. The above formula is called Ramanujan’s beta
integral. In this paper, by using g-exponential operator, we further extend Ramanujan’s beta integral.
As some applications, we obtain some new integral formulas of Ramanujan and also show some new

representation with gamma functions and g-gamma functions.
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1. Introduction, Preliminaries and Main Results

The gamma function is the most natural extension of the factorial
nl=1.2..-n.

Euler’s original definition is
<k (k+1\"
Fx+1)=]]+— T ) (1)
The integral representation of the gamma function is the following form

I'(x) = /0 Y pletay, R(x) > 0. 2)

The g-shifted factorials are defined by

n—1
(@q)o=1,  (4q)n=]]01—aqd), €)
k=0
n—1 %)
(@) = lim [T(1—ag") =[[(1~ag"), n>1 @
k=0 k=0
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Clearly,

(ll,' q>oo
a; = 5
( q)n (ﬂﬂln}CI)oo ( )
Analogously with T'(x), F. H. Jackson [1] defined I';(x) by

= (qx.q)oc (1 - q)lixr 0< q< 1.

(6)
I';(x) is called the g-gamma function
The functional equation for I'(x),
I'(x+1) =xI(x), (7)
becomes
1—g*
Ti(x+1) = 1_ql"q(x) 8)

for the g-gamma function. In the future, we will always take 0 < g < 1

We also adopt the following compact notations for the multiple g-shifted factorials

(1,02, ..., 0m;q)n = (a1,9)n(a2;§)n -+ (Am; G)n,

oo = (11;9) 0 (32, 9) 00+ (Am; ) co-

(ﬂl,ﬂz, <o Qmy Q)

The basic hypergeometric series, or g-series ;¢ is usually defined by

ay,a,...,4a o al, uz,q) (ar;q)n n (1) 1+s—r .
r Y _1 2 z, 9
(Ps < bl’ -, bs q ) Z q/ bl/ ‘7) (bz, ‘7) (bs; Q)n [( ) 1 :| ( )

with (3) = n(n —1)/2, where g # 0, when r > s + 1. Clearly, we have

a1,82,. ., 41 o (41,82, -, 0041 0)n_
0z s 10
r+1¢7’ ( b b2, . ,’b q ) 2 q/ b]/bZI .. -/b}’; q)n ( )

The usual g-differential operator, or g-derivative operator D, is defined by (see ([2], p. 177, (2.1))
or [1,3-5]).

D {f(a)} = [0~ flag)

7
a

(11)
Di{f(a)} = Dy{ D" {f(a)}}. (12)
The g-shift operator 7 is (see ([6], p. 112)):
n{f(a)} = f(aq), (13)
1 {f(a)} = flag™). (14)
The operator 6 is (see [7]):
0 = 17*1Dq. (15)
The g-exponential operator E(b0) is defined by (see ([6], p. 112))

* (p)1g(2)
E(b9) = Z%)((q)q’gn (16)



Mathematics 2019, 7, 118 30f10

Recently, Fang further generalized the g-exponential operator E(bf) in the following form (see [8],
or ([9], p. 1394, Equation (5))):

b o (b;q)n(—c0)"
cq,—c0 ) = 17
14)0 (_ 4, —¢ ) n;() (q, q)n ( )

and obtained two g-operator identities as follows:

b (as,bcs; ) oo

; ,_CB as, of = —F—7, 18
o (Ln =) ((asia)e) = a8)

b, _ (asiq)eo | _ (a5;9)o bs/w.
190 (_,q, cQ) {(IZ(U;q)oo} = (aw;q)w2¢l q/aw ;q,q9¢/a | . (19)

In 1915, Ramanujan stated the following formula in [10,11]:

/°° -1 (—ﬂt;q)oodt _ T (qlf",a;q)oo 20)

0 (=t9) sin7tx (9,a97%;9)o0”

where 0 < g <1,x > 0,and 0 < a < g*. The right-hand side must be interpreted using a limit when x
is an integer. The above formula is called Ramanujan’s beta integral.

Hardy gave the first proof of (20) in [12]. He closed this paper with the evaluation of “another
curious integral”, which is another important integral. Hardy gave a nice treatment of Ramanujan’s
method of evaluating integrals of this type in his book on Ramanujan [13]. Rahman and Suslov gave
a simple proof of (20) in ([14], pp. 109-110) by Ramanujan’s sum formula 1. Askey ([15], p. 349)
gave an elementary proof of (20) and obtained the following formula when a = g**V¥ in (20):

/Ooo pr-1 (—th+y;‘7)oodt _ Ta(y)T(x)T(1 - x) 1)

(=t 4)e Tg(x +y)T(1 = x)

in terms of the g-gamma function and the ordinary gamma function. When g — 1, this reduces to

! _T(OI(y)
/0 (1—|—t)x+ydt_ T(x+y) B(x,y), (22)

where B(x,y) denotes the beta function defined by

B(x :/1#‘*11— y-1q 2
W= [ et @)

Recently, Chen and Liu ([6], p. 123. Equation (7.3)) gave an extension of (20) by the method of the
operator as follows:

/00 tx—l (—ﬂt, _bt’ q)oo dt _ 7T (ql_x’ ﬂ, b/ Q)OO (24)
0 (—t,—abg=*";9) e sin7tx (4,497,097, 9) o0

The aim of the present paper is to further generalize Ramanujan’s beta integral by the operator
1¢0 (E 4, —09) and to give some new formulas of Ramanujan’s beta integral. We also show the

connections with gamma functions and g-gamma functions.
We now state our result as follows:
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Theorem 1. If 0 < g < 1,x > 0,0 < a,ay,az,...,a242 < g%, 1] <1

(j=1,2,...,r);,a1,ap # a, ap0,a;.3 #a; (1 =1,3,5,...,2r — 1), then we have

/oo txil ((—llt, —ﬂlt, _a3t/ sy _a27+1t; q)w dt
0

—t, —axt, —aut, . —ﬂ2r+2t'q)oo
_ o (@789 2 (7%, a1/a2; 9)x(qaz/ )"
sin7x (9,497 )0 (= (9,97 /a;9)x

ki k.
) IL[(q ]1“2]'“/ “2”2"") /o)
kitkottke=k  j=1 (9.9 N0y /g L4k,
ngrgkr—lg“'gkzgk]Sk

X

2. Proof of Theorem 1
Proof of Theorem 1. Firstly, we write Ramanujan’s formula as follows:

1—

0 (—atq)e (975 a9)
ey 1( ai;q dt = . 26
/0 (—t:q)co sin 7tx (9,a97%;9)co (26)

1%0 ( —1129>

on both sides of (26) with respect to variable 2, we obtain

/Oootxfl( . 14’0( ;q —aze) {(—at;q)e }dt

B T (ql—x;q) (a;q)oo
~sintx (4;9)e 14)0( & —a29> {M} )

Applying the operator

By (18) and (19), we get that

® 1 (—at,—aya3t;q)co 7 (q 05 oo
/0 i (—t, —a2t;q)co = (q,aq i0)oo 21 1+x/ ;q,902/a (28)

By (5), we rewrite the formula (28) in the following form:

tq)oo n (ql"‘ o )k(qaz/a)* (a1;9)eo
tx 1 —a q t, oo — . 29
/ t—azt MmN et = G k; M”x/a D @e )

190 ( —ﬂ49>

on both sides of the Equation (29) with respect to variable a1, we arrive at

Next, by applying the operator

/°° -1 (—at, —ajast, —a2a3a4t;q)oodt
0 (—t, —axt, *ﬂzﬂ4f'4)
T (4%, 89) Z (7%, a1;9)x(qa2/a)k Z (97, a3;9)x, (qas/ar)"1 (30)
~ sinmtx (,a97%;9) e 1Jr’f/a )k — (9,9 %/ay;q) ’
q,497%;q) k=0 (9,9 q k=0 q.9 19 )k,
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We rewrite (30) in the following form:

x— 1 —at, —a142t; )0 :
/ ' t—azt —apayt; q) (=a2304t; 9)codlt
_ o (@) i g, a1;)k(qa2/0)* & (@75 9)k (gas/a1)" (a3;9)e 31)
sin 7Tx (q,aq Jo (= (a9 x/u De vz @ * /e (a30;9)e
Applying the operator
190 < —6169>
on both sides of the Equation (31) with respect to variable a3, we have
/ - 1 ( alazt —apazagt, —axa4a5aet; q) o © 5t
—apt, —apayt, —ara4a6t; 4 ) o
_ 7 (q ;)
sin 7tx (q,aq*x;q)
) 3 @ a)ger /o) Z (97" a5 e, (q2s/ )" §n (471 05:)15 (g2 /a2) 2 )
= (9 1+"/a Dk = (@a asqk ¥ (@9 /asq),
By the mathematical induction, iterating r 4+ 1 times, and applying the operator
a
1<P0< e, —a2r+29>
and noting that (18) and (19), we obtain
/°°tx4 (—at, —myast, —aazast, —axa4a5a6t, . .., —A20406as - - 'azr—zazrﬂzr+1azr+2f;q)oodt
0 (*f —apt, —apaut, *ﬂzﬂwd *a2a4a6a8’"a2r7202ra2r+2t;Q)oo
_ o (§Na9) 2: (7%,a1;9 qﬂz/ﬂ) 2: (97, a3; )k, (qas/ a1k
sinmx (007 9)0 (= (9, q”"/a De =0 (@9 aq)y
v ul (q_klrﬂs;Q)kz(Wé/ﬂa)kz fr1 (qfk"*lfﬂzrﬂ;‘ﬂkr(Wzr+2/ﬂzr—1)kr (33)
oo (@.q'7F/az;q), =0 (9,9* 51/ a2, 1;9)x,

Letting apj 1 — aj_1/azj and agj 1 — azji2/aa; (j=1,2,---r)in (33), we show that

/00 tx_l (—ﬂt, —ait, —ast, ..., _a2r+1t; q)oo dt
0 (_t/ —ﬂzt, _[l4t,.. -/_a2r+2t/'q>oo

(@78 9)e > (7%,01/02:9)k(q02/ )"

sin7tx (9,095 9)e (= (9,97 /a;9)k
r —k]‘,lla . /a "y (aa-: /ﬂ . kj
y y (9 241/ B2j2; )i (4212 / A2j 1) e

Tk ,
kythottke=k =1 (9,97 azj/ azj—1;q)x;
0<ky<k,_1<--<kp <k <k

The proof of Theorem 1 is complete.

3. Some Applications

In this section, we will obtain the corresponding new integral formulas from (25).
Taking r = 0 in (25) and defining the empty sum equal to 1, we obtain the following
integral formula:
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Corollary 1. For0 < g <1,x>0,0<a,ay,ay < q*and |qay/a| < 1; a1, ap # a, we have

> x—1 (7ﬂtr —a1t; q)oo . 7T (q ,a; q) qxral/az.
/0 g (—t,—a2t;q)oo dt = sin 7Tx (q,aq Q)0 241 g+ /a ;q,q902/a ) . (35)

Remark 1. If setting ay = aa;q~*~1 in (35), we get

T et 17 P S U T T )R
/o ! (—t, —aalq*xflt;q)oodt ~ sinmx (q, aq=%;q) oo 190 ’q’ “q ) (36)
Applying the g-binomial theorem (see ([16], p. 8. (1.3.2)))
a (az;9) oo
79,2 ) = 37
o 02) = e 7
in (36), we obtain
/ tx 1 ﬂt —ﬂlt q) dt — T (ql_x’ a/’ll;Q)oo (38)
t —aa1q*1;9) 0 sin7tx (q,a97%,4197%;9) 0

Setting ay = b in (38), we obtain (24) immediately. Hence, we say that the formula (35) is an extension of
result (24) of Chen and Liu.

Corollary 2. For0 < g <1,x>0,0<a,b < g* a# b, we have

e x—1 (_at}Q)oo 7T (qlfx/a/Q/ﬂ,bqler/ﬂ;q)oo
/o : (*bt;q)wdt sin7tx (q,a97%,qb/a,q* " /a;q)c 39)

Proof. Setting a; — 1,a, — b in (35) and applying g-Gauss sum formula ([16], p. 14, Equation (1.5.1)):

a,b ~(c/a,c/b;9)eo
291 ( c ,q,c/ab) = 7(C’C/ab;q)m , |c/ab| <1,

we obtain (39).

Remark 2. If letting b — 1 in (39), we obtain (20) immediately. Hence, the formula (39) is also an extension
of (20):

Taking r = 1 in (25), we have

Corollary 3. For 0 < g < 1, x > 0,0 < a,ay,az,a3,a4 < q%, |qaz/a| < 1 and |qag/a1| < 1;
aj,ap # a, as,a, #* ay, we have

/ = 1 a1t, _a3t"J) dt

—t, —azt —a4t;9) o

T (@ m e & (75 a/aq)(qar/a)* (g7, as/a
si ;4 . 40
sin7x (4,007 9)e (= (9,47 / a4k 2h a2q /oy 124/ 40
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Theorem 2. If 0 < g < 1,0 < a,a,ay,...,00420 < q" (n = 1,2,--+), < 1 and
\qa2j+2/a2]-_1| <1,(G=12,...,r);a1,a0 #a, aj,»,a;.3 Fa; (1 =1,3,5,...,2r — 1), then we have

/oo tn_] (—ﬂt, —at, —azt,. .., —ﬂ2r+1t; q)oo dt
0 (—t, —axt, —agt, ..., —a2r12t;9)co
_ (=" (q,q)nq”bgq 5 U (7", a1/a2;q)i(qa2/a)*
(@ lgqna"(1—q") = (@97 aq9)
—k: ki
r (@77, aajy/ a2j12; )k (92742 / 82j1)"
X ) I . 4D

btk otk =k =1 (9,9" " agy/ @y 1; ),
0<ky<kr_1<--<kp<k; <k

Proof. By (4), we easily obtain

Moo= (1=q"")(1=g*") - (1=g" ") (1~ qnfx)(l =g (A g (42)
o = (1 —aq ) (1—ag" ) (1—ag? ) - (1—ag" ) (1 - ag" ) (1 —ag" ) (1 —ag" ) (43)
Noting (42), (43) and using the L’'Hospital rule, via some simple calculation, we get

1—x

lim — (7700
x—nsin tx (4,a97%;9) oo

@ (@)

(9:9)0 ¥ sin Tx (ag~; q)oo

_(@9)e ()"l DA —g)(1—g?) - (g A=) A=) (g
(@) (“1)rgT172 (a— )( —q%) - (a—q")(1—a)(1 —aq)(1 —aq?)---x=n  sinmx
@ —(1—q)(1—¢*)--- A —qg"H (g9 Iqu

(@9 g (a—q)(a—q?) - (a—q”)(a;q)oo cosnm

_ ()" (g:q)nq" log g

(a~lg;q)nat (1 —q") -
Letting x — n on both sides of (25) and using the above limit, we obtain (41) immediately.

Taking ¥ = 0 in (41) and defining the empty sum equal to 1, we obtain the following
integral formula:

Corollary 4. For0 < g <1,0<a,ay,a, < g" (n=1,2,---) and |qap/a| < 1, a1,a, # a, we have

o . - n . k
o1 (=t —mEg)e o (=1)"N(q;9)ng logq (q", a1/ a2 9)k(qa2/a)" m
/o (=t —a2t; 1)eo (@~1g; q)na™ (1 - ; (q.9"4"/a;9)x “

Remark 3. Tnking ay = ap in (44), we deduce

© 1 (—aq)e . (=D Ng;q)ug"logqg  —(q;9)n—19"1ogg
R A P b iy M R 2 e (B @)

which is exactly Askey’s result in ([15], p. 349, (2.9)).
Taking r = 1in (41), we get

Corollary 5. For 0 < q < 1,0 < a,ay,az,a3,a5 < q" (n = 1,2,---), |qaz/a| < 1and |qas/a1| < 1;
ay,ap # a, as, a4 # ay, we have
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/‘00 -1 (—lli’, —mt, —ast; Q)oo dt
0 (—t, —axt, —a4t; 7)o

(7:9)nq" log q < (9", a1/ a2;9)x(qaz/a)* gk a3/
(@a—q)(a—g)--(a—g")(1—q") = (0,95 /a;9)x 201 aqufk/ul'q’qa‘}/al . (46)

Theorem 3. If 0 < q < 1,0 < a,a1,a2,...,8242 < q, |qaz/a|l < 1 and |qazj2/azi1| < 1
(Gj=1,2,...,r);a1,ay #a, aj,p,a1,3 #a; (1 =1,3,5,...,2r — 1), then we have

/°°(—at,—alt,—a3t,...,—a2,+1t;q)codt
0 (7tr —axt, *ﬂ4t;-~-/*42r+2t}‘7)oo
_ qlogq i (a1/a; q)i(qaz/a)*
a—q /= (/a9

r (g5 ag1/ @y 42; )k, (927 12/ a2 1)

Sk @)
ki thotdk=k =1 (9,9 azj/ azj1;q)x,
ngrgkrfl S“‘§k2§k1 Sk

Proof. Taking n = 1in (41), we obtain (47) immediately.

Taking r = 0 in (47) and defining the empty sum equal to 1, we obtain the following
integral formula:

Corollary 6. For 0 < q < 1,0 < a,ay,a; < qand |qay/a| < 1;a1,a, # a, we have

® (—at,—ait;q)e ,,  qlogq q,a1/az
‘/0 (—t, _a2t,q)oo dt = a—gq Z(Pl qz/a /q/qQZ/a . (48)

Taking ¥ = 1in (47), we deduce

Corollary 7. For0 < q < 1,0 <a,ay,ay,a3,a4 < q, |qaz/al < land|qas/a1| < 1; a1,ap # a, a3, a4 # a1,
we have

© (—at, —mt, —a3t;q)oo qlogq & (a1/az;q)k(qaz/a)* qX,a3/a4
dt = E ;q,9a4/a71 . 49
/o (—t, —aot, —ast;9) oo a—q = (72/a;9)k 1 apqi /a1 H (49)

4. Connections with the g-Gamma Function

In this section, we give the corresponding formulas with the g-gamma function from (25).

Theorem 4. If0 < g <1, x> 0,0 < ay,ay,...,0042 < g%, |a2/qx+y’1| < 1and |qa2j+2/a2j,1| <1,
(G=1,2,...,r);a1,a0 # gV, aj 15,4103 #a; (1 =1,3,5,...,2r — 1), then we have

/°° -1 (—tg*™V, —ant, —ast, ..., —az1t; q)oodt

0 (—t, —ant, —agt, ..., —a2r42t;q) oo
Ty (=) T ()T (1 —x) & Ty(k+x)(a1/az2;q)x
 Ty(x+y)T(x)T;(1—x) = To(k+1—y)(g:9)k

—k: kj
r (g7 agj1/ 2j12; 9)k (98242 / A2j-1)

(az/qx+y—l)k

X

—— (50)
ki thotAke=k  j=1 (g9 “21‘/“21'71/"7)@-
0<ky <k, 1<-+-<ka<k; <k
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Proof. Taking a = ¢**¥ in (25) and noting that

7T

T,(x) = (‘7”7)";(1—@1% and T(x)I(1-x)=——,

we easily obtain (50).

90f 10

Taking ¥ = 0 in (50) and defining the empty sum equal to 1, we obtain the following

integral formula.

Corollary 8. For0 < g <1,x>0,0 < ay,ay < ¢* and |ay/q*V =Y < 1; a1,ap # ¢*Y, we have

/°° gt (S, —at e o Tg(y)Tg(1— YT ()T —x) & To(k +x)(a1/a2;9)x
Jo (=t —a2t;q) e To(x +y)Tq(0)Tg(1 —x) 5 To(k+1-y) (g 9k

Taking a1 = ap in (51), we deduce the result of Askey as follows:

Corollary 9 ([15], p. 350, Equation (2.10)). For0 < g < 1, x > 0, we have

/°° a1t (CH ) L Ta(y)T (I (1 — )
0 (=5 9)c0 Tg(x+y)T(1—x)

Remark 4. Lettinga — 0and b — 1 in (39), we have

/-00 tx—l dt _ T (ql—x’. q)oo
0 (—H9)w sinztx  (¢;9)e0
Applying
(4;9) 1—x 7T
Ty(x) = =) (1—9q) and T(x)[(1—x)= prm—
we obtain

[F g Tr g
0 (-9 rq(l_x) ’

which is exactly the result of Askey (see ([15], p. 353, Equation (4.2))).
5. Conclusions
In this paper, by applying g-exponential operator
b v (b9)n(—cO)"
190 4 —09> = N
y ( =1 ,; (:9)n

we further extend the following Ramanujan’s beta integral [10]

/°° p1(ZaE Qe T (3784
0 (=t:q)eo sin7tx (4,497 q)eo

Especially, we obtain two new integral formulas

- B . . 1-x . x
/0 tx—l( at, alt/q)oodt_ i (q ’a'q)wngl (q ,a1/ﬂ2;q,qa2/a)

(—t,—mt;q)o  sin7rx (q,a97%;q)eo q'+*/a

(ﬂz /qX+;l/*1 )k.

(51)

(52)

(53)

(54)



Mathematics 2019, 7, 118 10 of 10

and

/oo txfl (—at,q)oo = 7T (qlixr a,q/a, bql+x/a; q)oo
0 (=bt;7)co sin7tx (g,a97%,qb/a, g v /a;q) e’

We also show that Ramanujan’s beta integral can be represented with g-gamma functions [15].
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