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Keywords: (common) fixed point; Hausdorff distance; α-admissibility; α-complete symmetric spaces;
probabilistic spaces

1. Introduction

In a celebrated work, Nadler [1] investigated fixed points of set-valued mappings with the help of
the Pompeiu-Hausdorff metric (see definition in next section). In fact, he obtained an extension of the
contraction mapping theorem of Banach for set-valued mappings. Later on, the area of fixed points of
set-valued functions was developed into a very rich and fruitful theory. Many authors contributed
significantly to this (cf. Feng and Liu [2], Kaneko [3], Klim and Wardowski [4], Aydi et al. [5,6], Lim [7],
Dozo [8], Mizoguchi and Takahasi [9], etc.). All these legendary works presented fixed point theorems
using the Pompeiu-Hausdorff metric. Recently, Pathak and Shahzad [10] obtained fixed point results
forH+-contractions (different from set-valued contractions), see also [11,12]. One more category of
fixed point results for set-valued mappings was established by Dehaish and Latif [13] without using
the Hausdorff metric. For other related results, see [14–24].

The generalization of fixed point theorems not only happened by weakening the contractive
conditions but also by relaxing the constraints on (the geometry of) space (see [25,26] and references
therein). It is observed that, while proving certain fixed point theorems in metric spaces, the distance
function need not satisfy the triangular inequality. This observation inspired Hicks [27] to establish
fixed point results for multivalued mappings in a space where distance function does not satisfy the
triangular inequality. Such distance functions are called symmetric (or semi-metric). This distance
function is comparatively weaker than the metric. Moreover, Hicks and Rhoades in [28] also established
the common fixed point results in symmetric spaces (also see Moutawakil [29]). Many authors
contributed greatly in the enrichment of fixed point theory in symmetric spaces, see [30–38].

In the present work, we introduce new classes of (set-valued) mappings, namely H+-type
contractions, and prove related fixed point results in symmetric spaces. Section 2 presents all the basic
notions in the existing literature, which are used while proving our results. Section 3 is divided into
three parts: Firstly, we present fixed point results for α-ϕ-H+-contractive mappings in symmetric
spaces. Secondly, we discuss the existence of common fixed points for the α-ϕ-H+-contractive pair
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(T, S) of set-valued mappings T and S on symmetric spaces. Third, we establish a result showing
the actuality of fixed points of set-valued mappings without using H or H+ symmetry. Illustrative
examples are coined to show the significance of the presented results. The concluding section discusses
the application of our results to probabilistic metric spaces.

2. Preliminaries

We start with the definition of symmetric spaces.

Definition 1 ([39]). A function s : Y×Y → [0,+∞) satisfying

(W1) s(a, b) = 0 if and only if a = b and s(a, b) ≥ 0, for a, b ∈ Y
(W2) s(a, b) = s(b, a), for all a, b ∈ Y

is called symmetric (semi-metric) on a nonempty set Y, whereas the pair (Y, s) is called a symmetric space.

Definition 2 ([39]). Let s be symmetric on Y. For y ∈ Y and γ > 0, consider B(y, γ) = {x ∈ Y : s(y, x) < γ}.

1. A topology τ(s) on Y is defined by U ∈ τ(s) if and only if, for each u ∈ U , there exists γ > 0 such that
B(u, γ) ⊂ U .

2. A subset P of Y is a neighborhood of y ∈ Y if there exists U ∈ τ(s) such that y ∈ U ⊂ P.
3. Such s is a semi-metric if for each y ∈ Y and each γ > 0, B(y, γ) is a neighborhood of y in the

topology τ(s).

Definition 3 ([28,40]). A sequence {aj} is s-Cauchy if, for every ε > 0, there exists N ∈ N such that
s(aj, ak) < ε for every j, k ≥ N with k 6= j.

Definition 4 ([28,40]). Let (Y, s) be a symmetric space.

(a) (Y, s) is S-complete if, for every s-Cauchy sequence {aj}, there exists a ∈ Y with lim
j→∞

s(aj, a) = 0.

(b) (Y, s) is s-Cauchy complete if, for every s-Cauchy sequence {aj}, there exists a ∈ Y with lim
j→∞

aj = a

with respect to τ(s).
(c) T : Y → Y is s-continuous if, whenever lim

j→∞
s(aj, a) = 0, we have lim

j→∞
s(Taj, Ta) = 0.

(d) T : Y → Y is τ(s)-continuous if, whenever lim
j→∞

aj = a with respect to τ(s), we have lim
j→∞

Taj = Ta

with respect to τ(s).

Due to relaxing triangular inequality in case of semi-metrics, some alternate concepts need to be
satisfied and are listed below.

(W3) [39] Assume {aj}, a, and b in Y such that

lim
j→∞

s(aj, a) = 0 and

lim
j→∞

s(aj, b) = 0

 . Then a = b.

(W4) [39] Assume {aj}, {bj}, and a in Y such that

lim
j→∞

s(aj, a) = 0 and

lim
j→∞

s(aj, bj) = 0

 . Then lim
j→∞

s(bj, a) = 0.

(CC) [41] Assume {aj} and a in Y such that lim
j→∞

s(aj, a) = 0. Then lim
j→∞

s(aj, b) = s(a, b) for some

b ∈ Y.
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Definition 5 ([27]). A symmetric space (Y, s) is complete if, whenever
∞
∑

j=1
s(aj, aj+1) < ∞, there exists a ∈ Y

such that lim
j→∞

s(aj, a) = 0.

Definition 6 ([29]). Let P 6= ∅ be a subset in a symmetric space (Y, s). We say that P is

(i) s-closed if and only if Ps
= P, where Ps

= {y ∈ Y : s(y, P) = 0} and s(y, P) = inf{s(y, p) : p ∈ P};
(ii) bounded if and only if sup{d(p, q) : p, q ∈ P} < ∞.

The following families of subsets of a nonempty set Y are considered for the rest of the paper:

N (Y) = {P : P ⊆ Y and P 6= ∅};
CLs(Y) = {P : P ∈ N (Y) and P̄s = P};
Bs(Y) = {P : P ∈ N (Y) and P is bounded};
CBs(Y) = {P : P ∈ CLs(Y) ∩ Bs(Y)}; and

C(Y) = {P : P ∈ N (Y) and P is compact}.

For P, Q ∈ CBs(Y), theH andH+ distance functions are defined as

H(P, Q) = max
{

sup
a∈P

s(a, Q), sup
b∈Q

s(b, P)
}

(1)

and

H+(P, Q) =
1
2

[
sup
a∈P

s(a, Q) + sup
b∈Q

s(b, P)

]
(2)

where s(a, Q) = inf
b∈Q

s(a, b).H is called a Pompeiu-Hausdorff distance.

Proposition 1 ([29]). (CBs(Y),H) is a symmetric space if (Y, s) is a symmetric space.

Proposition 2. (CBs(Y),H+) is a symmetric space if (Y, s) is a symmetric space.

Proof. Clearly,H+ satisfies (W2) because s satisfies (W2).
Next, we show thatH+(P, Q) = 0 if and only if P = Q. We only need to show thatH+(P, Q) =

0 =⇒ P = Q. The converse will be true due to property (W1) on s. The fact thatH+(P, Q) = 0 for any
P, Q ∈ CBs(X) implies that sup{s(q, P)|q ∈ Q} = 0 and sup{s(p, Q)|p ∈ P} = 0. Thus, s(q, P) = 0
for q ∈ Q and s(p, Q) = 0 for p ∈ P. This yields that q ∈ Ps and p ∈ Qs. Hence, Q ⊂ Ps

= P and
P ⊂ Qs

= Q. Therefore, P = Q, soH+ satisfies (W1).

Remark 1 ([10]). H+ andH are topologically equivalent, i.e.,

k1H(P, Q) ≤ H+(P, Q) ≤ k2H(P, Q),

where k1 = 1
2 and k2 = 1.

It is worth mentioning here that the equivalence of two symmetric spaces does not mean that the
results proved with one are equivalent to others. This is shown by means of some examples in [10,12]
in case of metric spaces.

Lemma 1 ([27]). Let (Y, s) be a symmetric space and T : Y → Bs(Y). Then lim
j→∞

s(aj, Ta) = 0 if and only if

there exists bj ∈ Ta, satisfying lim
j→∞

s(aj, bj) = 0.
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In order to relax the requirement of satisfying the contractive condition at every pair of points in
a space without altering the outcome, Samet et al. [42] coined the notion of α-admissibility. The idea of
α-admissible mappings is interesting, as it includes the case of discontinuous mappings, unlike the
contraction mapping. Nowadays, the literature dealing with fixed point problems via α-admissible
mappings has been developed extensively in various directions. For the rest of the paper, the used
mapping α (unless mentioned) is considered as α : Y×Y → [0, ∞), where Y is nonempty.

Definition 7 ([42]). A self-mapping T : Y → Y is called α-admissible if for a, b ∈ Y, the condition α(a, b) ≥ 1
implies that α(Ta, Tb) ≥ 1.

In order to extend the notion of α admissibility to set-valued mappings, Asl et al. [43] came up
with the following definition in metric spaces.

Definition 8 ([43]). A set-valued mapping T : Y → N (Y) is called α∗-admissible if, for all a, b ∈ Y,
α(a, b) ≥ 1 implies α∗(Ta, Tb) ≥ 1, where α∗(Ta, Tb) = inf{α(x, y) : x ∈ Ta, y ∈ Tb}.

Afterwards, a new definition of multivalued α-admissible mappings is proposed by
Mohammadi et al. [44] as follows:

Definition 9 ([44]). A set-valued mapping T : Y → N (Y) is called an α-admissible mapping if, for all a ∈ Y
and b ∈ Ta, α(a, b) ≥ 1 implies α(b, c) ≥ 1 for each c ∈ Tb.

Remark 2 ([44]). A mapping with α∗-admissibility also has α-admissibility. The converse may not hold.

Definition 10 ([44]). Let T, S : Y → N (Y) be two mappings. The ordered pair (T, S) is said to be α-admissible
if, for all a, b ∈ Y, α(a, b) ≥ 1 implies α(p, q) ≥ 1, for all p ∈ Ta and q ∈ Sb.

The notion of α-completeness of a metric space defined by Hussain et al. [45] (see also [46]) weakens
the metric completeness.

Definition 11 ([45]). A metric space (Y, s) is called α-complete if and only if every Cauchy sequence {aj} in Y
with α(aj, aj+1) ≥ 1 for all j, converges in Y.

Remark 3 ([45]). If (Y, s) is complete, then it is also α-complete. The converse may not hold.

In 2015, Kutbi and Sintunavarat [47] weakened the notion of continuity by introducing
α-continuity as follows:

Definition 12 ([47]). A set-valued mapping T is said to be α-continuous on (CL(Y),H), if for each sequence

{aj} with aj → a ∈ Y as j→ ∞ and α(aj, aj+1) ≥ 1 for all j ∈ N, we have Taj
H−→ Ta as j→ ∞.

Let Φ denote the set of all monotone nondecreasing functions ϕ : [0, ∞) → [0, ∞) such that
∑∞

j=1 ϕj(t) < ∞ for each t > 0, where ϕj is the jth iterate of ϕ.

Lemma 2. Assume the following statements:

(i) ϕ ∈ Φ;
(ii) lim

j→∞
ϕj(t) = 0;

(iii) ϕ(t) < t for all t > 0.

Then (i) implies (ii), which implies (iii).
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Very recently in [48], fixed point results for single valued α-ϕ-contractive mappings in symmetric
spaces are obtained.

Definition 13. A self-mapping T on a symmetric space (Y, s) is called α-ϕ-contractive if there exist ϕ in Φ
and α : Y×Y → [0, ∞) such that

α(a, b)s(Ta, Tb) ≤ ϕ
(
s(a, b)

)
for all a, b ∈ Y.

3. Main Results

First, we extend the idea of α-completeness to the symmetric space (Y, s).

Definition 14. A symmetric space (Y, s) is said to be α-complete if, for every sequence {aj} in Y, satisfying
∞
∑

j=1
s(aj, aj+1) < ∞ with α(aj, aj+1) ≥ 1 for all j ∈ N, there exists a ∈ Y such that lim

j→∞
s(aj, a) = 0.

Remark 4. If (Y, s) is complete, then it is also α-complete. The converse need not be true (see Example 1).

Example 1. Let Y = { 1
j : j ∈ N} ∪ {1 + 1

j : j ∈ N}. Define s : Y×Y → [0, ∞) by s(a, b) = |b− a| for all
a, b ∈ Y. Then (Y, s) is a complete symmetric space. Consider α : Y×Y → [0, ∞) as

α(a, b) =


1 if a, b ≥ 1

0 otherwise.

Here, (Y, s) is also α-complete. In fact, for every sequence {aj} in Y, satisfying
∞
∑

j=1
s(aj, aj+1) < ∞ with

α(aj, aj+1) ≥ 1 for all j ∈ N, we have aj ∈ {1 + 1
j : j ∈ N}. There exists a = 1 ∈ Y such that

lim
j→∞

s(1 + 1
j , 1) = 0.

Definition 15. A set-valued mapping T : Y → CL(Y) is called α-H+-continuous on CL(Y) if lim
j→∞

s(aj, a) =

0 and α(aj, aj+1) ≥ 1 for all j ∈ N implies lim
j→∞
H+(Taj, Ta) = 0.

3.1. Fixed Point Theorems UsingH+ Distance Functions

Definition 16. Let (Y, s) be a symmetric space. A set-valued mapping T : Y → N (Y) is called
α-ϕ-H+-contractive

(1) if there exist two functions ϕ ∈ Φ and α such that

α(a, b)H+(Ta, Tb) ≤ ϕ
(
s(a, b)

)
for all a, b ∈ Y, (3)

(2) for every a ∈ Y, b ∈ Ta, q ≥ 1, there exists c ∈ Tb such that

s(b, c) ≤ qH+(Ta, Tb).

Definition 17. In the above definition, if we put m(a, b) = max
{

s(a, b), s(a, Ta), s(b, Tb)
}

instead of s(a, b)
in Equation (3), then the mapping T is called generalized α-ϕ-H+-contractive.

Remark 5. The condition (2) in the above definition holds automatically if we replaceH+ byH. In case of the
multivalued contractions of Nadler, there is no need to assume it.
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Theorem 1. Let (Y, s) be an α-complete symmetric space with (W4). Let T : Y → CBs(Y) be a generalized
α-ϕ-H+-contraction. Assume that

(i) T is α-admissible;
(ii) there exist a0 in Y and a1 in Ta0 such that α(a0, a1) ≥ 1;
(iii) T is α-H+-continuous.

Then T admits a fixed point.

Proof. From (ii), we have a0 ∈ Y and a1 ∈ Ta0 such that α(a0, a1) ≥ 1. Assume a0 6= a1. Otherwise, a0

is a fixed point of T. Assume also a1 /∈ Ta1. Otherwise, a1 will be a fixed point of T.
Define a sequence {aj} in Y by a1 ∈ Ta0, a2 ∈ Ta1, ..., aj+1 ∈ Taj, for all j ∈ N such that aj /∈ Taj.

Further, using (i), we obtain α(aj, aj+1) ≥ 1. Because of condition (2) in Definition 16, we now have

s(aj, aj+1) ≤ α(aj−1, aj)H+(Taj−1, Taj)

≤ ϕ
(

max
{

s(aj−1, aj), s(aj−1, Taj−1), s(aj, Taj)
})

≤ ϕ
(

max
{

s(aj−1, aj), s(aj, aj+1)
})

.

(4)

If max
{

s(aj−1, aj), s(aj, aj+1)
}
= s(aj, aj+1), then from Equation (4) we have s(aj, aj+1) ≤ ϕ(s(aj, aj+1))

and then by Lemma 2, we have s(aj, aj+1) < s(aj, aj+1), a contradiction. Therefore,

s(aj, aj+1) ≤ ϕ(s(aj−1, aj)).

Applying the above process, we have

s(aj, aj+1) ≤ ϕj(s(a0, a1)).

Since ∑∞
j=1 ϕj(t) < ∞ for all t > 0, so we have

∞

∑
j=1

s(aj, aj+1) < ∞.

As Y is an α-complete symmetric space, there exists a ∈ Y such that lim
j→∞

s(aj, a) = 0. The

α-H+-continuity of T gives us
lim
j→∞
H+(Taj, Ta) = 0.

Since aj+1 ∈ Taj, by using condition (2) in Definition 16 for q ≥ 1, we have

s(aj+1, Ta) ≤ qH+(Taj, Ta)→ 0 as j→ ∞.

Thus, lim
j→∞

s(aj+1, Ta) = 0. This is equivalent to lim
j→∞

s(aj, Ta) = 0. Therefore, by Lemma 1, there exists

bj ∈ Ta such that lim
j→∞

s(aj, bj) = 0. Since lim
j→∞

s(aj, a) = 0, (W4) implies lim
j→∞

s(bj, a) = 0 which in turn

implies s(a, Ta) = 0. Since Ta is closed, a ∈ Ta.

The following result can be proved in similar lines of proof of Theorem 1.

Theorem 2. Let (Y, s) be an α-complete symmetric space with (W4) and let T : Y → CBs(Y) be an
α-ϕ-H+-contractive mapping. Assume that (i)–(iii) of Theorem 1 are true. Then T admits a fixed point.

Corollary 1. Let (Y, s) be an α-complete symmetric space with (W4) and let T : Y → CBs(Y) be a generalized
α-ϕ-H+-contractive (or α-ϕ-H+-contractive) mapping. Assume that
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(i) T is α∗-admissible;
(ii) there exist a0 in Y and a1 in Ta0 such that α(a0, a1) ≥ 1;
(iii) T is α-H+-continuous.

Then T admits a fixed point.

Corollary 2. Let (Y, s) be a complete symmetric space with (W4) and let T : Y → CBs(Y) be a generalized
α-ϕ-H+-contractive (or α-ϕ-H+-contractive) mapping. We assume that (i) and (ii) in Corollary 1 hold. If T is
a continuous multivalued mapping, then T has a fixed point.

We now prove our second main result.

Theorem 3. Let (Y, s) be an α-complete symmetric space with (CC) and let T : Y → CBs(Y) be a generalized
α-ϕ-H+-contractive mapping. Assume that

(i) T is α-admissible;
(ii) there exist a0 in Y and a1 in Ta0 such that α(a0, a1) ≥ 1;
(iii) if {aj} is a sequence in Y with lim

j→∞
s(aj, a) = 0 and α(aj, aj+1) ≥ 1 for all j ∈ N then α(aj, a) ≥ 1.

Then T admits a fixed point.

Proof. Following the proof of Theorem 1, we have that
∞
∑

j=1
s(aj, aj+1) < ∞ and α(aj, aj+1) ≥ 1 for all

j ∈ N. Then by α-completeness of (Y, s), there exists a ∈ Y such that lim
j→∞

s(aj, a) = 0. Using (iii),

we have α(aj, a) ≥ 1 for all j ∈ N. We now claim that a ∈ Ta. Assume that a /∈ Ta. Then s(a, Ta) > 0.
By using (3), we have

s(aj+1, Ta) ≤ α(aj, a)H+(Taj, Ta)

≤ ϕ
(

max{s(aj, a), s(aj, Taj), s(a, Ta)}
)
.

(5)

Let ε =
s(a, Ta)

2
. Since lim

j→∞
s(aj, a) = 0, we can find n1 ∈ N such that s(aj, a) <

s(a, Ta)
2

for all j > n1.

Moreover, as lim
j→∞

s(aj, aj+1) = 0, we can find n2 ∈ N such that s(aj, Taj) ≤ s(aj, aj+1) <
s(a, Ta)

2
for all

j > n2. Thus, we have
max{s(aj, a), s(aj, Taj), s(a, Ta)} = s(a, Ta)

for all j ≥ n0 = max{n1, n2}. Therefore, Equation (5) yields

s(aj+1, Ta) ≤ ϕ(s(a, Ta)) (6)

for j ≥ n0. Taking limit as j → ∞ in (6) and in view of condition (CC), we get s(a, Ta) ≤ ϕ(s(a, Ta)),
which is a contradiction to the consequence of Lemma 2. Thus, our assumption is wrong. Hence,
a ∈ Ta.

Following the proof of the above theorem, the next result can be proved easily.

Theorem 4. Let (Y, s) be an α-complete symmetric space with (CC). Let T : Y → CBs(Y) be an
α-ϕ-H+-contraction. Then if Conditions (i), (ii), and (iii)’ of Theorem 3 hold, then T admits a fixed point.

Corollary 3. Let (Y, s) be an α-complete symmetric space with (CC). Let T : Y → CBs(Y) be a generalized
α-ϕ-H+-contractive (or, α-ϕ-H+-contractive) mapping. Suppose that Conditions (ii) and (iii) in Theorem 3
hold. If in addition T is α∗-admissible, then T admits a fixed point.
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Corollary 4. Let (Y, s) be a complete symmetric space with (CC). Let T : Y → CBs(Y) be a generalized
α-ϕ-H+-contraction (or α-ϕ-H+-contraction). Suppose that Conditions (ii) and (iii) in Theorem 3 hold. If in
addition T is α∗-admissible, then T admits a fixed point.

Remark 6. If we replace multivalued mappings by single valued mappings in all of the above results, then we
get corresponding results for the single valued mappings as corollaries. The main results in [48] are corollaries to
Theorems 1 and 3 for single valued mappings.

Example 2. Let Y = (−5, 5) and s : Y × Y → [0, ∞) be defined by s(a, b) = (a− b)2. Then (Y, s) is a
symmetric space, but not complete. Define T : Y → CBs(Y) by

T(a) =



[−4, |a + 1|] if a ∈ (−5, 0),

[
0, a

2
]

if a ∈ [0, 2],

[ a+5
5 , 4

]
if a ∈ (2, 5).

Let us define α : Y×Y → [0, ∞) by

α(a, b) =


2 if a, b ∈ [0, 2]

0 otherwise.

Then one can easily observe that the symmetric space (Y, s) is α-complete and the mapping T is not continuous,
but α-H+-continuous. Moreover, Y satisfies (W4) (e.g., the sequences {an = 1

n}, {bn = 1
2n}, and a = 0).

Moreover, the mapping T is α-admissible and there exist a0 = 1 and a1 = 1
2 ∈ Ta0 = [0, 1

2 ] such that
α(a0, a1) ≥ 2. Now, for a, b ∈ [0, 2],

α(a, b)H+(Ta, Tb) = 2H+(Ta, Tb)

=
1
2
(a− b)2

≤ 1
2

s(a, b) = ϕ(s(a, b)).

Since α(a, b) = 0 in other cases, the condition (3) holds vacuously. It is also easy to verify that for every a ∈ Y,
b ∈ Ta, and q ≥ 1, there exists c ∈ Tb such that s(b, c) ≤ qH+(Ta, Tb).

Therefore, the mapping T is α-ϕ-H+-contractive for ϕ(t) = 1
2 t. Thus, all conditions of Theorem 2 hold,

so T admits a fixed point, a = 0.

3.2. Common Fixed Point Theorems UsingH+ Distance

Definition 18. Let (Y, s) be a symmetric space. Assume T, S : Y → N (Y). (T, S) is called an
α-ϕ-H+-contractive pair if

(1) there exist ϕ ∈ Φ and a symmetric function α : Y×Y → [0, ∞) such that

α(a, b)H+(Ta, Sb) ≤ ϕ
(
mT,S(a, b)

)
(7)

for all a, b ∈ Y, where mT,S(a, b) = max
{

s(a, b), s(a, Ta), s(b, Sb)
}

;
(2) for every a ∈ Y,

(a) b ∈ Ta, q ≥ 1, and there exists c ∈ Sb such that

s(b, c) ≤ qH+(Ta, Sb);
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(b) b ∈ Sa, q ≥ 1, and there exists c ∈ Tb such that

s(b, c) ≤ qH+(Sa, Tb).

Theorem 5. Let (Y, s) be an α-complete symmetric space with (CC) and let (T, S) [T, S : Y → CBs(Y)] be
an α-ϕ-H+-contractive pair. Assume that

(i) (T, S) is α-admissible;
(ii) there exist a0 in Y and a1 ∈ Ta0 such that α(a0, a1) ≥ 1;
(iii) if {aj} is any sequence in Y with lim

j→∞
s(aj, a) = 0 and α(aj, aj+1) ≥ 1 for all j ∈ N, then we have

α(aj, a) ≥ 1.

Then T and S admit a fixed point.

Proof. Let a0 ∈ Y be arbitrary and a1 ∈ Ta0. We assume a0 6= a1. Otherwise, there is nothing to
prove. It means s(a0, a1) > 0. From (ii), we have α(a0, a1) ≥ 1. Thus, by virtue of 2(a) of Definition 18,
we choose a2 ∈ Sa1 such that

s(a1, Sa1) ≤ s(a1, a2)

≤ α(a0, a1)H+(Ta0, Sa1)

≤ ϕ
(
mS,T(a0, a1)

)
≤ ϕ

(
max{s(a0, a1), s(a0, Ta0), s(a1, Sa1)}

)
= ϕ

(
max{s(a0, a1), s(a1, Sa1)}

)
.

(8)

Clearly, from the above inequality, we can conclude that max{s(a0, a1), s(a1, Sa1)} = s(a0, a1).
Otherwise, the second case would lead us to a contradiction. Thus, Equation (8) yields us

s(a1, a2) ≤ ϕ(s(a0, a1)). (9)

As a1 ∈ Ta0 and a2 ∈ Sa1 and due to α-admissibility of (T, S), we have α(a1, a2) ≥ 1. Thus, by virtue
of 2(b) of Definition 18, we choose a3 ∈ Ta2 such that

s(a2, Ta2) ≤ s(a2, a3)

≤ α(a1, a2)H+(Sa1, Ta2)

≤ ϕ
(
mS,T(a1, a2)

)
≤ ϕ

(
max{s(a1, a2), s(a1, Sa1), s(a2, Ta2)}

)
= ϕ

(
max{s(a1, a2), s(a2, Ta2)}

)
.

(10)

Again, we have max{s(a1, a2), s(a2, Ta2)} = s(a1, a2). Otherwise, the second case would lead to a
contradiction. Thus, from (10), we have

s(a2, a3) ≤ ϕ(s(a1, a2)) = ϕ2(s(a0, a1)). (11)

Persisting this way, a sequence {aj} in Y is generated such that a2j+1 ∈ Ta2j, a2j+2 ∈ Sa2j+1 satisfying
α(aj, aj+1) ≥ 1, and

s(aj, aj+1) = ϕj(s(a0, a1)) for all j ∈ N. (12)

Since ∑∞
j=1 ϕj(t) < ∞, we have ∑∞

j=1 s(aj, aj+1) < ∞. As the symmetric space (Y, s) is α-complete,
there exists a ∈ Y such that

lim
j→∞

s(aj, a) = 0.
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From (iii), we have α(aj+1, a) ≥ 1 for all j ∈ N. We now claim that a ∈ Ta ∩ Sa. Firstly, let us assume
a /∈ Ta, then s(a, Ta) > 0. By 2(a), we have

s(a2j+2, Ta) ≤ α(a2j+1, a)H+(Sa2j+1, Ta)

≤ ϕ
(

max{s(a2j+1, a), s(a, Ta), s(a2j+1, Sa2j+1)}
)
.

(13)

Since lim
j→∞

s(aj, a) = 0, we can find integer N1 ∈ N such that s(a2j+1, a) < ε = s(a,Ta)
2 for all j > N1.

Furthermore, as {aj} is a sequence such that lim
j→∞

s(aj, aj+1) = 0, we can find integer N2 ∈ N such that

d(a2j+1, Sa2j+1) ≤ s(a2j+1, a2j+2) < ε = s(a,Ta)
2 for all j > N2. Thus, we get

max{s(a, a2j+1), s(a, Ta), s(a2j+1, Sa2j+1)} = s(a, Ta),

for all j ≥ N0 = max{N1, N2}. Therefore, we have

s(Ta, a2j+2) ≤ ϕ(s(a, Ta)) for all j ≥ N0.

Taking j → ∞ and in view of (CC), we get s(Ta, a) < s(a, Ta), which gives us s(a, Ta) = 0. As Ta is
closed, we have a ∈ Ta. Arguing in a similar way, we can get a ∈ Sa and hence a ∈ Ta ∩ Sa.

Example 3. Let Y = [0, 5) and s : Y×Y → [0, ∞) defined by s(a, b) = (a− b)2. Then (Y, s) is a symmetric
space and not complete. Consider T, S : Y → CBs(Y) given by

T(a) =


[0, a2

8 ] if a ∈ [0, 2],

{1} if a > 1,
and S(a) =


[0, a

5 ] if a ∈ [0, 2],

{ 9
2} if a > 1.

We now define α : Y×Y → [0, ∞) by

α(a, b) =


1 if a, b ∈ [0, 2],

0 otherwise.

• Here symmetric space (Y, s) is α-complete with (CC). In fact, for a given sequence {aj =
1
j + 1}, a = 1

there is b = 1
2 such that lim

j→∞
s(aj, b) = s(a, b).

• The pair (T, S) is α-admissible because for a, b ∈ Y such that α(a, b) ≥ 1, a, b should lie in [0, 2]. Then
Ta = [0, a2

8 ], Sb = [0, b
5 ] which are again subsets of [0, 2]. Thus, for any u ∈ Ta and v ∈ Sb, α(u, v) ≥ 1.

• There exist a0 = 1 and a1 = 1
8 ∈ Ta0 = [0, 1

8 ] such that α(a0, a1) ≥ 1.
• If every sequence {aj} in Y such that lim

j→∞
s(aj, a) = 0 satisfies α(aj, aj+1) ≥ 1, then aj ∈ [0, 2], which in

turn gives a ∈ [0, 2]. Thus, we have α(aj, a) ≥ 1.
• Now for a, b ∈ [0, 2], one can easily verify that α(a, b)H+(Ta, Tb) ≤ ϕ(mT,S(a, b)). In other cases, since

α(a, b) = 0, the condition (7) always holds.
• It is also easy to verify that, for all a ∈ Y, b ∈ Ta, and q ≥ 1, there exists c ∈ Sb such that s(b, c) ≤

qH+(Ta, Sb). For every a ∈ Y, b ∈ Sa, q > 1, there exists c ∈ Tb such that s(b, c) ≤ qH+(Sa, Tb).

This means the pair (T, S) is α-ϕ-H+-contractive for ϕ(t) = 1
2 t. Thus, all the requirements of Theorem 5

are satisfied and hence a = 0 ∈ Ta ∩ Sa.
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3.3. Fixed Point Results Without UsingH orH+ Distance Functions

Definition 19. Let (Y, s) be a symmetric space. A set-valued mapping T : Y → CBs(Y) is called generalized
pointwise α-ϕ-contractive if there exist functions ϕ ∈ Φ and α : Y × Y → [0, ∞) such that for a1, a2 ∈ Y,
b1 ∈ Ta1, b2 ∈ Ta2,

α(a1, a2)s(b1, b2) ≤ ϕ
(

M3(a1, a2)
)

(14)

where M3(a1, a2) = max
{

s(a1, a2), s(a1, b1), s(a2, b2)
}

.

Definition 20. A mapping T is called pointwise α-ϕ-contractive if we replace M3(a1, a2) by s(a1, a2) in
Definition 19.

Theorem 6. Let (Y, s) be an α-complete symmetric space with (W4), and let mapping T : Y → CBs(Y) be
generalized pointwise α-ϕ-contractive. Then T admits a fixed point if the following hold:

(i) T is α-admissible;
(ii) there exist a0 in Y and a1 ∈ Ta0 such that α(a0, a1) ≥ 1;
(iii) for every sequence {aj} in Y such that lim

n→∞
s(aj, a) = 0 with α(aj, aj+1) ≥ 1, there exist a sequence

{bj} in Taj such that lim
j→∞

s(bj, b) = 0 for some b ∈ Ta.

Proof. Initiating with arbitrary a0 ∈ Y and a1 ∈ Ta0 such that α(a0, a1) ≥ 1, then following the proof
of Theorem 1 we get a sequence {aj} defined by a1 ∈ Ta0, a2 ∈ Ta1, ..., aj+1 ∈ Taj for all j ∈ N such
that aj /∈ Taj. Since T is α-admissible, we have α(aj, aj+1) ≥ 1 for all j ∈ N∪ {0}. By (14), we have

s(aj, aj+1) ≤ α(aj−1, aj)s(aj, aj+1)

≤ ϕ(M3(aj−1, aj))

≤ ϕ
(

max
{

s(aj−1, aj), s(aj−1, aj), s(aj, aj+1)
})

≤ ϕ
(

max
{

s(aj−1, aj), s(aj, aj+1)
})

.

(15)

If max
{

s(aj−1, aj), s(aj, aj+1)
}

= s(aj, aj+1), then from Equation (15) we have s(aj, aj+1) ≤
ϕ(s(aj, aj+1)). Using Lemma 2, we get s(aj, aj+1) < s(aj, aj+1), that is a contradiction. Thus,
Equation (15) gives

s(aj, aj+1) ≤ ϕ(s(aj−1, aj)).

Repeating this process, we get
s(aj, aj+1) ≤ ϕj(s(a0, a1)).

As ∑∞
j=1 ϕj(t) < ∞ for all t > 0, so we obtain

∞

∑
j=1

s(aj, aj+1) < ∞.

Due to α-completeness of the symmetric space Y, there exists a ∈ Y such that lim
j→∞

s(aj, a) = 0 and by

(iii), we obtain a sequence {bj} ∈ Taj such that lim
j→∞

s(bj, b) = 0 for some b ∈ Ta.

Since aj+1 ∈ Taj, we obtain

s(aj+1, Ta) = inf{s(aj, Ta) : bj ∈ Taj}
≤ s(bj, b)→ 0 as j→ ∞.
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Thus, we find that lim
j→∞

s(aj+1, Ta) = 0. This is equivalent to lim
j→∞

s(aj, Ta) = 0. Therefore, by Lemma 1,

there exists cj ∈ Ta such that lim
j→∞

s(aj, cj) = 0. Since lim
j→∞

s(aj, a) = 0, (W4) implies lim
j→∞

s(cn, a) = 0,

which in turn implies s(a, Ta) = 0 and, since Ta is closed, a ∈ Ta.

The following results follow in a similar way as the above proof.

Theorem 7. Let (Y, s) be an α-complete symmetric space with (W4), and let mapping T : Y → CBs(Y) be
point-wise α-ϕ-contractive. If conditions (i)-(iii) in Theorem 6 hold, then T admits a fixed point.

Example 4. Let Y = (−1, 1] and s : Y × Y → [0, ∞) defined by s(a, b) = e|a−b| − 1. Then (Y, s) is a
symmetric space but not complete. Consider T : Y → CBs(Y) defined as

T(a) =



{ 1
4} if a ∈ (−1, 0),

[
0, a

3
]

if a ∈ [0, 1
2 ],

{ 1
5} if a ∈ ( 1

2 , 1]

and define α : Y×Y → [0, ∞) by

α(a, b) =


eab if a, b ∈ [0, 1

2 ],

0 otherwise.

It is clear that the symmetric space (Y, s) is α-complete with (W4). If every sequence {aj} in Y such that
lim
j→∞

s(aj, a) = 0 satisfies α(aj, aj+1) ≥ 1, then aj ∈ [0, 1
2 ], which in turn gives a ∈ [0, 1

2 ]. So Taj, Ta ⊆ [0, 1
6 ].

Therefore, there exist a sequence {bj} in Taj and b ∈ Ta such that lim
j→∞

s(bj, b) = 0. Thus, condition (iii)

is satisfied.
Further, α-admissibility of T can be verified easily. In addition, for a0 = 1

3 and a1 = 1
15 ∈ [0, 1

15 ] = Ta0,

we have α(a0, a1) = e
1
45 = 1.022... ≥ 1, and mapping T is generalized point-wise α-ϕ-contractive with

ϕ(t) = 5
6 t. Thus, all the requirements of Theorem 6 are fulfilled and a = 0 ∈ Ta.

Remark 7. Theorems 6 and 7 also hold if condition (iii) is replaced by the α-continuity of T.

4. An Application to Probabilistic Spaces

Definition 21. Let L be a collection of nondecreasing and left-continuous functions g : (−∞,+∞)→ [0, 1]
such that sup g(t) = 1 and inf g(t) = 0. Such mappings are generally called distribution functions.

Definition 22 ([28]). Let Y be a set. Assume a mapping G : Y×Y → L such that G(a, b) = Ga,b. Consider
the following conditions:

(1) for all a, b ∈ Y, Ga,b(0) = 0, where Ga,b is value of G at (a, b) ∈ Y×Y;
(2) Ga,b = K if and only if a = b, where K is the distribution function given as K(a) = 1 if a > 0 and

K(a) = 0 if a ≤ 0;
(3) Ga,b = Gb,a;
(4) If Ga,b(ε) = 1 and Gb,c(δ) = 1, then Ga,c(ε + δ) = 1.

If G satisfies (1) and (2), then it is said to be a PPM-structure on Y, and the pair (Y,G) is said to be a PPM-space.
The mapping G with (3) is called symmetric. A PPM-space (Y,G) is called a probabilistic metric space (in short,
PM-space) if G satisfies (4).
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The set Ba(ε, λ) = {b ∈ Y : Ga,b(ε) > 1− λ} for all ε, λ > 0, is called (ε, λ)-neighborhood of
a ∈ Y. tG is the topology on (Y,G) generated by the collection

U = {Ba(ε, λ) : a ∈ Y, ε, λ > 0}.

A T1 topology tG on Y can be defined as U ∈ tG if for any a ∈ U, there exists ε > 0 such that
Ba(ε, ε) ⊂ U. If Ba(ε, ε) ∈ τ(G), then tG is said to be topological.

Definition 23 ([28]). A sequence {aj} in a symmetric PPM-space (Y,G) is called fundamental if
lim

i,j→∞
Gai ,aj(t) = 1 for all t > 0.

Definition 24 ([28]). A symmetric PPM-space (Y,G) is called complete if for every fundamental sequence
{aj} there exists a ∈ Y such that lim

j→∞
Gaj ,a(t) = 1 for all t > 0.

Definition 25. A symmetric PPM-space (Y,G) is called α-complete if for every fundamental sequence {aj}
in Y with α(aj, aj+1) ≥ 1 for all j ∈ N, there exists a ∈ Y such that lim

j→∞
Gaj ,a(t) = 1 for all t > 0, where

α : Y×Y → [0, ∞).

Remark 8. (W4) is equivalent to the

(P4) lim
j→∞

Gaj ,a(t) = 1 and lim
j→∞

Gaj ,bj
(t) = 1 imply lim

j→∞
Gbj ,a(t) = 1 for all t > 0.

Each symmetric PPM-space has a compatible symmetric mapping [28] as follows:

Theorem 8 ([28]). Let (Y,G) be a symmetric PPM-space. Let h : Y×Y → [0, ∞) be a function defined as

h(a, b) =


0 if b ∈ Ba(δ, δ) for all δ > 0

sup{δ : y /∈ Ba(δ, δ), 0 < δ < 1} otherwise.

Then

(1) h(a, b) < t if and only if Ga,b(t) > 1− t.
(2) h is a compatible symmetric for tG .
(3) (Y,G) is complete if and only if (Y, s) is S-complete.

We now present the following proposition which is required for establishing our results.

Proposition 3. Let (Y,G) be a symmetric PPM-space and h be a compatible symmetric function for tG .
For P ,Q ∈ CL(Y), set

EP ,Q(ε) =
1
2
{

inf
a∈P

sup
b∈Q

Ga,b(ε) + inf
a∈Q

sup
b∈P

Ga,b(ε)
}

for ε > 0 and

H+(P ,Q) = 1
2
{

sup
a∈P

inf
b∈Q

h(a, b) + sup
b∈Q

inf
a∈P

h(a, b)
}

.

If T : Y → C(Y) is a set-valued mapping, then Ga,b(t) > 1 − t implies ETa,Tb(α0 ϕ(t)) > 1 − α0 ϕ(t)

for every t > 0 and a, b ∈ Y, where α0 > 0 such that sup
a,b∈Y

α(a, b) ≤ 1
α0

and the mapping ϕ satisfying

lim
ε→0

ϕ(t + ε) = ϕ(t) implies that α(a, b)H+(Ta, Tb) ≤ ϕ(h(a, b)).



Mathematics 2019, 7, 144 14 of 16

Proof. Let t > 0 be given and set ν = h(a, b) + t. Then h(a, b) = ν− t < ν gives us Ga,b(ν) > 1− ν

and hence ETa,Tb(α0 ϕ(ν)) > 1− α0 ϕ(ν). This gives us

1
2
{

inf
p∈Ta

sup
q∈Tb

Gp,q(α0 ϕ(ν)) + inf
q∈Tb

sup
p∈Ta

Gp,q(α0 ϕ(ν))
}
> 1− α0 ϕ(ν).

This implies for every p ∈ Ta there exists q ∈ Tb such that

1
2
{

Gp,q(α0 ϕ(ν)) + Gp,q(α0 ϕ(ν))
}
> 1− α0 ϕ(ν),

or for every q ∈ Tb there exists p ∈ Ta such that

1
2
{

Gp,q(α0 ϕ(ν)) + Gp,q(α0 ϕ(ν))
}
> 1− α0 ϕ(ν).

Therefore, for every p ∈ Ta there exists q ∈ Tb (or for every q ∈ Tb there exists p ∈ Ta) such that

h(p, q) < α0 ϕ(ν).

Then
1
2
{

sup
p∈Ta

inf
q∈Tb

h(p, q) + sup
q∈Tb

inf
p∈Ta

h(p, q)
}
< α0 ϕ(ν).

Therefore,
H+(Ta, Tb) < α0 ϕ(ν) = α0 ϕ(h(a, b) + t).

This gives

α(a, b)H+(Ta, Tb) ≤ 1
α0
H+(Ta, Tb) < ϕ(h(a, b) + t).

Taking t→ 0, we have α(a, b)H+(Ta, Tb) ≤ ϕ(h(a, b)).

Theorem 9. Let (Y,G) be an α-complete symmetric PPM-space with (P4) and admit a compatible symmetric
function h for tG . Consider the set-valued mapping T : Y → C(Y) to be α-admissible with lim

ε→0
ϕ(t+ ε) = ϕ(t).

Assume that

(i) there exist a0 ∈ Y and a1 ∈ Ta0 such that α(a0, a1) ≥ 1;
(ii) there exists α0 > 0 such that supa,b∈Y α(a, b) ≤ 1

α0
and Ga,b(t) > 1− t implies ETa,Tb(α0 ϕ(t)) >

1− α0 ϕ(t) for all t > 0;
(iii) if there is a sequence {aj} such that α(aj, aj+1) ≥ 1 for all j ∈ N and lim

j→∞
Gaj ,a(ε) = 1 for all ε > 0,

then we have α(aj, a) ≥ 1.

Then T admits a fixed point.

Proof. It is clear that (Y, h) is complete and bounded. Now, let ε > 0 and t = h(a, b) + ε. Then h(a, b) < t
gives Ga,b(t) < 1− t, which implies that ETa,Tb(α0ϕ(t)) > 1− α0ϕ(t); therefore, by Proposition 3, we have
α(a, b)H+(Ta, Tb) ≤ ϕ(h(a, b)). Applying Theorem 2, we can guarantee the existence of a fixed point.
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