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Abstract: In this paper, an upper bound on the spectral radius ρ(A ◦ B) for the Hadamard product of
two nonnegative matrices (A and B) and the minimum eigenvalue τ(C ? D) of the Fan product of
two M-matrices (C and D) are researched. These bounds complement some corresponding results
on the simple type bounds. In addition, a new lower bound on the minimum eigenvalue of the Fan
product of several M-matrices is also presented. These results and numerical examples show that the
new bounds improve some existing results.
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1. Introduction

As is well known, the Hadamard, Fan and Kronecker products play an important role in matrix
methods for statistics and econometrics [1,2]. The research on eigenvalues of the Hadamard and Fan
products of matrices is always one of the hot topics in matrix theory see References [3–16]. In this
paper, we will continue to research this topic and present some new results.

First, we introduce some notations, see Reference [17]. Throughout this article, a positive integer
n, N denotes the set {1, 2, · · · , n}. The sets of all n × n real and complex matrices are denoted by
Rn×n and Cn×n, respectively. For two real n× n matrices A = (aij) and B = (bij), we write A ≥ B
(A > B) if aij ≥ bij (aij > bij) for all i, j ∈ N. If A ≥ 0 (A > 0), we say that A is a nonnegative (positive)
matrix. AT means the transposition of matrix A. The spectral radius of A is denoted by ρ(A). If A is a
nonnegative matrix, the Perron–Frobenius theorem guarantees that ρ(A) ∈ σ(A), where σ(A) is the
set of all eigenvalues of A. Moreover, a matrix A is called reducible if there exists a nonempty proper
subset I ⊂ N such that aij = 0, ∀i ∈ I, ∀j /∈ I. If A is not reducible, then we call A irreducible (see
Reference [7]).

In addition, we denote by Zn the class of all n× n real matrices of whose off-diagonal entries are
non-positive. If A ∈ Zn, then the minimum eigenvalue of A is defined by τ(A) := min{Re(λ)|λ ∈
σ(A)}. As a special case of Zn, a matrix A = (aij) ∈ Zn is called a nonsingular M-matrix if A is
nonsingular and A−1 ≥ 0 (see Reference [8]). Mn denotes the set of all nonsingular M-matrices.
Generally speaking, the following simple facts are well known (see Problems 16, 19, and 28 in
Section 2.5 of Reference [8]):

1. If A ∈ Zn, then τ(A) ∈ σ(A);
2. If A, B ∈ Mn, and A ≥ B, then τ(A) ≥ τ(B), moreover, τ(A) ≤ min{aii};
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3. If A ∈ Mn, then there exists a positive eigenvalue of A equal to τ(A) = [ρ(A−1)]−1, where
ρ(A−1) is the Perron eigenvalue of the nonnegative matrix A−1.

Finally, let A be an irreducible nonsingular M-matrix. It is well known that there exist positive
vectors u and v such that Au = τ(A)u and vT A = τ(A)vT , where u and v are right and left Perron
eigenvectors of A, respectively. The Hadamard product of A = (aij) ∈ Cn×n and B = (bij) ∈ Cn×n is
defined by A ◦ B = (aijbij) ∈ Cn×n. As a variant of the Hadamard product, the Fan product of two
real matrices A, B ∈ Zn is denoted by A ? B = C = (cij) ∈ Zn, where

cij =

{
−aijbij, if i 6= j,
aiibii, if i = j.

2. A Mixed Type Bound for Eigenvalues of the Hadamard and Fan Products of Two Matrices

In recent years, on the problem of ρ(A ◦ B) of two nonnegative matrices A and B, there exist some
rich results based on the ρ(A) and ρ(B).

• In Reference [8], p. 358, there is an inequality for ρ(A ◦ B): if A, B ∈ Rn×n (A ≥ 0, B ≥ 0), then
ρ(A ◦ B) ≤ ρ(A)ρ(B). According to Exercise (Reference [8], p. 358), we know this inequality can
be very weak in some cases. For example, if A = I, B = J, the matrix of all ones. Then

ρ(A ◦ B) = ρ(A)� ρ(A)ρ(B) = n

when n is very large. Obviously, the equality can occur when A = B = I.
• Fang [4] gave an upper bound for ρ(A ◦ B), i.e.,

ρ(A ◦ B) ≤ max
1≤i≤n

{
2aiibii + ρ(A)ρ(B)− biiρ(A)− aiiρ(B)

}
(1)

which is sharper than the bound ρ(A)ρ(B) in Reference [8], p. 358.
• Liu et al. [14] further improved the above results and obtained the following bound:

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4(ρ(A)− aii)(ρ(B)− bii)(ρ(A)− ajj)(ρ(B)− bjj)]
1
2

}
.

(2)

Cheng [3] also obtained the following results based on the row maximum non-diagonal elements
and the commutative property of Hadamard product.

Theorem 1. Let A = (aij) and B = (bij) be nonnegative matrices, si = max
j 6=i
{aij}, ti = max

j 6=i
{bij}, then

ρ(A ◦ B) ≤

min


max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4titj(ρ(A)− aii)(ρ(A)− ajj)]
1/2
}

,

max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4sisj(ρ(B)− bii)(ρ(B)− bjj)]
1/2
}

.

 .
(3)

For the reader’s convenience and our results equivalence, we call Equation (3) a ’simple’
type bound.

Motivated by the work of Fang [3,4,14], in this section, we continue this work on the upper bound
on ρ(A ◦ B) of two nonnegative matrices and get a new upper bound, which improves the above
existing bounds. Moreover, we similarly extend our result to the Fan product of two M- matrices.

Before obtaining our results, we give some lemmas.
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Lemma 1 (Perron–Frobenius theorem [8]). If A is an irreducible nonnegative matrix, there exists a positive
vector u, such that Au = ρ(A)u.

Lemma 2 ([8]). If A, B ∈ Cn×n, D and E are positive diagonal matrices, then

D(A ◦ B)E = (DAE) ◦ B = (DA) ◦ (BE) = (AE) ◦ (DB) = A ◦ (DBE).

Lemma 3 (Brauer’s theorem). Let A = (aij) ∈ Cn×n (n ≥ 2), then

σ(A) ⊂
n⋃

i,j=1;i 6=j

{
z ∈ C : |z− aii||z− ajj| ≤

(
∑
k 6=i
|aik|

)(
∑
k 6=j
|ajk|

)}
. (4)

Let A = (aij) ∈ Cn×n (n ≥ 2), and d1, d2, · · · , dn > 0. Denote D = diag(d1, d2, · · · , dn), since
D−1 AD and A have the same eigenvalues, then by Lemma 3, we obtain that all the eigenvalues of A
lie in the region

n⋃
i,j=1;i 6=j

{
z ∈ C : |z− aii||z− ajj| ≤

(
∑
k 6=i

dk
di
|aik|

)(
∑
k 6=j

dk
dj
|ajk|

)}
. (5)

Now, we present the main theorem of this section. Here, we call it a ’mixed’ type.

Theorem 2. Let A = (aij) and B = (bij) be nonnegative matrices, si = max
j 6=i
{aij}, ti = max

j 6=i
{bij}, then

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
.

(6)

Proof. It is evident that the inequality (6) holds with the equality for n = 1. Therefore, we assume that
n ≥ 2 and divide two cases to prove this problem.

Case 1. Suppose that A ◦ B is irreducible. Obviously, A and B are also irreducible. By the
Perron–Frobenius theorem of the Lemma (1), there exists a positive vector u = (u1, u2, · · · , un)T for
any D = diag(d1, d2, · · · , dn), di > 0 such that

(D−1 AD)u = ρ(D−1 AD)u = ρ(A)u,

i.e.,

∑
j 6=i

aijdjuj

diui
= ρ(A)− aii.

Obviously, for the matrix B, we obtain similarly that

∑
j 6=i

bijdjuj

diui
= ρ(B)− bii.

Define U = diag(u1, u2, · · · , un), C = (DU)−1 A(DU), then we see that

C =


a11

d2u2
d1u1

a12 · · · dnun
d1u1

a1n
d1u1
d2u2

a21 a22 · · · dnun
d2u2

a2n
...

...
. . .

...
d1u1
dnun

an1
d2u2
dnun

an2 · · · ann
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is an irreducible nonnegative matrix and

C ◦ B = (mij) =


a11b11

d2u2
d1u1

a12b12 · · · dnun
d1u1

a1nb1n
d1u1
d2u2

a21b21 a22b22 · · · dnun
d2u2

a2nb2n
...

...
. . .

...
d1u1
dnun

an1bn1
d2u2
dnun

an2bn2 · · · annbnn

 .

From Lemma 2, it is easy to have (DU)−1(A ◦ B)(DU) = (DU)−1 A(DU) ◦ B = C ◦ B, therefore,
ρ(A ◦ B) = ρ(C ◦ B).

From the inequality (4) and ρ(A ◦ B) ≥ aiibii (see Reference [17]), for any j 6= i ∈ N, we have

(ρ(A ◦ B)− aiibii)(ρ(A ◦ B))− ajjbjj) ≤ ∑
k 6=i
|mik| ∑

l 6=j
|mjl |

= ∑
k 6=i

dkukaikbik
diui

∑
l 6=j

dlul ajl bjl
djuj

≤
(

max
k 6=i
{bik} ∑

k 6=i

dkukaik
diui

)(
max
l 6=j
{ajl} ∑

l 6=j

dlulbjl
djuj

)
≤ max

k 6=i
{bik}(ρ(A)− aii)max

l 6=j
{ajl}(ρ(B)− bjj)

= tisj

(
ρ(A)− aii

)(
ρ(B)− bjj

)
.

(7)

Thus, by solving the quadratic inequality (7), we get that

ρ(A ◦ B) ≤ 1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
≤ max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
.

i.e., the conclusion (6) holds.
Case 2. If one of A and B is reducible. We may denote by P = (pij) the n × n permutation

matrix with
p12 = p23 = · · · = pn−1,n = pn,1 = 1,

the remaining pij zero, then both A + εP and B + εP are irreducible nonnegative matrices for any
chosen sufficiently small positive real number ε. Next, we substitute A + εP and B + εP for A and B,
respectively, in the previous Case 1, and then letting ε→ 0, the result (6) follows by continuity.

Remark 1. Now, we give a comparison between the inequalities (2) and (6). According to the definitions of ti
and sj, if ti + bii ≤ ρ(B) and sj + ajj ≤ ρ(A) (i, j = 1, · · · , n), then tisj ≤ (ρ(B)− bii)(ρ(A)− ajj). Thus,
the inequality (6) is better than the inequality (2).

Example 1 ([14]). Let A and B be the following two nonnegative matrices:

A := (aij) =


4 1 0 2
1 0.05 1 1
0 1 4 0.5
1 0.5 0 4

, B := (bij) =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

By calculation, ρ(A ◦ B) = ρ(A) = 5.7339 and ρ(B) = 4.0. Thus, the result of Reference [8] (see p. 358)
is that

ρ(A ◦ B) ≤ ρ(A)ρ(B) = 22.9336.
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If we respectively apply (1) and (2) to them, according to Reference [14], then

ρ(A ◦ B) ≤ max
1≤i≤4

{
2aiibii + ρ(A)ρ(B)− aiiρ(B)− biiρ(A)

}
= 17.1017,

and
ρ(A ◦ B) ≤ max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4(ρ(A)− aii)(ρ(B)− bii)(ρ(A)− ajj)(ρ(B)− bjj)]
1
2

}
= 11.6478.

However, if Theorem 2 is used, then the following inequality can be obtained:

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
= 8.1897,

which shows that the bound in Theorem 2 is the best among the above bounds.

Example 2. Let A and B be the same as the two nonnegative matrices from Reference [18]:

A := (aij) =

 8 7 4
0 0 6
6 10 7

, B := (bij) =

 7 6 0
3 1 6
4 10 7

 .

By calculation, ρ(A ◦ B) = 95.9710, ρ(A) = 15.8590 and ρ(B) = 14.3273.
According to the result of Reference [8] (see p. 358), we have

ρ(A ◦ B) ≤ ρ(A)ρ(B) = 227.2167.

If we respectively apply (1) and (2) to them, we get

ρ(A ◦ B) ≤ max
1≤i≤4

{
2aiibii + ρ(A)ρ(B)− aiiρ(B)− biiρ(A)

}
= 211.3577,

and
ρ(A ◦ B) ≤ max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4(ρ(A)− aii)(ρ(B)− bii)(ρ(A)− ajj)(ρ(B)− bjj)]
1
2

}
= 144.1663.

However, if we apply Theorem 2, we can obtain the following inequality:

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
= 111.5199.

The example also shows that the bound in Theorem 2 is better than the existing bounds.

Corollary 1. If A and B are two stochastic matrices (i.e., probability matrices, transition matrices, or Markov
matrices), then

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4tisj(1− aii)(1− bjj)]
1
2

}
≤ max

i 6=j
1
2

{
aiibii + ajjbjj +

[
(aiibii − ajjbjj)

2 + 4(1− aii)
2(1− bii)

2
]1/2

}
.

Since the Fan product of two M-matrices has a lot of similar properties with the Hadamard
product of two nonnegative matrices see References [3–5,7,8,10,13,14]. Note that if A is an irreducible
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nonsingular M-matrix, then there also exist two positive vectors u and v such that vT A = τ(A)vT and
Au = τ(A)u, respectively. Therefore, we may similarly extend the above result (6) to the case of the
Fan product of two M-matrices.

Theorem 3. If A = (aij) and B = (bij) are nonsingular M-matrices, si = max
j 6=i
|aij|, ti = max

j 6=i
|bij|, then

τ(A ? B) ≥ min
i 6=j

1
2

{
aiibii + ajjbjj − [(aiibii − ajjbjj)

2

+ 4tisj(aii − τ(A))(bjj − τ(B))]
1
2

}
.

(8)

Proof. This proof is completely similar to that of Theorem 2.

3. Comparisons of the Simple and Mixed Type Bounds

Though Theorems 1 and 2 are similar, they are different in form. Next, we give a
simple comparison.

Theorem 4. Let A = (aij) and B = (bij) be two nonnegative matrices, if for any i 6= j, tisj(ρ(A) −
aii)(ρ(B)− bjj) 6= tjsi(ρ(A)− ajj)(ρ(B)− bii), then Theorem 1 is better than Theorem 2.

Proof. According to (3) and (6), for any i 6= j, we need only compare

max
{

tisj(ρ(A)− aii)(ρ(B)− bjj), tjsi(ρ(A)− ajj)(ρ(B)− bii)
}

:= Mij

with
min

{
titj(ρ(A)− aii)(ρ(A)− ajj), sisj(ρ(B)− bii)(ρ(B)− bjj)

}
:= Sij.

Without loss of generality, let

Mij = tisj(ρ(A)− aii)(ρ(B)− bjj). (9)

We assume that Mij < Sij, i.e.,

tisj(ρ(A)− aii)(ρ(B)− bjj) < min
{

titj(ρ(A)− aii)(ρ(A)− ajj), sisj(ρ(B)− bii)(ρ(B)− bjj)
}

.

Then,
0 ≤ sj(ρ(B)− bjj) < tj(ρ(A)− ajj), (10)

and
0 ≤ ti(ρ(A)− aii) < si(ρ(B)− bii). (11)

Therefore,
0 ≤ tisj(ρ(A)− aii)(ρ(B)− bjj) < sitj(ρ(B)− bii)(ρ(A)− ajj), (12)

which is in conflict with the previous condition (9). Thus, we see that Mij ≥ Sij for any i 6= j. This
proof is completed.

From the above discussion, we see that, generally speaking, Mij ≥ Sij for any i 6= j when
tisj(ρ(A)− aii)(ρ(B)− bjj) 6= sitj(ρ(B)− bii)(ρ(A)− ajj). Next, let us consider the case of tisj(ρ(A)−
aii)(ρ(B)− bjj) = sitj(ρ(B)− bii)(ρ(A)− ajj).

Theorem 5. Let A = (aij) and B = (bij) be two nonnegative matrices, if for any i 6= j, tisj(ρ(A) −
aii)(ρ(B)− bjj) = tjsi(ρ(A)− ajj)(ρ(B)− bii) and

tj
sj
=

ρ(B)−bjj
ρ(A)−ajj

, then Theorem 2 is equivalent to Theorem 1.
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Proof. According to the above Theorem 4, let us reconsider the relationship between Mij and Sij for
any i 6= j. For convenience, we define

αj =
sj(ρ(B)− bjj)

tj(ρ(A)− ajj)
.

Obviously,

titj(ρ(A)− aii)(ρ(A)− ajj) = sitj(ρ(B)− bii)(ρ(A)− ajj)
1
αj

,

and
sisj(ρ(B)− bii)(ρ(B)− bjj) = tisj(ρ(B)− bjj)(ρ(A)− aii)αj.

Therefore, if αj 6= 1, then we have always Mij > Sij for any i 6= j under the conditions of this

theorem. However, when αj = 1, i.e.,
tj
sj

=
ρ(B)−bjj
ρ(A)−ajj

, we have Mij = Sij for any i 6= j. Therefore,

Theorem 2 is equivalent to Theorem 1. Thus, the proof is completed.

4. Inequalities for the Fan Product of Several M-Matrices

In the previous sections, we mainly consider the Hadamard product of two matrices. In fact, there
also exist many of similar inequalities for the minimum eigenvalue of Fan product of two M-matrices:

• In Reference [8], p. 359, Horn and Johnson pointed out that

τ(A ? B) ≥ τ(A)τ(B). (13)

• In 2007, Fang gave another lower bound in the Remark 3 of Reference [4]:

τ(A ? B) ≥ min
1≤i≤n

{
biiτ(A) + aiiτ(B)− τ(A)τ(B)

}
. (14)

• In 2009, Liu et al. [14] gave a sharper bound than (14), i.e.,

τ(A ? B) ≥ 1
2 min

i 6=j

{
aiibii + ajjbjj − [(aiibii − ajjbjj)

2

+ 4(bii − τ(B))(aii − τ(A))(bjj − τ(B))(ajj − τ(A))]
1
2

}
.

(15)

Note that the classes of M-matrices and H-matrices are both closed under the Fan product (see
Observation 5.7.2 in Reference [8]). Therefore, we may consider the case of the product of several
matrices. For convenience, we shall continue to use the notation employed previously. However,
according to Reference [8], the definition of the function τ(·) should be extended to general matrices
via the comparison matrix. The comparison matrix M(A) = (mij) of a given matrix A = (aij) ∈ Cn×n

is defined by

mij =

{
−|aij|, if i 6= j,
|aii|, if i = j.

Definition 1 ([8]). For any A ∈ Rn×n, τ(A) := τ(M(A)), where M(A) is the comparison matrix of A.

In addition, if A = (ai,j) ∈ Rm×n has nonnegative entries and α ≥ 0, we write A(α) ≡ (aα
i,j) for

the αth Hadamard power of A. Moreover, we use the convention 00 ≡ 0 to ensure continuity in a for
α ≥ 0, see Reference [8].
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In Reference [8], it is shown by Theorem 5.7.15 that if A1, . . . Am are n × n H-matrices and
α1, α2, . . . , αm ≥ 0 satisfy ∑m

k=1 αk ≥ 1, then

τ(A(α1)
1 ◦ · · · ◦ A(αm)

m ) ≥
m

∏
k=1

[τ(Ak)]
αk , (16)

where A(α) is again defined as entrywise and any scalar definition of aα such that |aα| = |a|α is allowed
(see Reference [8]). Next, for convenience, we define

aα :=

{
aα, if a ≥ 0,
−|a|α, if a < 0.

(17)

The above theorem (16) provides a beautiful result, which encourages us to continue researching
this problem. Since for any H-matrix A, according to Definition 1, τ(A) = τ(M(A)). Therefore,
we need only consider the M-matrix case.

First, let us recall the following lemmas:

Lemma 4 ([12]). Let A be an irreducible nonsingular M-matrix, if AZ ≥ kZ for a nonnegative nonzero vector
Z, then k ≤ τ(A).

Lemma 5 ([19]). Let xj = (xj(1), · · · , xj(n))T ≥ 0, j ∈ {1, 2, · · · , m}, if Pj > 0 and ∑m
k=1

1
Pk
≥ 1, then

we have
n

∑
i=1

m

∏
j=1

xj(i) ≤
m

∏
j=1

{ n

∑
i=1

[xj(i)]
Pj
} 1

Pj . (18)

Next, according to these lemmas, we generalize the inequality (14) of the Fan product of two
matrices to the Fan product of several matrices.

Theorem 6. For any positive integer Pk with ∑m
k=1

1
Pk
≥ 1, if Ak ∈ Mn for all k ∈ {1, 2, · · · , m}, then

τ(A1 ? A2 · · · ? Am) ≥ min
1≤i≤n

{ m

∏
k=1

Ak(i, i)−
m

∏
k=1

[Ak(i, i)Pk − τ(A(Pk)
k )]

1
Pk

}
. (19)

Proof. It is quite evident that (19) holds with the equality for n = 1. Below, we assume that n ≥ 2.
Case 1. Suppose that Ak (k ∈ {1, 2, · · · , m}) is irreducible, then A(Pk)

k is also irreducible.

Let u(Pk)
k = (uk(1)Pk , · · · , uk(n)Pk )T > 0 be a right Perron eigenvector of A(Pk)

k , and uk =

(uk(1), · · · , uk(n))T > 0, thus for any i ∈ N, we have

A(Pk)
k u(Pk)

k = τ(A(Pk)
k )u(Pk)

k ,

Ak(i, i)Pk uk(i)Pk −∑
j 6=i
|Ak(i, j)Pk |uk(j)Pk = τ(A(Pk)

k )uk(i)(Pk),

i.e.,

∑
j 6=i
|Ak(i, j)Pk |uk(j)Pk =

(
Ak(i, i)Pk − τ(A(Pk)

k )
)

uk(i)Pk . (20)
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Denote C = A1 ? A2 · · · ? Am, Z = u1 ? u2 · · · ? um = (Z(1), · · · , Z(n))T > 0, where Z(i) =

∏m
k=1 uk(i). By Lemma 5 and (20), we get that

(CZ)i =
(

∏m
k=1 Ak(i, i)

)
Z(i)−

(
∑
j 6=i

∏m
k=1 |Ak(i, j)|

)
Z(j)

=
(

∏m
k=1 Ak(i, i)

)
Z(i)− ∑

j 6=i
∏m

k=1

(
|Ak(i, j)|uk(j)

)
≥
(

∏m
k=1 Ak(i, i)

)
Z(i)−∏m

k=1

{
∑
j 6=i

[|Ak(i, j)|uk(j)](Pk)
} 1

Pk (by the equality (20))

=
(

∏m
k=1 Ak(i, i)

)
Z(i)−∏m

k=1

{
[Ak(i, i)Pk − τ(A(Pk)

k )]uk(i)Pk
} 1

Pk

=
{

∏m
k=1 Ak(i, i)−∏m

k=1[Ak(i, i)Pk − τ(A(Pk)
k )]

} 1
Pk Z(i).

According to the Lemma 4, we obtain that

τ(A1 ? A2 · · · ? Am) ≥ min
1≤i≤n

{ m

∏
k=1

Ak(i, i)−
m

∏
k=1

[Ak(i, i)Pk − τ(A(Pk)
k )]

1
Pk

}
.

Case 2. If one of Ak (i = 1, 2, · · · , m) is reducible. Similar to Case 2 of the previous Theorem 2, let
P = (pij) be the n× n permutation matrix with p12 = p23 = · · · = pn−1,n = pn,1 = 1, the remaining pij
zero, then Ak − εP is an irreducible nonsingular M-matrix for any chosen positive real number ε. Now
we substitute Ak − εP for Ak, in the previous Case 1, and then letting ε → 0, the result (19) follows
by continuity.

Remark 2. If we take m = 2 in Theorem 6, one can obtain the following results:

• If p1 = p2 = 1, A1 = A = (aij), A2 = B = (bij), we have

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − (aii − τ(A))(bii − τ(B))

}
,

which is just the inequality (14).
• If p1 = p2 = 2, A1 = A = (aij), A2 = B = (bij), then

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − [a2

ii − τ(A ? A)]
1
2 [b2

ii − τ(B ? B)]
1
2

}
. (21)

In addition, by using the inequalities of arithmetic and geometric means, we know that

a2
iiτ(B ? B) + b2

iiτ(A ? A) ≥ 2aiibii[τ(A ? A)τ(B ? B)]
1
2 ,

so
(a2

ii − τ(A ? A))(b2
ii − τ(B ? B)) ≤

{
aiibii − [τ(A ? A)τ(B ? B)]

1
2

}2
. (22)

Since for any A, B ∈ Mn, τ(A ? B) ≥ τ(A)τ(B) (see Reference [14] or (13)), then, by (22), we know that

aiibii −
[
(a2

ii − τ(A ? A))(b2
ii − τ(B ? B))

] 1
2 ≥ [τ(A ? A)τ(B ? B)]

1
2 ≥ τ(A)τ(B).

Therefore, the inequality (21) is better than the inequality (13). In addition, the following example shows
that the inequality (21) is also better than the inequality (15).
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Example 3. ([14]). Consider the following two 3× 3 M-matrices:

A := (aij) =

 2 −1 0
0 1 −0.5
−0.5 −1 2

, B := (bij) =

 1 −0.25 −0.25
−0.5 1 −0.25
−0.25 −0.5 1

 .

By direct calculation, τ(A) = 0.5402, τ(B) = 0.3432 and τ(A ? B) = 0.9377. According to
Reference [14], the inequality (15) shows that

τ(A ? B) ≥ 0.7655.

If we apply (21) to them, then

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − [a2

ii − τ(A ? A)]
1
2 [b2

ii − τ(B ? B)]
1
2

}
= 0.8579,

which shows that our result is closer to the exact value 0.9377.

• If p1 = 1, p2 = 2, A1 = A = (aij), A2 = B = (bij), then we get

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − [aii − τ(A)][b2

ii − τ(B ? B)]
1
2

}
. (23)

5. Concluding Remarks

This paper mainly presents the relationship between the simple type [3] and the mixed type (6),
which perfects the corresponding theory. In addition, we also research the problem on the minimum
eigenvalue of the Fan product of more M-matrices and obtain several interesting results, see the
inequalities (19), (22), and (23). Since for any A ∈ Mn, τ(A ? A) ≥ (τ(A))2, numerical examples and
some analyses show that the special cases (e.g., (22) and (23)) of the inequality (19) improve some
known results stated in this paper.

Finally, it is worth mentioning that there also exist other products in statistics or econometrics,
such as the block Hadamard product [20], Khatri–Rao and Tracy–Singh products [21]. Are there similar
results regarding these products? This may still be an interesting problem.
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