

Article

A Further Extension for Ramanujan's Beta Integral and Applications

Gao-Wen Xi 1 and Qiu-Ming Luo 2,*

- College of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing Higher Education Mega Center, Huxi Campus, Chongqing 401331, China; xigaowen@cqust.edu.cn
- Department of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus, Chongqing 401331, China
- Correspondence: luoqm@cqnu.edu.cn

Received: 26 December 2018; Accepted: 21 January 2019; Published: 23 January 2019

Abstract: In 1915, Ramanujan stated the following formula $\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-t;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x},a;q)_\infty}{(q,aq^{-x};q)_\infty}$, where 0 < q < 1, x > 0, and $0 < a < q^x$. The above formula is called Ramanujan's beta integral. In this paper, by using q-exponential operator, we further extend Ramanujan's beta integral. As some applications, we obtain some new integral formulas of Ramanujan and also show some new representation with gamma functions and *q*-gamma functions.

Keywords: *q*-series; *q*-exponential operator; *q*-binomial theorem; *q*-Gauss formula; *q*-gamma function; gamma function; Ramanujan's beta integral

MSC: Primary 33D15; Secondary 05A30

1. Introduction, Preliminaries and Main Results

The gamma function is the most natural extension of the factorial

$$n! = 1 \cdot 2 \cdot \cdot \cdot n$$
.

Euler's original definition is

$$\Gamma(x+1) = \prod_{k=1}^{\infty} \frac{k}{k+x} \left(\frac{k+1}{k}\right)^{x}.$$
 (1)

The integral representation of the gamma function is the following form

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad \Re(x) > 0.$$
 (2)

The *q*-shifted factorials are defined by

$$(a;q)_0 = 1, (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), (3)$$
$$(a;q)_\infty = \lim_{n \to \infty} \prod_{k=0}^{n-1} (1 - aq^k) = \prod_{k=0}^{\infty} (1 - aq^k), n \ge 1.$$

$$(a;q)_{\infty} = \lim_{n \to \infty} \prod_{k=0}^{n-1} (1 - aq^k) = \prod_{k=0}^{\infty} (1 - aq^k), \qquad n \ge 1.$$
 (4)

Mathematics 2019, 7, 118 2 of 10

Clearly,

$$(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}. (5)$$

Analogously with $\Gamma(x)$, F. H. Jackson [1] defined $\Gamma_q(x)$ by

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}, \qquad 0 < q < 1.$$
 (6)

 $\Gamma_q(x)$ is called the *q*-gamma function.

The functional equation for $\Gamma(x)$,

$$\Gamma(x+1) = x\Gamma(x),\tag{7}$$

becomes

$$\Gamma_q(x+1) = \frac{1-q^x}{1-q} \Gamma_q(x) \tag{8}$$

for the *q*-gamma function. In the future, we will always take 0 < q < 1.

We also adopt the following compact notations for the multiple *q*-shifted factorials:

$$(a_1, a_2, \dots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n,$$

 $(a_1, a_2, \dots, a_m; q)_\infty = (a_1; q)_\infty (a_2; q)_\infty \cdots (a_m; q)_\infty.$

The basic hypergeometric series, or *q*-series $_r\phi_s$ is usually defined by

$${}_{r}\phi_{s}\left(\begin{matrix} a_{1},a_{2},\ldots,a_{r} \\ b_{1},\ldots,b_{s} \end{matrix};q,z\right) = \sum_{n=0}^{\infty} \frac{(a_{1};q)_{n}(a_{2};q)_{n}\cdots(a_{r};q)_{n}}{(q,b_{1};q)_{n}(b_{2};q)_{n}\cdots(b_{s};q)_{n}} \left[(-1)^{n}q^{\binom{n}{2}} \right]^{1+s-r} z^{n}, \tag{9}$$

with $\binom{n}{2} = n(n-1)/2$, where $q \neq 0$, when r > s+1. Clearly, we have

$${}_{r+1}\phi_r\left(\begin{matrix} a_1, a_2, \dots, a_{r+1} \\ b_1, b_2, \dots, b_r \end{matrix}; q, z\right) = \sum_{n=0}^{\infty} \frac{(a_1, a_2, \dots, a_{r+1}; q)_n}{(q, b_1, b_2, \dots, b_r; q)_n} z^n.$$
(10)

The usual q-differential operator, or q-derivative operator D_q is defined by (see ([2], p. 177, (2.1)) or [1,3–5]).

$$D_q\{f(a)\} = \frac{f(a) - f(aq)}{a},$$
 (11)

$$D_q^n\{f(a)\} = D_q\Big\{D_q^{(n-1)}\{f(a)\}\Big\}. \tag{12}$$

The *q*-shift operator η is (see ([6], p. 112)):

$$\eta\{f(a)\} = f(aq),\tag{13}$$

$$\eta^{-1}\{f(a)\} = f(aq^{-1}). \tag{14}$$

The operator θ is (see [7]):

$$\theta = \eta^{-1} D_q. \tag{15}$$

The *q*-exponential operator $E(b\theta)$ is defined by (see ([6], p. 112))

$$E(b\theta) = \sum_{n=0}^{\infty} \frac{(b\theta)^n q^{\binom{n}{2}}}{(q;q)_n}.$$
 (16)

Mathematics 2019, 7, 118 3 of 10

Recently, Fang further generalized the *q*-exponential operator $E(b\theta)$ in the following form (see [8], or ([9], p. 1394, Equation (5))):

$${}_{1}\phi_{0}\left(\begin{array}{c}b\\-\end{array};q,-c\theta\right)=\sum_{n=0}^{\infty}\frac{(b;q)_{n}(-c\theta)^{n}}{(q;q)_{n}}\tag{17}$$

and obtained two *q*-operator identities as follows:

$${}_{1}\phi_{0}\left(\begin{array}{c}b\\-\end{array};q,-c\theta\right)\left\{(as;q)_{\infty}\right\} = \frac{(as,bcs;q)_{\infty}}{(cs;q)_{\infty}},\tag{18}$$

$${}_{1}\phi_{0}\left(\begin{array}{c}b\\-\end{array};q,-c\theta\right)\left\{\frac{(as;q)_{\infty}}{(a\omega;q)_{\infty}}\right\} = \frac{(as;q)_{\infty}}{(a\omega;q)_{\infty}}{}_{2}\phi_{1}\left(\begin{array}{c}b,s/\omega\\q/a\omega\end{array};q,qc/a\right). \tag{19}$$

In 1915, Ramanujan stated the following formula in [10,11]:

$$\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-t;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a;q)_\infty}{(q, aq^{-x};q)_\infty},\tag{20}$$

where 0 < q < 1, x > 0, and $0 < a < q^x$. The right-hand side must be interpreted using a limit when x is an integer. The above formula is called Ramanujan's beta integral.

Hardy gave the first proof of (20) in [12]. He closed this paper with the evaluation of "another curious integral", which is another important integral. Hardy gave a nice treatment of Ramanujan's method of evaluating integrals of this type in his book on Ramanujan [13]. Rahman and Suslov gave a simple proof of (20) in ([14], pp. 109–110) by Ramanujan's sum formula $_1\psi_1$. Askey ([15], p. 349) gave an elementary proof of (20) and obtained the following formula when $a = q^{x+y}$ in (20):

$$\int_0^\infty t^{x-1} \frac{(-tq^{x+y};q)_\infty}{(-t;q)_\infty} dt = \frac{\Gamma_q(y)\Gamma(x)\Gamma(1-x)}{\Gamma_q(x+y)\Gamma_q(1-x)}$$
(21)

in terms of the *q*-gamma function and the ordinary gamma function. When $q \to 1$, this reduces to

$$\int_0^\infty \frac{t^{x-1}}{(1+t)^{x+y}} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(x,y),\tag{22}$$

where B(x, y) denotes the beta function defined by

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$
 (23)

Recently, Chen and Liu ([6], p. 123. Equation (7.3)) gave an extension of (20) by the method of the operator as follows:

$$\int_0^\infty t^{x-1} \frac{(-at, -bt; q)_\infty}{(-t, -abq^{-x-1}t; q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a, b; q)_\infty}{(q, aq^{-x}, bq^{-x}; q)_\infty}.$$
 (24)

The aim of the present paper is to further generalize Ramanujan's beta integral by the operator $_1\phi_0\left(\begin{smallmatrix}b\\-\end{smallmatrix};q,-c\theta\right)$ and to give some new formulas of Ramanujan's beta integral. We also show the connections with gamma functions and q-gamma functions.

We now state our result as follows:

Mathematics 2019, 7, 118 4 of 10

Theorem 1. If 0 < q < 1, x > 0, $0 < a, a_1, a_2, ..., a_{2r+2} < q^x$, $|qa_2/a| < 1$ and $|qa_{2j+2}/a_{2j-1}| < 1$ (j = 1, 2, ..., r); $a_1, a_2 \neq a$, $a_{l+2}, a_{l+3} \neq a_l$ (l = 1, 3, 5, ..., 2r - 1), then we have

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}t, -a_{3}t, \dots, -a_{2r+1}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t, \dots, -a_{2r+2}t; q)_{\infty}} dt$$

$$= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}/a_{2}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}}$$

$$\times \sum_{\substack{k_{1}+k_{2}+\dots+k_{r}=k\\0 \le k_{r} \le k_{r-1} \le \dots \le k_{2} \le k_{1} \le k}} \prod_{j=1}^{r} \frac{(q^{-k_{j-1}}, a_{2j+1}/a_{2j+2}; q)_{k_{j}} (qa_{2j+2}/a_{2j-1})^{k_{j}}}{(q, q^{1-k_{j-1}}a_{2j}/a_{2j-1}; q)_{k_{j}}}. \tag{25}$$

2. Proof of Theorem 1

Proof of Theorem 1. Firstly, we write Ramanujan's formula as follows:

$$\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-t;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a;q)_\infty}{(q, aq^{-x};q)_\infty}.$$
 (26)

Applying the operator

$$_{1}\phi_{0}\left(a_{1},q,-a_{2}\theta\right)$$

on both sides of (26) with respect to variable a, we obtain

$$\int_{0}^{\infty} t^{x-1} \frac{1}{(-t;q)_{\infty}} {}_{1}\phi_{0} \begin{pmatrix} a_{1} \\ -;q,-a_{2}\theta \end{pmatrix} \{(-at;q)_{\infty}\} dt
= \frac{\pi}{\sin \pi x} \frac{(q^{1-x};q)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{0} \begin{pmatrix} a_{1} \\ -;q,-a_{2}\theta \end{pmatrix} \left\{ \frac{(a;q)_{\infty}}{(aq^{-x};q)_{\infty}} \right\}. (27)$$

By (18) and (19), we get that

$$\int_0^\infty t^{x-1} \frac{(-at, -a_1 a_2 t; q)_\infty}{(-t, -a_2 t; q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_\infty}{(q, aq^{-x}; q)_\infty} 2\phi_1 \begin{pmatrix} a_1, q^x \\ q^{1+x}/a \end{pmatrix}; q, qa_2/a$$
(28)

By (5), we rewrite the formula (28) in the following form:

$$\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-t,-a_2t;q)_\infty} (-a_1a_2t;q)_\infty dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x},a;q)_\infty}{(q,aq^{-x};q)_\infty} \sum_{k=0}^\infty \frac{(q^x;q)_k (qa_2/a)^k}{(q,q^{1+x}/a;q)_k} \frac{(a_1;q)_\infty}{(a_1q^k;q)_\infty}.$$
 (29)

Next, by applying the operator

$$_{1}\phi_{0}\left(a_{3},q,-a_{4}\theta\right)$$

on both sides of the Equation (29) with respect to variable a_1 , we arrive at

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}a_{2}t, -a_{2}a_{3}a_{4}t; q)_{\infty}}{(-t, -a_{2}t, -a_{2}a_{4}t; q)_{\infty}} dt$$

$$= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}} \sum_{k=0}^{k} \frac{(q^{-k}, a_{3}; q)_{k_{1}} (qa_{4}/a_{1})^{k_{1}}}{(q, q^{1-k}/a_{1}; q)_{k_{1}}}. \tag{30}$$

Mathematics 2019, 7, 118 5 of 10

We rewrite (30) in the following form:

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}a_{2}t; q)_{\infty}}{(-t, -a_{2}t, -a_{2}a_{4}t; q)_{\infty}} (-a_{2}a_{3}a_{4}t; q)_{\infty} dt$$

$$= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}} \sum_{k_{1}=0}^{k} \frac{(q^{-k}; q)_{k_{1}} (qa_{4}/a_{1})^{k_{1}}}{(q, q^{1-k}/a_{1}; q)_{k_{1}}} \frac{(a_{3}; q)_{\infty}}{(a_{3}q^{k_{1}}; q)_{\infty}}.$$
(31)

Applying the operator

$$_{1}\phi_{0}\left(a_{5},q,-a_{6}\theta\right)$$

on both sides of the Equation (31) with respect to variable a_3 , we have

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}a_{2}t, -a_{2}a_{3}a_{4}t, -a_{2}a_{4}a_{5}a_{6}t; q)_{\infty}}{(-t, -a_{2}t, -a_{2}a_{4}t, -a_{2}a_{4}a_{6}t; q)_{\infty}} dt$$

$$= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}}$$

$$\times \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}} \sum_{k_{1}=0}^{k} \frac{(q^{-k}, a_{3}; q)_{k_{1}} (qa_{4}/a_{1})^{k_{1}}}{(q, q^{1-k}/a_{1}; q)_{k_{1}}} \sum_{k_{2}=0}^{k_{1}} \frac{(q^{-k_{1}}, a_{5}; q)_{k_{2}} (qa_{6}/a_{3})^{k_{2}}}{(q, q^{1-k}/a_{3}; q)_{k_{2}}}. (32)$$

By the mathematical induction, iterating r + 1 times, and applying the operator

$$_{1}\phi_{0}\left(\stackrel{a_{2r+1}}{-};q,-a_{2r+2}\theta\right)$$

and noting that (18) and (19), we obtain

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}a_{2}t, -a_{2}a_{3}a_{4}t, -a_{2}a_{4}a_{5}a_{6}t, \dots, -a_{2}a_{4}a_{6}a_{8} \cdots a_{2r-2}a_{2r}a_{2r+1}a_{2r+2}t; q)_{\infty}}{(-t, -a_{2}t, -a_{2}a_{4}t, -a_{2}a_{4}a_{6}t, \dots, -a_{2}a_{4}a_{6}a_{8} \cdots a_{2r-2}a_{2r}a_{2r+2}t; q)_{\infty}} dt$$

$$= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}; q)_{k}(qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}} \sum_{k_{1}=0}^{k} \frac{(q^{-k}, a_{3}; q)_{k_{1}}(qa_{4}/a_{1})^{k_{1}}}{(q, q^{1-k}/a_{1}; q)_{k_{1}}}$$

$$\times \sum_{k_{2}=0}^{k_{1}} \frac{(q^{-k_{1}}, a_{5}; q)_{k_{2}}(qa_{6}/a_{3})^{k_{2}}}{(q, q^{1-k_{1}}/a_{3}; q)_{k_{2}}} \cdots \sum_{k_{r}=0}^{k_{r-1}} \frac{(q^{-k_{r-1}}, a_{2r+1}; q)_{k_{r}}(qa_{2r+2}/a_{2r-1})^{k_{r}}}{(q, q^{1-k_{r-1}}/a_{2r-1}; q)_{k_{r}}}. (33)$$

Letting $a_{2j-1} \mapsto a_{2j-1}/a_{2j}$ and $a_{2j+2} \mapsto a_{2j+2}/a_{2j}$ $(j = 1, 2, \dots r)$ in (33), we show that

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}t, -a_{3}t, \dots, -a_{2r+1}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t, \dots, -a_{2r+2}t; q)_{\infty}} dt$$

$$= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}/a_{2}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}}$$

$$\times \sum_{\substack{k_{1}+k_{2}+\dots+k_{r}=k\\0 \le k_{r} \le k_{r-1} \le \dots \le k_{2} \le k_{1} \le k}} \prod_{j=1}^{r} \frac{(q^{-k_{j-1}}, a_{2j+1}/a_{2j+2}; q)_{k_{j}} (qa_{2j+2}/a_{2j-1})^{k_{j}}}{(q, q^{1-k_{j-1}}a_{2j}/a_{2j-1}; q)_{k_{j}}}. (34)^{k_{j}}$$

The proof of Theorem 1 is complete.

3. Some Applications

In this section, we will obtain the corresponding new integral formulas from (25).

Taking r=0 in (25) and defining the empty sum equal to 1, we obtain the following integral formula:

Mathematics 2019, 7, 118 6 of 10

Corollary 1. For 0 < q < 1, x > 0, 0 < a, a_1 , $a_2 < q^x$ and $|qa_2/a| < 1$; a_1 , $a_2 \ne a$, we have

$$\int_0^\infty t^{x-1} \frac{(-at, -a_1t; q)_\infty}{(-t, -a_2t; q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_\infty}{(q, aq^{-x}; q)_\infty} 2\phi_1 \begin{pmatrix} q^x, a_1/a_2 \\ q^{1+x}/a \end{pmatrix}; q, qa_2/a$$
(35)

Remark 1. If setting $a_2 = aa_1q^{-x-1}$ in (35), we get

$$\int_0^\infty t^{x-1} \frac{(-at, -a_1t; q)_\infty}{(-t, -aa_1q^{-x-1}t; q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_\infty}{(q, aq^{-x}; q)_\infty} {}_1\phi_0 \begin{pmatrix} q^x \\ -; q, a_1q^{-x} \end{pmatrix}.$$
(36)

Applying the q-binomial theorem (see ([16], p. 8. (1.3.2)))

$${}_{1}\phi_{0}\left(\begin{array}{c} a\\ -; q, z \end{array}\right) = \frac{(az; q)_{\infty}}{(z; q)_{\infty}} \tag{37}$$

in (36), we obtain

$$\int_0^\infty t^{x-1} \frac{(-at, -a_1t; q)_\infty}{(-t, -aa_1q^{-x-1}t; q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a, a_1; q)_\infty}{(q, aq^{-x}, a_1q^{-x}; q)_\infty}.$$
 (38)

Setting $a_1 = b$ in (38), we obtain (24) immediately. Hence, we say that the formula (35) is an extension of result (24) of Chen and Liu.

Corollary 2. *For* 0 < q < 1, x > 0, $0 < a, b < q^x$; $a \ne b$, we have

$$\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-bt;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a, q/a, bq^{1+x}/a; q)_\infty}{(q, aq^{-x}, qb/a, q^{1+x}/a; q)_\infty}.$$
 (39)

Proof. Setting $a_1 \to 1$, $a_2 \to b$ in (35) and applying *q*-Gauss sum formula ([16], p. 14, Equation (1.5.1)):

$$_2\phi_1\left({a,b\atop c};q,c/ab\right)={(c/a,c/b;q)_\infty\over (c,c/ab;q)_\infty}, \qquad |c/ab|<1,$$

we obtain (39).

Remark 2. *If letting b* \rightarrow 1 *in* (39), *we obtain* (20) *immediately. Hence, the formula* (39) *is also an extension of* (20):

Taking r = 1 in (25), we have

Corollary 3. For 0 < q < 1, x > 0, $0 < a, a_1, a_2, a_3, a_4 < q^x$, $|qa_2/a| < 1$ and $|qa_4/a_1| < 1$; $a_1, a_2 \neq a$, $a_3, a_4 \neq a_1$, we have

$$\int_{0}^{\infty} t^{x-1} \frac{(-at, -a_{1}t, -a_{3}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t; q)_{\infty}} dt
= \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_{\infty}}{(q, aq^{-x}; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{x}, a_{1}/a_{2}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+x}/a; q)_{k}} {}_{2}\phi_{1} \begin{pmatrix} q^{-k}, a_{3}/a_{4} \\ a_{2}q^{1-k}/a_{1} \end{pmatrix}, (40)$$

Mathematics 2019, 7, 118 7 of 10

Theorem 2. If 0 < q < 1, $0 < a, a_1, a_2, \ldots, a_{2r+2} < q^n$ $(n = 1, 2, \cdots)$, $|qa_2/a| < 1$ and $|qa_{2j+2}/a_{2j-1}| < 1$, $(j = 1, 2, \ldots, r)$; $a_1, a_2 \neq a$, $a_{l+2}, a_{l+3} \neq a_l$ $(l = 1, 3, 5, \ldots, 2r - 1)$, then we have

$$\int_{0}^{\infty} t^{n-1} \frac{(-at, -a_{1}t, -a_{3}t, \dots, -a_{2r+1}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t, \dots, -a_{2r+2}t; q)_{\infty}} dt
= \frac{(-1)^{n-1} (q; q)_{n} q^{n} \log q}{(a^{-1}q; q)_{n} a^{n} (1 - q^{n})} \sum_{k=0}^{\infty} \frac{(q^{n}, a_{1}/a_{2}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+n}/a; q)_{k}}
\times \sum_{\substack{k_{1}+k_{2}+\dots+k_{r}=k\\0 \le k_{r} \le k_{r-1} \le \dots \le k_{2} \le k_{1} \le k}} \prod_{j=1}^{r} \frac{(q^{-k_{j-1}}, a_{2j+1}/a_{2j+2}; q)_{k_{j}} (qa_{2j+2}/a_{2j-1})^{k_{j}}}{(q, q^{1-k_{j-1}}a_{2j}/a_{2j-1}; q)_{k_{j}}}.$$
(41)

Proof. By (4), we easily obtain

$$(q^{1-x};q)_{\infty} = (1-q^{1-x})(1-q^{2-x})\cdots(1-q^{n-1-x})(1-q^{n-x})(1-q^{n+1-x})(1-q^{n+2-x})\cdots, \tag{42}$$

$$(aq^{-x};q)_{\infty} = (1 - aq^{-x})(1 - aq^{1-x})(1 - aq^{2-x}) \cdots (1 - aq^{n-1-x})(1 - aq^{n-x})(1 - aq^{n+1-x})(1 - aq^{n+2-x}) \cdots$$
 (43)

Noting (42), (43) and using the L'Hospital rule, via some simple calculation, we get

$$\begin{split} &\lim_{x\to n} \frac{\pi}{\sin\pi x} \frac{(q^{1-x},a;q)_{\infty}}{(q,aq^{-x};q)_{\infty}} \\ &= \frac{(a;q)_{\infty}}{(q;q)_{\infty}} \lim_{x\to n} \frac{\pi}{\sin\pi x} \frac{(q^{1-x};q)_{\infty}}{(aq^{-x};q)_{\infty}} \\ &= \frac{(a;q)_{\infty}}{(q;q)_{\infty}} \frac{(-1)^{n-1}q^{-1-2-\dots-(n-1)}(1-q)(1-q^2)\dots(1-q^{n-1})(1-q)(1-q^2)\dots}{(-1)^nq^{-1-2-\dots-n}(a-q)(a-q^2)\dots(a-q^n)(1-a)(1-aq)(1-aq^2)\dots} \lim_{x\to n} \frac{\pi(1-q^{n-x})}{\sin\pi x} \\ &= \frac{(a;q)_{\infty}}{(q;q)_{\infty}} \frac{-(1-q)(1-q^2)\dots(1-q^{n-1})(q;q)_{\infty}}{q^{-n}(a-q)(a-q^2)\dots(a-q^n)(a;q)_{\infty}} \frac{\log q}{\cos n\pi} \\ &= \frac{(-1)^{n-1}(q;q)_nq^n\log q}{(a^{-1}q;q)_na^n(1-q^n)}. \end{split}$$

Letting $x \longrightarrow n$ on both sides of (25) and using the above limit, we obtain (41) immediately.

Taking r=0 in (41) and defining the empty sum equal to 1, we obtain the following integral formula:

Corollary 4. For 0 < q < 1, 0 < a, a_1 , $a_2 < q^n$ $(n = 1, 2, \cdots)$ and $|qa_2/a| < 1$; a_1 , $a_2 \ne a$, we have

$$\int_0^\infty t^{n-1} \frac{(-at, -a_1t; q)_\infty}{(-t, -a_2t; q)_\infty} dt = \frac{(-1)^{n-1} (q; q)_n q^n \log q}{(a^{-1}q; q)_n a^n (1 - q^n)} \sum_{k=0}^\infty \frac{(q^n, a_1/a_2; q)_k (qa_2/a)^k}{(q, q^{1+n}/a; q)_k}.$$
 (44)

Remark 3. Taking $a_1 = a_2$ in (44), we deduce

$$\int_0^\infty t^{n-1} \frac{(-at;q)_\infty}{(-t;q)_\infty} dt = \frac{(-1)^{n-1} (q;q)_n q^n \log q}{(a^{-1}q;q)_n a^n (1-q^n)} = \frac{-(q;q)_{n-1} q^n \log q}{(q-a)(q^2-a)\cdots(q^n-a)},\tag{45}$$

which is exactly Askey's result in ([15], p. 349, (2.9)).

Taking r = 1 in (41), we get

Corollary 5. For 0 < q < 1, $0 < a, a_1, a_2, a_3, a_4 < q^n$ $(n = 1, 2, \cdots)$, $|qa_2/a| < 1$ and $|qa_4/a_1| < 1$; $a_1, a_2 \neq a$, $a_3, a_4 \neq a_1$, we have

Mathematics 2019, 7, 118 8 of 10

$$\int_{0}^{\infty} t^{n-1} \frac{(-at, -a_{1}t, -a_{3}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t; q)_{\infty}} dt$$

$$= \frac{(q; q)_{n} q^{n} \log q}{(a-q)(a-q^{2}) \cdots (a-q^{n})(1-q^{n})} \sum_{k=0}^{\infty} \frac{(q^{n}, a_{1}/a_{2}; q)_{k} (qa_{2}/a)^{k}}{(q, q^{1+n}/a; q)_{k}} {}_{2} \phi_{1} \begin{pmatrix} q^{-k}, a_{3}/a_{4} \\ a_{2}q^{1-k}/a_{1} \end{pmatrix} . \tag{46}$$

Theorem 3. If 0 < q < 1, $0 < a, a_1, a_2, \ldots, a_{2r+2} < q$, $|qa_2/a| < 1$ and $|qa_{2j+2}/a_{2j-1}| < 1$ $(j = 1, 2, \ldots, r)$; $a_1, a_2 \neq a$, $a_{l+2}, a_{l+3} \neq a_l$ $(l = 1, 3, 5, \ldots, 2r - 1)$, then we have

$$\int_{0}^{\infty} \frac{(-at, -a_{1}t, -a_{3}t, \dots, -a_{2r+1}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t, \dots, -a_{2r+2}t; q)_{\infty}} dt
= \frac{q \log q}{a - q} \sum_{k=0}^{\infty} \frac{(a_{1}/a_{2}; q)_{k} (qa_{2}/a)^{k}}{(q^{2}/a; q)_{k}}
\times \sum_{\substack{k_{1}+k_{2}+\dots+k_{r}=k\\0 \le k_{r} \le k_{r-1} \le \dots \le k_{2} \le k_{1} \le k}} \prod_{j=1}^{r} \frac{(q^{-k_{j-1}}, a_{2j+1}/a_{2j+2}; q)_{k_{j}} (qa_{2j+2}/a_{2j-1})^{k_{j}}}{(q, q^{1-k_{j-1}}a_{2j}/a_{2j-1}; q)_{k_{j}}}.$$
(47)

Proof. Taking n = 1 in (41), we obtain (47) immediately.

Taking r=0 in (47) and defining the empty sum equal to 1, we obtain the following integral formula:

Corollary 6. For 0 < q < 1, 0 < a, a_1 , $a_2 < q$ and $|qa_2/a| < 1$; a_1 , $a_2 \ne a$, we have

$$\int_0^\infty \frac{(-at, -a_1t; q)_\infty}{(-t, -a_2t; q)_\infty} dt = \frac{q \log q}{a - q} {}_2\phi_1 \left(\frac{q, a_1/a_2}{q^2/a}; q, qa_2/a \right). \tag{48}$$

Taking r = 1 in (47), we deduce

Corollary 7. For 0 < q < 1, 0 < a, a_1 , a_2 , a_3 , $a_4 < q$, $|qa_2/a| < 1$ and $|qa_4/a_1| < 1$; a_1 , $a_2 \ne a$, a_3 , $a_4 \ne a_1$, we have

$$\int_0^\infty \frac{(-at, -a_1t, -a_3t; q)_\infty}{(-t, -a_2t, -a_4t; q)_\infty} dt = \frac{q \log q}{a - q} \sum_{k=0}^\infty \frac{(a_1/a_2; q)_k (qa_2/a)^k}{(q^2/a; q)_k} {}_2\phi_1 \left(\frac{q^{-k}, a_3/a_4}{a_2 q^{1-k}/a_1}; q, qa_4/a_1 \right). \tag{49}$$

4. Connections with the *q*-Gamma Function

In this section, we give the corresponding formulas with the q-gamma function from (25).

Theorem 4. If 0 < q < 1, x > 0, $0 < a_1, a_2, \ldots, a_{2r+2} < q^x$, $|a_2/q^{x+y-1}| < 1$ and $|qa_{2j+2}/a_{2j-1}| < 1$, $(j = 1, 2, \ldots, r)$; $a_1, a_2 \neq q^{x+y}$, $a_{l+2}, a_{l+3} \neq a_l$ $(l = 1, 3, 5, \ldots, 2r - 1)$, then we have

$$\int_{0}^{\infty} t^{x-1} \frac{(-tq^{x+y}, -a_{1}t, -a_{3}t, \dots, -a_{2r+1}t; q)_{\infty}}{(-t, -a_{2}t, -a_{4}t, \dots, -a_{2r+2}t; q)_{\infty}} dt
= \frac{\Gamma_{q}(y)\Gamma_{q}(1-y)\Gamma(x)\Gamma(1-x)}{\Gamma_{q}(x+y)\Gamma_{q}(x)\Gamma_{q}(1-x)} \sum_{k=0}^{\infty} \frac{\Gamma_{q}(k+x)(a_{1}/a_{2}; q)_{k}}{\Gamma_{q}(k+1-y)(q; q)_{k}} (a_{2}/q^{x+y-1})^{k}
\times \sum_{\substack{k_{1}+k_{2}+\dots+k_{r}=k\\0 \le k_{r} \le k_{r-1} \le \dots \le k_{2} \le k_{1} \le k}} \prod_{j=1}^{r} \frac{(q^{-k_{j-1}}, a_{2j+1}/a_{2j+2}; q)_{k_{j}} (qa_{2j+2}/a_{2j-1})^{k_{j}}}{(q, q^{1-k_{j-1}}a_{2j}/a_{2j-1}; q)_{k_{j}}}. (50)$$

Mathematics 2019, 7, 118 9 of 10

Proof. Taking $a = q^{x+y}$ in (25) and noting that

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}$$
 and $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}$,

we easily obtain (50).

Taking r=0 in (50) and defining the empty sum equal to 1, we obtain the following integral formula.

Corollary 8. For 0 < q < 1, x > 0, $0 < a_1, a_2 < q^x$ and $|a_2/q^{x+y-1}| < 1$; $a_1, a_2 \neq q^{x+y}$, we have

$$\int_{0}^{\infty} t^{x-1} \frac{(-tq^{x+y}, -a_{1}t; q)_{\infty}}{(-t, -a_{2}t; q)_{\infty}} dt = \frac{\Gamma_{q}(y)\Gamma_{q}(1-y)\Gamma(x)\Gamma(1-x)}{\Gamma_{q}(x+y)\Gamma_{q}(x)\Gamma_{q}(1-x)} \sum_{k=0}^{\infty} \frac{\Gamma_{q}(k+x)(a_{1}/a_{2}; q)_{k}}{\Gamma_{q}(k+1-y)(q; q)_{k}} (a_{2}/q^{x+y-1})^{k}.$$
 (51)

Taking $a_1 = a_2$ in (51), we deduce the result of Askey as follows:

Corollary 9 ([15], p. 350, Equation (2.10)). *For* 0 < q < 1, x > 0, we have

$$\int_0^\infty t^{x-1} \frac{(-tq^{x+y};q)_\infty}{(-t;q)_\infty} dt = \frac{\Gamma_q(y)\Gamma(x)\Gamma(1-x)}{\Gamma_q(x+y)\Gamma_q(1-x)}.$$
 (52)

Remark 4. Letting $a \to 0$ and $b \to 1$ in (39), we have

$$\int_0^\infty \frac{t^{x-1}}{(-t;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x};q)_\infty}{(q;q)_\infty}.$$
 (53)

Applying

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}$$
 and $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}$,

we obtain

$$\int_0^\infty \frac{t^{x-1}}{(-t;q)_\infty} dt = \frac{\Gamma(x)\Gamma(1-x)(1-q)^x}{\Gamma_q(1-x)},$$
 (54)

which is exactly the result of Askey (see ([15], p. 353, Equation (4.2))).

5. Conclusions

In this paper, by applying *q*-exponential operator

$$_{1}\phi_{0}\left(\begin{array}{c}b\\-\end{array};q,-c\theta\right)=\sum_{n=0}^{\infty}\frac{(b;q)_{n}(-c\theta)^{n}}{(q;q)_{n}},$$

we further extend the following Ramanujan's beta integral [10]

$$\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-t;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x},a;q)_\infty}{(q,aq^{-x};q)_\infty}.$$

Especially, we obtain two new integral formulas

$$\int_0^\infty t^{x-1} \frac{(-at, -a_1t; q)_\infty}{(-t, -a_2t; q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a; q)_\infty}{(q, aq^{-x}; q)_\infty} 2\phi_1 \begin{pmatrix} q^x, a_1/a_2 \\ q^{1+x}/a \end{pmatrix}; q, qa_2/a$$

Mathematics 2019, 7, 118 10 of 10

and

$$\int_0^\infty t^{x-1} \frac{(-at;q)_\infty}{(-bt;q)_\infty} dt = \frac{\pi}{\sin \pi x} \frac{(q^{1-x}, a, q/a, bq^{1+x}/a; q)_\infty}{(q, aq^{-x}, qb/a, q^{1+x}/a; q)_\infty}.$$

We also show that Ramanujan's beta integral can be represented with *q*-gamma functions [15].

Author Contributions: Both authors contributed equally to this work. In addition, both authors read and approved the final manuscript.

Acknowledgments: The authors would like to thank two referees for the helpful comments and suggestions which improved this paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Jackson, F.H. On *q*-definite integrals. *Q. J. Math.* **1910**, *50*, 101–112.
- 2. Chen, W.Y.C.; Liu, Z.-G. Parameter augmentation for basic hypergeometric series II. *J. Comb. Theory Ser. A* **1997**, *80*, 175–195. [CrossRef]
- 3. Bowman, D. *q*-Difference operators, orthogonal polynomials, and symmetric expansions. *Mem. Am. Math. Soc.* **2002**, *159*. [CrossRef]
- 4. Rogers, L.J. On the expansion of some infinite products. Proc. Lond. Math. Soc. 1892, 24, 337–352. [CrossRef]
- 5. Watson, G.N. The continuations of functions defined by generalized hypergeometric functions. *Trans. Camb. Philos. Soc.* **1910**, *21*, 281–299.
- 6. Chen, W.Y.C.; Liu, Z.-G. Parameter augmentation for basic hypergeometric series I. In *Mathematical Essays in Honor of Gian-Carlo Rota*; Sagan, B.E., Stanley, R.P., Eds.; Birkhauser: Basel, Switzerland, 1998; pp. 111–129.
- 7. Roman, S. More on the umbral caculus, with emphasis on the *q*-umbral calculs. *J. Math. Soc.* **1985**, *107*, 222–254.
- 8. Chen, V.Y.B.; Gu, N.S.S. The Cauchy Operator for basic hypergeometric series. *Adv. Appl. Math.* **2008**, 41, 177–196. [CrossRef]
- 9. Fang, J.-P. *q*-differential operator identities and applications. *J. Math. Anal. Appl.* **2007**, 333, 1393–1407. [CrossRef]
- 10. Ramanujan, S. Some definite integrals. *Messenger Math.* **1915**, 44, 10–18; reprinted in: Hardy, G.H., Seshu Aiyer, P.V., Wilson, B.M., Eds.
- 11. Ramanujan, S. *Collected Papers of Srinivasa Ramanujan*; Hardy, G.H., Aiyar, P.V.S., Wilson, B.M., Eds.; Cambridge University Press: Cambridge, UK, 1927; reprinted by Chelsea, New York, 1962.
- 12. Hardy, G.H. Proof of a formula of Mr. Ramanujan. *Messenger of Math.* **1915**, 44, 18–21; reprinted in Collected Papers of G.H. Hardy, vol. 5, Oxford, 1972, 594–597.
- 13. Hardy, G.H. *Ramanujan*; Cambridge University Press: Cambridge, UK, 1940; reprinted by Chelsea, New York, 1959.
- 14. Rahman, M.; Suslov, S.K. A unified approach to the summation and integration formulas for *q*-hypergeometric functions I. *J. Stat. Plan. Inference* **1996**, *54*, 101–118. [CrossRef]
- 15. Askey, R. Ramanujan's extension of the gamma and beta functions. *Am. Math. Mon.* **1980**, *87*, 346–359. [CrossRef]
- 16. Gasper, G.; Rahma, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).