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Abstract: This paper deals with the study of an HIV dynamics model with two target cells,
macrophages and CD4™ T cells and three categories of infected cells, short-lived, long-lived and
latent in order to get better insights into HIV infection within the body. The model incorporates
therapeutic modalities such as reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs).
The model is incorporated with distributed time delays to characterize the time between an HIV
contact of an uninfected target cell and the creation of mature HIV. The effect of antibody on HIV
infection is analyzed. The production and removal rates of the ten compartments of the model
are given by general nonlinear functions which satisfy reasonable conditions. Nonnegativity and
ultimately boundedness of the solutions are proven. Using the Lyapunov method, the global stability
of the equilibria of the model is proven. Numerical simulations of the system are provided to confirm
the theoretical results. We have shown that the antibodies can play a significant role in controlling the
HIV infection, but it cannot clear the HIV particles from the plasma. Moreover, we have demonstrated
that the intracellular time delay plays a similar role as the Highly Active Antiretroviral Therapies
(HAAT) drugs in eliminating the HIV particles.

Keywords: global stability; HIV dynamics; antibody immunity; time delay

1. Introduction

Modeling the HIV dynamics has received considerable attention from mathematicians during the
recent decades [1-22]. The first HIV dynamics model is proposed by Nowak and Bangham [1] as:

$(t)=p—ds(t) —As(t)p(t), 1)
y(t)=As(t)p(t) —ny(t), 3]
p(t) = Ny (t) —gp(t), ®3)

where s, y and p are the concentrations of the CD4™" T cells, infected cells and HIV particles; p, § and A
represent the production, death and infection rates of the uninfected CD4™" T cells, respectively; 77 and
g are the death rate constants of the infected cells and free HIV, respectively; N is the average number
of HIV particles generated in the lifetime of the infected cells. A class of latently infected cells has been
modeled in the HIV dynamics in [23-26]. Elaiw et al. [27] have extended model (1)—(3) by considering
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distributed time delays, B cells (x), and three categories of infected cells, short-lived (y), long-lived (u)
and latent (w) as:

§=r(s(t)) —AY(s(t),p(t)), 4)
Iy

=1 [ fi (@) e BTG (1= 1), p (= 1)~ (a+ B (o (1) ®)
th

i = [ o(0) e (s (0= 7),p (0= T))d+ a0 1) — gy (1) ©
Ohs

= s /f3 (T) e 7Y (s (t — ), p (t — T))dT — vips (u (1)), @)
0

p =Ny (t)) + Mvps(u (t)) — gpa(p (1)) — pipa(p () Ps(x (1)), ®)

X = rpy(p (t)s(x (t) — wips(x (1)), )

where f; (T) e #iT over the time interval [0, /;], i = 1,2, 3 represents the probabilities that uninfected
cells contacted by HIV at time f — T survived T time units and become infected at time f¢;

Y, 7t,%j,j = 1,...,5 are general nonlinear functions. The probability distribution function f; (7) satisfies
fi(t) > 0and

h; h;
/fi ()dt =1, /fi () eldy < oo, i=1,2,3,
0 0

hj
where v > 0. Let us denote ©;(7) = fi(t)e #"and F; = [ @;(7)dt, thus0 < F; <1,i =1,2,3.
0

Model (4)—(9) assumes that the HIV infects one category of target cells, CD4™ T cells. However,
Perleson et al. have observed that after the rapid first phase of decay during the initial 1-2 weeks of an
antiretroviral treatment, plasma virus levels declined at a considerably slower rate [28]. This second
phase of viral decay was attributed to the turnover of infected macrophages. Therefore, the HIV
model with two categories of target cells, CD4™ T cells and macrophages is more accurate than that
model with only one category target cells, CD4" T cells. As a result, more accurate drug efficacy can
be determined when using the HIV model with two classes of target cells. Recently, many efforts have
been devoted to the analysis of various mathematical models of HIV dynamics with two categories of
target cells (see, e.g., [29-37]). However, in these papers, the production and removal rates of the HIV
particles and cells are given by linear functions; moreover, only one or two classes of infected cells
are considered.

The aim of the present paper is to propose and analyze an HIV dynamics model which extends
model (4)-(9) and describes the dynamics of HIV with two categories of target cells, CD4™ T cells and
macrophages. We study the basic and global properties of the model. Using Lyapunov function and
LaSalle’s invariance principle, we have established the global asymptotic stability of the three equilibria
of the model. We have shown that the antibodies can reduce the HIV level, but they cannot clear the
HIV particles completely. The effect of HAART drugs and intracellular time delays in stabilizing the
HIV dynamics system around the infection-free equilibrium are shown. The importance of considering
the second class of target cells (macrophages) in the HIV dynamics is also shown.

The rest of the paper is organized as follows: in Section 2, we present the HIV model and study its
basic properties. In Section 3, the global stability of three equilibria is established. In Section 4, we offer
some numerical simulations to confirm our analytical results. The paper ends with some conclusions
and discussion in Section 5.
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2. Mathematical Model

We propose the following model:

i = mi(si (1) — AiYi(si (1), p (1)), (10)
Iy
Wi = My / f1i (T) e MTYG(si (F— 1), p (= 7))dT — (a; + Bi)yri(wi (1)), (11)
i
= Az /f2z (T) e MY (s; (t = 1), p (t = T))dT + a;ipri(w; (t)) — mip2i(yi (), (12)
0
hs;

iy = i [ for (1) Yilsi (8= 1), p (= )T — vt (i (1), (13)
0

) hyi hs;
p= Z ( i7]i /f41 e 14T, (i (t_T))dT“‘MVz/sz e M5t psi(u; (t —7))dT )

—gya(p (f)) Hpa (p (1)) aa(x (1)), (14)
X =1y (p (1) Paa(x (1)) — wipga(x (1)), (15)

where i = 1 for the CD4™ T cells and i = 2 for the macrophages. We have A,;;; = (1 —&1) A1, Amo =
(1 —fsl) m2, M — 1 2 3 Nl (1 — Ez)Nl, M1 = (1 - £2)M1,N2 = (1 - ]’lSz)Nz, M2 = (1 - hEz)Mz,
Ai = Mi+Agi+ Az, and f,h € (0,1). Let fj; () e i* over the time interval [0, 1], j = 1,..,5,i = 1,2,
are the probabilities that uninfected target cells contacted by HIV at time t — T survived 7 time units
and became infected at time . Denote @;;(7) = fji(t)e”"i" and F;; = f Q;i(t)dt; thus 0 < F; < 1,

j=1,..,51i=1,2. We assume that:

Hypothesis 1 (H1). (i) There exists s such that 7;(s?) = 0, 7t;(s;) > 0 for s; € [0,Y), (ii) 7t (s;) < 0 for
s; > 0; (iii) there are b; > 0 and b; > 0 such that 7t;(s l) < b; — b;s; for s; > 0.

Hypothesis 2 (H2). (i) Y»(si,p) > 0and Y;(0,p) = Y,(s;,0) = 0 fors;,p > 0, (ii) 2 (xl P > o,

Oifsup) 9Y;(si,0)
ap

> 0and, ( S 0 for all s;, p > 0, (iii) 4 @ ( 3

) > 0 fors; > 0.

Hypothesis 3 (H3). (i) g;i(y7) > 0 forn >0, 9;;(0) =0,j =1,..,4,i = 1,2, (ii) () > 0,9, (1) > 0
forn >0,j=1,2,3,i=1,2,¢,, () > 0, for n > 0; (iii) therearezx >0,j=1,..,4,i = 1,2, such that

wji(n) > ajim forn > 0.

Hypothesis 4 (H4). lp( ( P)) is decreasing function w.r.t. p, for p > 0.
41

Remark 1. From H1-H4, we have

(s: 1) —Yi(s: p* Yi(si, p) . Yi(si, p*)
(Yilsi p) = Yilsi 7)) ( Y (p)  Ya (p*) > =0

which gives

() Gl ) =
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We consider systems (10)—(15) with the initial conditions:

s1(t) = @1(0),52(t) = 92(0), w1 (t) = @3 (0), w2 (t) = @4 (6) ,y1 (t) = @5
Y2 (t) = @6 (0) ,u1 (t) = @7 (60) , uz (t) = s (8) ,p (t) = 9o (0),x (t) = 910 (6),
¢ (8) >0,0 [—¢, 0], j=1,..,10, (16)

|
)

where ¢ = max {hy1, h1a, ho1, Moo, W31, hap, a1, hap, hs1, hsp } and denoted by C is the Banach space of
continuous functions mapping the interval [—¢,0] into R>q and (¢1 (0), ..., 910 (0)) € C ([—g, 0] ,]Rlzoo).
According to [38], there exists a unique solution for system (10)—(15) with initial (16).

2.1. Properties of Solutions

Lemma 1. Suppose that H1-H3 hold, then the solutions of system (10)—(15) are non-negative and
ultimately bounded.

The proof Lemma 1 is given in Appendix A.
Lemma 1 shows that

Q= {(51,Sz,wl,wz,y1,yz,u1,u2, p,x) € C: ||s;|| < My, ||wi]| < My;,
yill < Mai, [[uill < Maj, [[pll < Mag, [[x]| < Maz}
is positively invariant with respect to system (10)—(15).
2.2. Equilibria
The basic reproduction number Ry of system (10)—(15) is given by

2 Yi aYZ-(S?, 0)
i— l/Jz/u (0) ap

Ro =

The equilibria of system (10)—-(15) satisfy the following equations:

0 = mi(si) — AiYi(si, p), (17)

0= AllFll z(Su P) ‘Xz + ﬁ )lplz(wz) (18)

0= )\ZZFZl 1(51/ P) + lpll( 1) 771'1/]21'(%)/ (19)

0 = A3iF3Yi(si, P) Vzl/)31( i) (20)
2

0 =Y (NimiFsitpai(yi) + MiviFsipsi(u;)) — a1 (p) — ppar (p)paa(x), (21)
o1

0 = ripa1 (p)Pa2 (x) — wipga(x). (22)

From Equation (22), we have x =0 or p = 1,L74_11 (w/r). Let us define

& /\11F11 (0‘1 + ,B )A21F21
PR AR ),

i””‘,m(s») , (23)

MiFi
Ailai + i)
/\1 i —
Asi(s;) = w;l( ST >) Ay(si) = M(

Z 1

Aqi(si) = oy (

2
where y; = ) NiF‘“(”‘i)‘“F“"’(”‘iﬂfg"ggﬁ%i;+MiF3"F5iA3"(“i+’Si) . It follows from Equations (17)—(21) that:
i=1

w; = Aqi(si), yi = Nai(si), uj = Nszi(s;), p=Na(s). (24)
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Obviously, Aq;(s;), Aai(si), Asi(si), Aa(si) > 0 fors; € [0,5)) and Aq;(s]) = Agi(s)) = Aszi(s) =
A4(s9) = 0,i =1,2. From Equations (17), (23), and (24), we obtain

2

Yo viYi(si, Aalsi) — a1 (Aalsi)) = 0. (25)

i=1

Equation (25) has two possible solutions, Ay = 0 and A4 # 0. The solution A4 = 0 implies s; = s?

which gives the infection-free equilibrium ITy(s?,s9,0,0,0,0,0,0,0,0). The other solution Ay # 0
admits an antibody-inactivated infection equilibrium Iy (1, 52, @1, W2, ¥1, ¥, i1, iz, P, 0), where

mi(5:) = AiYi(8i, p), AMiFuYi(3i, p) = (a; + Bi) (@),
77177021( i) = A21F21 i(8;, )"‘“zlpll(wl)
2
vitsi () = A3iF5iYi(5i,P), §Pa1(P) = Y (NimpiFaitpoi (i) + MiviFsipsi (i1;)) - (26)

i=1

Now, we consider the other solution of Equation (22) is p = 1p4‘11 (%) > 0. Substitute
p=p= ¢4_11 (%) in Equation (17) and let A;(s;) = m;(s;) — A;jYi(s;, p) = 0. Using H1 and H2,
we have A; is strictly decreasing, A;(0) = 7;(0) > 0 and Ai(si) = —/\iYi(s?, p) < 0. Thus, there exists
unique 3; € (0, s?) such that A;(5;) = 0. It follows from Equations (21) and (24) that

w; = Ali(gi) >0, ¥, = AZZ( ) >0, @ = A3i(§i) >0,
9 (8 (&, YiGip)
=Yy (r) >0 % =19y (;1 (1;% ¥a1(p) _1>> .

2
Thus, ¥ > 0 when E’Y: b )) > 1. Define R; as follows:

which represents the antibody immune response activation number.
If Ry > 1, then ¥ = 1/14_21 (%(Rl - 1)) > 0, and there exists an antibody-activated infection
equilibrium I, (81, 5p, @1, @2, J1, Y2, i1, U2, p, %). Clearly, from H2 and H4, we have

Z Y5 p) _ &g Yilsup) e v Yi(5,0) _ & i i(s2,0)
— , 1 ,
Ri= L) LS 0nG) S50 o S S7R0 op

i—1p—0" i—1

= Ro.
3. Global Stability
Denote (s;, wi, yi, ui, p, x) = (si (£) ,wi (), yi (£) i (£) , p (£) % (1))
Theorem 1. Let hypotheses H1-H4 be valid and Ry < 1; then, 11y is globally asymptotically stable.
Lemma 2. Suppose that Rg > 1 and H1-H4 hold; then,
sgn(Ry —1) = sgn(p — p) = sgn(s; — §i).

Theorem 2. Suppose that hypotheses H1-H4 are satisfied, I1; exists and Ry < 1, then I1; is globally
asymptotically stable.
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Theorem 3. Let hypotheses H1-H4 hold true and Ry > 1, then I, is globally asymptotically stable.

The proofs of Lemma 2 and Theorems 1-3 are given in Appendix A.

4. Numerical Simulations

We choose

Smax

Yisi (), p(5) =si()p(t), ;i(6) =0, j=1,..,41i

where B < By1. Clearly, ;(0) = p; > 0 and 71;(s?) = 0, where

0 _ Smax 2 4p1B 0_ P2
57 = B — + B — +—— |, s =-—.
1= Sp ( B \/( B11) S 2= g

Zle

Smax

my(s1(t)) = p1 — Buis1 () + Bsy (¢) <1 _ (t)> , Ta(s2 () = p2 — Bras2 (1),
=12,

We have

71'{(51) = —‘Bn + B — < 0, 7T£<82) = —1512.

Clearly, 71;(s;) > O fors; € [0,s)) and

s
m1(s1) = p1 — (B11 — B)s1 — B—1 < p1 — (B11 — B)sy,
Smax
2 (s2) = 2 — B12s2.

Then, H1 is satisfied. Clearly Y;(s;, p) > 0, Y;(0,p) = Y(s;,0) = 0 fors;, p € (0,00), and

i(si,p) _ i(sip) . 9Yi(si,0)
- P/ - Sl/ - Sl'
0s; ap op
Then, aY’é:_i’p ) > 0, aYia(;i’p ) > 0and 2 ( 9 < 0 forall si,p € (0,00). Therefore, H1 is satisfied.

In addition

!/
<aY i(s;,0 )) —1>0foralls; > 0.
dp

It follows that, H2 is satisfied. One can show that function 1,L1]-l- satisfies H3. Moreover,

i (Yi(sir P)) -0
ap \ $au(p)
Therefore, H4 holds true.

In addition, we take a particular form of the probability distributed function as:

fi()=6(t—1), j=1,..5 i=1.2,

where § (.) is the Dirac delta function and Tji € [ B ]1] j=1,..,5i=1,2are constants. When h]-l- — 0,
we have:

[fimar=1, j=1..5 i=12

We have
[e¢]
/ (t— i) e FiTdT = e %, j=1,..,5, i=1.2.
0
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Moreover,

/6 (t=Ti)e Hitsi(t—T)p(t —T)dT = Filis; (t =) p (t — 1), j=1,2,3,i=1,2,
0

/5 t— 1) e MiTy; (t— 1) dT = e Mty (1 — 1y),

0
/(5 (t —15) e "5 (t—1)dT = e M5By (t —15;), i = 1,2.
0

Hence, model (10)—(15) becomes:

§1 (t) =pP1 — 5151 (t) + B51 (i’) (1 — Sl(t)) — (1 — 81)X151 (t) p (i’) ’

Smax

$o(t) = p2— 0252 (1) — (1 — fer)Aasa () p (1),
Wy (1) = (1 —eq)Aye Mgy (t—191) p (t—111) — (21 + B1)w (),
wy (t) = (1 — fe1)Ape 112%2s) (t — T2) p (t — Ti2) — (a2 + B2)wa (),
Y1 (t) = (1 —e1)Aze #2125y (t — 1) p (t — 1) + w01 (£) — 171y (t),
V2 (£) = (1= fe1)Ape #2™2s) (t — To0) p (t — T22) + tows (£) — 12y2 (),
iy (1) = (1 —e1)Az1e #9108y (£ —T31) p (¢ — 131) — viuy (F),
iy (1) = (1 — fer)Ase 192525, (t — 132) p (£ — T32) — 12Uz (1),
p(t) = (1—e)Nyypre Ffyy (t — 1)

+ (1 — hep) Nompae ™ H2™2y, (t — 147)

+ (1 —e2)Myvie #51%uy (t — 151)

+ (1= hea)Mpvoe 1922wy (t — T52) — gp (1) — pp (1) x (1),

x(t)=rp(t)x(t) —wx ().

The parameters Ry and R; for this application are given by:

{NA e M4iTui + M; /\31(0‘1 +[-} )e M3iT3i— V51T51} O

2

RO:E g(ai + Bi)
2
L

({NiA,*e_}“liT‘li + M;Ag(a; 4+ /31')6_}‘3"731'_7‘51'75"}
g(ai + Bi)
Ai — ai/\lie—ﬂlﬂu + (“i + ﬁi)/\2ie_mﬁ2i~

Siy

7 of 35

(27)

(28)
(29)
(30)
(81)
(32)
(33)
(34)

(35)
(36)

In Table 1, we present the values of parameters of system (27)-(36). We let 7j; = T, pjj = pe, i =
2,...,5,j = 1,2. We solve the system of delay differential Equations (27)-(36) with constant delays by

using dde23 program in MATLAB (version 7).
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Table 1. The data of example (27)—(36).

Parameter Value Parameter Value Parameter Value Parameter Value
01 10 02 0.03198 m 0.35 12 0.03
2 0.01 o 0.002 n 0.03 Vn 0.01
B 0.0002 Xmax 1200 g 3 U 0.5
o1 0.2 %) 0.01 w 0.1 Ue 1
B1 0.02 B2 0.001 f 0.3 h 0.3
Ny 30 N, 5 M; 10 M, 2
€1 varied € varied r varied T varied
A 0.0000625 A 0.0000625 - - - -

4.1. Stability of the Equilibria of the System

In this part of simulation, we choose three different initial conditions:

IC1: (51,52, w1, Wy, y1,Y2, U1, U2, p, x)(0) = (450,8,6,0.15,6,0.18,35,0.3,10,6),
IC2: (51,52, w1, wa, Y1, Y2, 41, Uz, p,x)(0) = (650,10,4,0.1,5,0.06,25,0.1,7,4),
IC3: (51,52, w1, Wy, y1,Y2, U1, U2, p,x)(0) = (850,12,2,0.05,3,0.02,15,0.02,4,2), 6 € [—7,0].

We study three cases by choosing €1, ¢3, T and r. In Figures 1-10, we want to confirm our global
stability results given in Theorems 1-3, by showing that any initial points taken from a feasible set the
trajectory of the system will tend to one of the three equilibria of the system.

Case (I): Choose ¢ = 0.7,e2 = 0.7, 7 = 0.85 and r = 0.009, which gives Ry = 0.2778 < 1 and
Ry = 0.1156 < 1. Figures 1-10 show that the concentrations of the uninfected CD4*" T cells and
macrophages are increasing and reach the values s! = 1003.3 and s) = 16, respectively. In other words,
concentrations of short-lived, long-lived and latently infected cells as well as HIV particles and B cells
converge to zero. This confirms the result of Theorem 1, which is I'lj is globally asymptotically stable.
As a result, the HIV is removed from the plasma.

Case (II): We take ¢ = 02,e&p = 03, = 05 and r = 0.004. For these values,
Ry =0.6692 <1< Rp =3.1775. From Figures 1-10, we can see that for IC1-IC3 the state
Iy, = (346.147,7.549,6.054,0.31,7.265,0.217,44.397,0.341,12.688,0.0) is reached, where the HIV
infection is chronic and the antibody immune system is inactive. Hence, Theorem 2 is confirmed.

Case (III): &g = 02,& = 03,7t = 05 and r = 0.05 Then, we calculate
Ro =3.1775 > 1 and Ry = 2.4497 > 1. From Figures 1-10, we see that for IC1-IC3, the state 11, =
(773.46,13.594,2.132,0.088,2.559, 0.062, 15.638,0.097, 2,7.405) is reached, where the HIV infection is
chronic and the antibody immune system is active. Thus, Theorem 3 is confirmed.

We mention that, Ry does not depends on the parameters w, ¥ and p. This fact seems to suggest
that antibody immune response does not play a role in clearing the HIV particles. From above, we can
see that Ry can be increased by increasing the value of . When we compare the Cases (II) and (III),
we can see from the figures that, when the antibody immune response is activated (i.e., Ry > 1),
it reduces the concentrations of HIV free particles and infected (short-lived, long-lived and latent) cells
and increases the concentration of uninfected target cells. It means that the antibody immune response
can play a significant role in controlling the infection.

Effect of the Drug Efficacy on the Stability of the System

We take gy = &9 = ¢, T = 0.5, and r = 0.05. In Table 2, we present the values of Ry and R; for
selected values of €. It is seen that the values of Ry and R; are decreased as ¢ is increased. Using the
values of the parameters given in Table 1, we obtain the following cases:

(i) if 0 <e < 0.54636, then Ry > 1, I exists and it is globally asymptotically stable,
(i) if 0.54636 < e < 0.58032, then R; < 1, I'l; exists and it is globally asymptotically stable and
(iii) if 0.58032 < e <1, then Ry < 1 and Il is globally asymptotically stable.
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Thus, the results of Theorems 1-3 and the numerical results are compatible. Therefore, we can say
that treatment with sufficient drug efficacy can successfully clear the virus from the plasma.

Table 2. The values of the steady states, Ry and R; for model (27)-(36) with different values of e.

£ Equilibria Ry R,

0 I, = (731.427,13.4656, 2.5206,0.0928, 3.0248, 0.065, 18.4847,0.1021, 2, 16.6341) 5.6732 4.1361
0.2 I, = (773.4604,13.5944,2.1324,0.0881, 2.5589, 0.0617,15.6376,0.0969,2,9.3198)  3.6313  2.7995
0.5 IT, = (846.3064,13.7922,1.4583,0.0808, 1.7499, 0.0566, 10.6940, 0.0889,2,0.5505)  1.4191 1.1970
0.54636 II; = (941.6053,15.0676,0.5739,0.0339, 0.6887,0.0237,4.2086,0.0372,0.7797,0) 1.1683 1

0.55 IT; = (956.889,15.2913,0.4318, 0.0256, 0.5182,0.0179, 3.1666, 0.0282, 0.582, 0) 1.1496  0.9852
0.58032 Il = (1003.3,16,0,0,0,0,0,0,0,0) 1 0.8654
0.7 Iy = (1003.3,16,0,0,0,0,0,0,0,0) 0.5114 0.4602

4.2. Effect of the Time Delay on the Stability of the System

Choose ¢¢ = e = 0, and r = 0.05. The initial conditions are considered to be
(81,52, w1, Wo, Y1, Y2, U1, U2, p,x)(0) = (800,14,4,0.1,4,0.05,20,0.015,6,5), 6 € [—7,0]. Figures 11-20
and Table 3 show the effect of the time delay parameter T on the stability of Iy, I1; and I'l,. It can
be seen that, as 7 is increased, the concentration of the uninfected target cells is increased, while the
concentrations of short-lived, long-lived and latently infected cells, free HIV particles and B cells are
decreased. From Figures 11-20, we can see that, in the case of smaller values of 7, the trajectory of
system will converge to IT,. When the value of 7 is increased, the trajectory will converge to I1; and
finally approach I'ly. From a biological point of view, the intracellular time delay plays a similar role
as the anti-HIV drugs in eliminating the virus. We observe that sufficiently large delay suppresses
viral replication and clears the virus from the body. This gives us some suggestions on new drugs to
prolong the increase in the intracellular delay period.

Table 3. The values of steady states, Ry and R; for model (27)-(36) with different values of t.

T Equilibria Ry Ry

0.1 TI, = (731.43,13.47,3.76,0.14,4.51,0.1,27.58,0.15, 2, 44.37) 11.70  8.53
0.5 TI, = (731.43,13.47,2.52,0.09,3.03,0.07,18.49,0.1,2,16.63) 567 414
1.0 Il = (731.43,13.47,1.53,0.06,1.84,0.04,11.21,0.06, 2,2.33) 2.39 1.74

1.2 I1; = (786.28,14.03,1,0.04,1.2,0.03,7.33,0.04,1.49,0.00) 1.72 125
1.3 II; = (960.39,15.63,0.18,0.01,0.22,0.00,1.32,0.01,0.24,0.00) 1.1 1.46
1.5 TIIp = (1003.3,16,0,0,0,0,0,0,0,0) 1.06 077
2 Iy = (1003.3,16,0,0,0,0,0,0,0,0) 050 0.37
1100
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T 800t ) , y
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a2 1700 1
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§ 600 |
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Figure 1. The evolution of uninfected CD4™" T cells with three initial conditions IC1-IC3 for
Cases (I)-(III).
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Figure 2. The evolution of uninfected macrophages with three initial conditions IC1-IC3 for
Cases (I)—(II).
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Figure 3. The evolution of latently infected CD4" T cells with three initial conditions IC1-IC3 for
Cases (I)-(I1I).
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Figure 4. The evolution of latently infected macrophages with three initial conditions IC1-IC3 for
Cases (I)—(III).
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Figure 5. The evolution of short-lived productively infected CD4™ T cells with three initial conditions
IC1-IC3 for Cases (I)-(III).
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Figure 6. The evolution of short-lived productively infected macrophages with three initial conditions
IC1-IC3 for Cases (I)—(III).
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Figure 7. The evolution of long-lived productively infected CD4™ T cells with three initial conditions
IC1-IC3 for Cases (I)—(III).
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Figure 8. The evolution of long-lived productively infected macrophages with three initial conditions
IC1-IC3 for Cases (I)-(III).
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Figure 9. The evolution of free HIV particles with three initial conditions IC1-IC3 for Cases (I)—(III).

Figure 10. The evolution of B cells with three initial conditions IC1-IC3 for Cases (I)—(III).

14

B cells

Time

Case (11I)
RTICTY PR RN ri g
Case (I) Case (ID) 7
150 200 250 300 350 400



Mathematics 2019, 7, 157 13 of 35

1050

1000

950

900

850

Uninfected CD4 T cells

800 g7

750

700 i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000

Time

Figure 11. The evolution of uninfected CD4 ™" T cells for selected values of the delay parameter .
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Figure 12. The evolution of uninfected macrophages for selected values of the delay parameter 7.
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Figure 13. The evolution of latently infected CD4™" T cells for selected values of the delay parameter 7.
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Figure 14. The evolution of latently infected macrophages for selected values of the delay parameter 7.
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Figure 15. The evolution of short-lived productively infected CD4™ T cells for selected values of the

delay parameter 7.
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Figure 16. The evolution of short-lived productively infected macrophages for selected values of the

delay parameter .
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Figure 17. The evolution of long-lived productively infected CD47 T cells for selected values of the

delay parameter 7.
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Figure 18. The evolution of long-lived productively infected macrophages for selected values of the

delay parameter 7.
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Figure 19. The evolution of free HIV particles for selected values of the delay parameter 7.
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Figure 20. The evolution of B cells for selected values of the delay parameter 7.
5. Discussion

All of the HIV infection mathematical models with three categories of infected cells, short-lived,
long-lived and latent presented in the literature have studied the HIV infection and production in one
class of target cells, CD4™ T cells. However, it has been reported in several papers that HIV can infect
both CD4" T cells and macrophages. In this paper, we have proposed an HIV infection model with
three categories of infected cells and two classes of target cells, CD4™ T cells and macrophages. We have
incorporated multiple distributed time delays to characterize the time between an HIV contacts an
uninfected target cell and the creation of mature HIV particles. The effect of antibody immune response
has been modeled. The production and removal rates of all compartments are represented by general
nonlinear functions. The incidence rate of infection is also given by a general nonlinear function.
The model can be seen as a generalization of several HIV dynamics models presented in the literature.
We have shown that the solutions of the model are nonnegative and ultimately bounded, which ensures
the well-posedness of the model. We have derived two threshold numbers R (the basic reproduction
number) and antibody immune response activation number R;, which determine the stability of the
three equilibria of the model. We have investigated the global stability of the equilibria of the model
by using Lyapunov method and LaSalle’s invariance principle. We have proven that (i) if Ry < 1,
then the infection-free equilibrium Iy is globally asymptotically stable and the HIV is predicted to be
completely cleared from the HIV infected patients, (ii) if the antibody-inactivated infection equilibrium
I'T; exists then it is globally asymptotically stable and a chronic HIV infection with inactive antibody
immunity is attained, and (iii) if R; > 1, then the antibody-activated infection equilibrium IT; is
globally asymptotically stable and a chronic HIV infection with active antibody immunity is attained.
We have conducted numerical simulations and have shown that both the theoretical and numerical
results are consistent.
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Our analysis extends the results presented in [27], where the global stability was analyzed for a
model with one target cell population. When we consider the HIV dynamics with only one class of
target cells, CD4™" T cells, then model (10)—(15) leads to the following model:

(0 = pr— s (0+ B () (1= ) — (e (09 1), @)

Wy () = (1 —e1)Are M ™sy (= 1) p (= 111) — (@1 + Br)ws (£), (38)

y1(t) = (1 —ey)Ape "2y (t — 1) p (t — 1) + aqwy (t) — mys (2), (39)

iy (1) = (1 —e1)Az1e #31 ™8y (F—31) p (t— T31) — vauy (£), (40)
p(t) = (1 —e)Nygre MMy (t — 149) + (1 — ex) Myvie #51Slug (t — 151)

—gp(H) —pp () x(t), (41)

X(£) =rp(t)x(t) —wx(t). (42)

Let us define the overall HAART effect as e, = €1 + €y — €163 [39]. If €, = 0, then the HAART
has no effect, if &, = 1, the HIV-1 growth is completely halted. Consequently, the basic reproduction
number for system (37)—(42) is given by

Rc(s )= (1—ec) [Ny Aje #0™ + My Ay (ag + By )e M1 ™1~ Ha1Tsi] 0
o (a1 + p1) v
Ay = aq e M+ (@ + By) Agge FATL

For comparison purposes, we assume that i = f = 1; then, the basic reproduction number for
system (27)—(36) can be written as: Ry = R§M(e.) = R (e.) + R} (e.) where:

RN (e) = (1—ec) [NoAge 2™ 4 MpAgy (ap + o )e 122 122 | s9,
g(az + B2)

Ay = apAqpe H12T2 4 (“2 + ,32)7\226_”22T22,

where R} (¢,) is the basic reproduction number of a model that describes the HIV dynamics with only
macrophages and neglecting the CD4™" T cells. For system (37)-(42), one can determine drug efficacy

¢S such that R§ (5) = 1 as:
R§(0)—1
e(ej = max {O<C),O} .
R5(0)

Therefore, if sg < ¢, <1, then Rg (eg) < 1. For system (27)—(36), one can also determine the drug
efficacy 5™ such that R§M (eEM) = 1 as:

RCM(O) -1

CM 0

M =max{ ———~——,0.
e { RgM (O)

Therefore, if seCM <¢g, <1,then ROCM (SECM) <1.

Assume that Rg(O) > 1, then Il of system (37)-(42) is unstable in the absence of treatment. Since
Rg(O) < R(():M(O), then e§ < ¢SM. Therefore, if we apply drugs with ¢, such that e§ < ¢, < &M
this guarantees that Rg(se) < 1 and the system (37)—(42) can be stabilized around I1j; however,
R§M(e.) > 1 and then Iy of (27)—(36) is unstable. Therefore, more accurate drug efficacy ¢, is
determined when using the model with two classes of target cells. This shows the importance of
considering the effect of the macrophages in the HIV dynamics.

Author Contributions: Conceptualization, AM.E. and EK.E.; methodology, AM.E.; analysis, EK.E.;
writing-original draft preparation, E.K.E.; writing-review and editing, E.K.E.; simulation, EK.E.;
supervision, A.M.E.
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Appendix A

The following equalities will be used in the proofs of the Theorems 2 and 3:

In (Yi(si (t—7),p(t— T))) i (lpli(wi)Yi(Si (t—7),p(t— T))) tin <Yz:(§irf))>

Yi(si, p) i (wi)Yi(Si, p) Yi(si, p)
o (o o))+ (Ve
+n ()
(st att) (BN o )
o (mtomatan) " (i)
(o) (R EL al)  re
o (tiaor) * (g
() = (it )+ (i)
() (R ) ()
Proof of Lemma 1. Denote k = (s1,80, wy, Wy, y1,Y2, 1, U2, p,x)T, L = (Li,Ly,...,L10)T. Then,

systems (10)—(15) can be written as k (t) = L (k (t)), where

Lig (}c (1))
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mi(s1(t) — A Yq(s1(£),p (L))
) mo(s2 (1)) — A2Ya(s2 (t), p (1))

A Of OnYi(s1 (t—1),p(t—71))dt — (ar + B1) 11 (w1 (¢))

h12

A2 “o[ O1Ya(s2 (t = 1), p (t—1))dT — (a2 + B2)P12(w2 (1))

ho

A2 Of @21Y1(s1 (t— 1), p (t —1))dT +arprr (w1 (t) — mpar(va (t)),
hay
L= A2 Of OnYa(s2 (t— 1), p (t —1))dT + aghrz(wa2 (1)) — n29p2(y2 (1)),
h3
A3 of O31Y1(s1 (t—7),p (t —7))dT — vt (uq (1))
h3p

Az g‘ @32Y2(52 (t — ’Z.’) ;P (t — ’l’))dT — U21P32(Ll2 (t))

2 Ty hs;
Y (Nz"?i Of Ouitpi(yi (t — 7))dT + Myv; Of Os;s;(u; (t — T))dT> — g1 (p (1))

-1
—upar (p (1)) paz(x (1)),
a1 (p (1)) a2 (x (1)) — wipga(x (1))

We have

Lj (k (t))|k(t)eR1>00 >0, ] =1,...,10.

Applying Lemma 2 in [40], we get k(t) € R forall t > 0.
b;

—. Let
b;

Equation (10) implies that lim; e sup s; () < My;, where My; =

hll th hSz
N/®1, i(t—1) dT—irN/®2Z Sl(t—T)dT+M/®3l si(t—T)dt

+Nwz( ) + Niyi(t) + Mju;(t),
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then

N/®h s (=) = AYi(s; (=), p (= )] dT

h21
+N; [ @(%) [milsi (¢ = 7)) = Ai(si (£ =), p (= 7)) de
0

h3;
+M; [ @5i(7) (s (£ = 1) = AYilsi (£ = 7), p (t = ) dr
(i hy;
+ Ni | Ay / Ou()Yi(si (t—7),p(t —1))dT — (i + B;) 4’1i(wz‘(f))]
©
+N; /@21 (t=1),p(t—1))dT + ajp;(w(t)) — UilPZi(yi(t))]

h31

+ M; /\3i/@3i(T)Yi(Si (f—T)/P(f—T))dT—Vil/J3i(ui(t))]
0

hli h2i
< Ni/@)li(T) [bi — bjs; (t — T)} dt + N; / @2i(1) [bi — bjs; (t — T)} dt
0 0
hs;
+ M; / ®3(7) [bi — bis; (t — T)} dt — N;Biayjw;(t) — Nimjaoiyi(t) — Miviazu;(t)
0
hll h21

< b; (N;Fy; + NiFy; + MiFs;) — /@h (= 1) dT+N/®21 si(t — T)dt

hs;
+M; / O3;(7)s;(t — T)dt + Njw;(t) + Niy;(t) + Miui(t)]
0

< b; (2N; + M;) — 0;G;(t),

b; (ZNZ‘ + Ml‘)
0i

where 0; = min{b;, Bia1;, 7;02;, Vite3; }- Then, lim;_,0 sup G;(t) < and

b; (2N; + M;)
< _— =
tlg?o supwi(t) < N;o;

bi (2N; + M;) _

< .
fim supy;(t) < ——1 Mai,
lim sup u;(t) < SLCNEM)

t—oc0 M;o;
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Moreover, we let G3(t) = p(t) + £x(t). Then,

i=1

2 hyi hsi
G = (lm/®@ Waililt - )MT+NM@/®ﬂﬂ¢ﬂwUTDW>
0

—8g¥n(p) — *#’42(96)

w
< Z NiniFaithoi(Mai) + MiviFsipsi(Ma;)) — gaarp — VT"‘ALZX
2
2 1771F411/)21 MZI) + M; V1F511P31(M31)) - U'SGB‘(t)/
i=1
where 03 = min{gna1, way }. Hence,

(NiniFyipoi(Mp;) + MiviFsi3i(Ms;))
03

2
lim sup G3(t) < ) = My,
t—o00 -1

lim sup p(t) < My,

t—o0

< = M.
lim sup x(f) < 2

Therefore, s; (t),w; (t),y; (t),u; (t),p (t), and x (t) are ultimately bounded. O

Proof of Theorem 1. Define a Lyapunov functional Uy (s1, 52, w1, W2, Y1, Y2, U1, Uz, p, x) as follows:

S;
i Yi(s), p)

an + kyjw; + koiyi + ksiu;
=0+ Y;(17, ) 1+ K1jw; + Kaiyi + K3t

2
_ 0
Uop=Y 7i|si—si —

i=1

hy; T
+ ki [ 4 (1) [ Yilsi (= 6), p (¢ = 6))doar
0 0
h2i T
+k2i)\2i/®2i (T)/Yi(si (t—0),p(t—0))dodt
0 0
h3;
+k3,)\3l/®31 /Yl si(t—6),p(t—8))dodt
0
h4i T
ks [ ©3(v) [ ity (£ - 0))doar
0 0
hs;
+k5ivi/@5i (T)/1P3i(ui (t—86))dodt | +kerp + ke2x,
0 0

where ky;, ..., ks, k1 and kg satisfy the following equations:

Ai=Aik1iFri 4 AgikoiFoi + AsiksiFsi, (i + Bi)kii = aikoi,  koi = kaiFai,
ki = ksiFsi, viksi = Nike1, viks; = Mike1, pker = rkep. (A2)
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The solution of Equations (A2) is given by

L= a;N;jAiFy; = NiAiFyi ks = MiAiFsi
Coviglai+B) T mg T g
N;A; M;A; . A A
kyi = o kg = 2 = 1,2, ke = 2, kep = B2
Yi8 vi& 8 rg

Itis seen that Uy (s1, Sp, w1, W2, Y1, Y2, U1, Uz, p, x) > 0 forall sy, sy, wq, wa, y1,Y2, U1, Uz, p, x > 0and
Uy (s(l], sg, 0,0,0,0,0,0,0, 0) = 0. We calculate dgo along the trajectories of systems (10)—(15) as follows:

—— =) ||1-1 l i(si) = AiYi(si,
w K P i p) ) ) AP

hy;
+ ki )\u/@li (D) Yi(si(t—7),p(t—7))dT — (o +ﬁi)¢’1i(wi))

0

Iy
+ ki | Aai / @2 () Yi(si (t —7), p (t — T))dT + ajipr;(w;) — Wilpzi(}/z‘))

0
hs;
+kai | Asi / O3 (1) Yi(si (t — 1), p (t — 7))dT — Vi%i(“i))
hliO
hidai [ O () (Yilsip) = Yilss (=), p (= 7)) dT
0
ho;

koo [ ©21(7) (Yilsiop) = Yilsi (¢ =), p (= 7))) dr
0

hsi
kst [ @31 (7) (Yilsiop) = Yilsi (¢ =), p (= 7)) dr
0

hy
kas [ @ (1) (ai(yi) — paulys (¢ = 7)) dv
0

hs;
+k5iVi/®5i (7) (¥3i(ui) — P3i(u; (t — 1)) dt
20 hy; hs;
+ ket ) (Niﬂi/@)zy (T) ai(yi (t — 7))dT + MiVi/®5i (T) i (i (t— T))dT)
=1 0 0

— ke1gPa1(p) — ke1ppar (P)az (x) + ka2 (rpar (p) aa (x) — wipap(x)). (A3)
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Simplifying Equation (A3) and utilizing 77(s?) = 0, we obtain

Uy _ (s, Yi(s}, p)
dt i;% <7TI(SI) -l )) (1 B pgo+ Y;(si, p)
2 CY(sY,
+ lzzl ’Yi/\iYi (Si/ P) Plg%l-%— Yzi((sli, S)) — k61glp41 (p) - k62w¢42(X)

Y;(s?, p)
< 2.7 <7Ti(5i> — 7ti(s; >) (1 - pl—)0+ Y; (SuP)>

i—1 p—0+ Pa1(p) p—ot Yi(si, p)

2 (54 Y;(s,
+ (Z’Yi/\ lim Yilsi,p) lim (s, p) —k618> Pa1(p) — kewipgn (x)

2
= Z’Yz (7'[1'(51‘) - ni(sg)) (1 - BYZ(SZ,O)/8p>

Vil dY; Q,O
+ k18 (Z Korg ¥ (0) 5(;; ) _ 1) Pa1(p) — kepwipar (x)

2 ()
=) 7 (ﬂi(si) - ﬂi(59)) (1 - m> +ke1g(Ro — 1)¢a1 (p)

i=1

— kepwipap (x).

By H1 and H2, we get

aY;(s9,0)/ap
(=) (1= ) <0

23 of 35

Therefore, if Ry < 1, then dtO < 0fors;, p,x € (0,00). Clearly, = duo = 0 at ITy. Applying LaSalle’s

invariance principle, we get that Il is globally asymptotically stable O

Proof of Lemma 2. From H1 and H2, we get

(8i —5) (i (5;) — mi(8:)) >0,

for §;,5;, p, p > 0. From H4, we get

o (YiGp)  YilSiP)
(P=p) ( va(P)  pa(p) ) >0

We first prove that sgn(p — p) = sgn(5; — §;). Assume that sgn(p — p) = sgn(s; — 5

equilibrium conditions of I'ly and I1, we get

(A4)

(A5)
(A6)
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Therefore, from the inequalities (A4)—(A6), we obtain sgn (5; — 5;) = sgn (5; — §;), and this is a
contradiction. It follows that sgn (§ — p) = sgn (5; — 5;) . Using Equation (26) and the definition of R,
we get

3 i(5i,p)  Yi(5,P)
f—t= Z% ( va(p)  Ya(p) )

_ . e o ve oy YiGi ) Y5, p)
B ,-:Zl% Llhn(ﬁ) (¥i&, ) = i(Si P)) + a1 (P) a1 (P) } '

Thus, from inequalities (A5) and (A7), we obtain sgn(Ry — 1) = sgn(p — p). O

Proof of Theorem 2. Let Uy (s1, 52, w1, wo, Y1, Y2, U1, U2, P, X)

2 (5 7 yu(@)
U, = s — / irP d +ky; | w;—@; — nd
1 1‘:21% |:1 Y n 1i ( i i J lpli(’?) n

. lei (7:) T ¥3i (i)
koi |l i — 7 — d ki | i — 1 — d
+ Koi (yl Yi J 4’21’(77) 77) + K3 (”l U; J 1/’31'(77) 77)

Yi
hy; T
ki Yi(s,p) [ O [ F (Yi (s (t; 2}’3)“ - 9”) dod
0 0 i\®i P
hai 7 . _
+ kirgiYi(5i, ) ®2i/F (YZ(S’ (¢ (9§),;~7)(t 9))) dodr
0 0 i\%i P
hs; T
+k31/\31Y1(51/ P)/@gl/F <Yi(Sl (tgg)g)l?)(t 9))> dédt
0 0 i\Si,p
Iy T
P2i(yi (t—0))
+k417717~/]21 ]/z /®4zO/F< 1/*’21‘(]/1) >d9d”[
hsi T
+k511/zl/]31(u)0/®510/‘1:( lP3i(1«~li) )d@d'l’]
4

~—

_ PYar (P
k — 7 — d kepx.
e (p P . a1 (1) 17) hex

It can be seen that U (s1, 52, w1, wo, Y1, Y2, U1, Uz, p,x) > 0forall sy, sp, wy, wa, y1, Y2, U1, Uz, p, x > 0
and U (81,5, W1, Wy, §1, 2, 11, 12, p,0) = 0. Evaluating d‘%along the solutions of systems (10)—(15),
we obtain:
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_ 2 . o Yi(girﬁ) e AN (e
B 122171 |:<1 Yi(Si,f))) (7'(1(51) )\ZYI(SZI P))
e (1 - ng) Mi [ ©3Yi(si (t=1),p(t = 1))dT — (a; + ﬁz‘)%i(wi))

hy
/
ho;
Ao / @2 Yi(si (t —T),p (t = 7))dT + ajipr;(w;) — 771‘1/}21'(%'))
0
hs
¥3i(u;) o/

I
+ ksi (1—¢3i(ﬁi)> ()\31‘ |

O3 Yi(si (t—7),p(t—1))dT - VillJai(ui))

hy;

+ ki / O1 (Yi(si,p) = Yi(si (t—1),p(t—71)))dr
0

hy;
+Yi(~i,fz)k1i)\1i/@1i In (Yi(Si (t—1),p(t— T))> -
0

Yi(si, p)

hy;
F koo / @y (Yi(si, p) — Yi(s: (t— 1), p(t— 1)) dr

)
+ Yi(3;, Pkaida; ji(azi In ( Yilsi (t \_{i(Ts)i,’ 5 )(t — TD) dt
+haiky 7i®3i (Yilsip) = Yils; (t =), p (=) d

!
+ Y13 P)ksida 07931~ In (Y"(S” (t ;Js)i: ;’)(t - T”) it
+ ki, 07% (i) = it ¢ = 2 + g (P20 )
b /@ (1)~ 6 ) + (i (L)Y ) dT]
(- 320 £ (oo - e
- M, ?i®5iwgi<ui (4= e | —ker (1= BP0 (gpus () -+ s ()il

+ koo (1 (p) Pz (x) — wipap(x)). (A8)
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Collecting terms of Equation (A8) and applying 77;(5;) = A;Y;(5;, 7), we get

auy, & [ Yi(5i, p)
W - ;71 |:(7Tl<sl) - nl(sl)) <1 - Yz(sz/fj))
- Yi(3i, p) Yi(5i, p)
AN P) (1 Yl(slfp)> A (Sl/p)Yz(sirﬁ)
hy; N
— k1M /(’311 silt = T)l/;f;((;i; 0)¥i(@:) dt + kyi(a; + Bi) i (@;)
h21
si(t=1),p(t—1)) (@)
+k217711p21(]/z) k21A21/®21 1,[)21‘(%) dt
h;
P1i(wi) ai(¥:) "o, Yilsi(t=T), p (= 7))si(;)
ikoi———" — ksidsi | ©si
it ¥2i(yi) s 0/ > P3i(u;)
hy;
+ k3lvz¢3z<az) + klz/\lle(glr ﬁ) /®1z In <Y <Sl (t ;l’([s)l:z)(t — T))> dt
h21
oAy Yo / @y In ( o t —7) ) it
+ k31’)\31 Sl, @31 In ( t — T ) dt

+ ki) /’@41. In <W> g

h51

+ ksivitps; (i /®51 In (W) dT] —ke1g¢a1(p)

hyj
v Pai(yi (t = ) ¢ur (P)
Ko 1; Nt o/ Oui Pa1(p) at

kY M, / o, Failti (= i )))‘W Vit + kengun (5)

+ pke1par (P)az (x) — keawipaa (x).

i=1 0

Using the equilibrium conditions for I;:
(@i + Bi)1i(@;) = MiFniYi(5;, P), kaingitpai (7:) = (kll/\lelz + koiraiFai) Yi(5i, B),

Vi3 (1) = A3iF3Yi(5i,P), ke18Par (P Z%)\ Yi (5, 7).
i=1
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we have

dul i% { 7 (8i)) (1 - ?(Sﬁﬁj) + AiYi(8i, P) (1 - Yl:(gi'ﬁ)>

b p) 4 AN P) <Y1<ssf, M e

+ ksidsiFsiYi(5i, P) = KaidaiYi(5i, ) 07@31' e (T) ;§>(z;sl_( T)>)¢3i(ﬁi> "
+ kA Y (55, ) 0/1 i@)h- In (Yi(si (t \_(i(Ts)i:S)(t - T))) dt

+ kaidai (5, P) Zi®2i In (Y"(Si L ;iz—s)i/,;j)(t — T))) dt

YD) 07'% N (Yi@ (t ;(2: Z)(t —1)) ) it

Gl o TN o, (20000
+IM3’F3;;{Z(SP) 2i®51 In (W) dr} + l}; YA Yi(8i,P)

Yi(k1idiFii + koidoiFoi) Yi(8;,
Fy

sl

dt

(7)) (p)

i=1

hy;
) iy (t — 7)) a1 (P)
O/®4z 4]21

'sz31)\3zF31 Slr / 11[]31 ( ))#’41 (ﬁ)
Os; dt
lX; F5; w3 () a1 (p)
+ rke2 <1P41(75) - 7) P (x).
Using the Equalities (A1) with §; = §;,@; = @;, §; = 7;,0; = 1 p = p, we have
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o= i"}/i [(m(si) — m;(5)) (1 - zzg,;?)
(Fop ~ va) 1y
a0 g o (Y)Y
(

o (Nt 1 (en)
e o (ORI
—Hn(‘Plf<wf>‘;;fz;5,f>;z;';;;f—f>> "
— kaidai Y, 0/ (1/’21 7i)Y %l it \_{z(?llg)(t_m
7)Y

1 <1P2z(

isi(t—1),p(t—1))
lle(yl)Yl(Sl P) >d
- 1),

- kSz/\31 /631 (1P3l l[J3 Y (
i z i\Pir

e sV (1~ ), p (1~ 1)
T ( 11[)31( )Yl(gzﬁ >)dT
)1

)
ALEY (5, ) (Y2 e (wi)
kll/\llFllYl( ZIP) (11021(3/1)1/)11( ~1) ! <¢2i(yi)lp11( ))

i)
hy;
 (kyiriFy + koidgiFai) Yi(8i, P) /®4, <1P2i(yi (t—1)¢pa ()
l i () par (p)
0

F4z

1-1n $2i(yi (t — 1)) (P)
- 1( ¢2z(yz)¢41 )dT)

p)
k3z/\31F3z 5i, < t — T ¢41 1
F51 i(1;)a (p

—In (lp3l(ul ( ))11041(;5))) :| + rkep (l,bzﬂ( ) 4)41(?)) 4)42(3(_).

3 (1) Y41 (p)

28 of 35

(A9)
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Equation (A9) becomes

(-5
¢41(}3)Yi(5i/ﬁ)>)
a1 (P)Yi(si, p)

hy;
ALY (5 (@) Yi(si (E— 1), p
7k11A11Y1(S“ p)b/e)llF( lpll(wz)Yz(gz/ ﬁ)

bt ) [ our (NI
o ‘ lpi(ﬁi)Yi(Si (t_T>/p(t_T))
— k3iA3iYi(3i, P) O/®3iF ( : 3i(ui)Yi (S, p)

h41
 (kyiriFyi + koidgiFai) Yi(8i, P) P2i(yi (t — 7)) par (P)
Fy; / Out ( ¥2i(7i) ¢ (p) )dT

 kaidsiFsiYi(8i, ) P3i(u; f—T))1P41( p)
Fs; / Osif < ;) Pa1 (p) )dT]

+ rkez (a1 (P) — 1/’41( p)) paa(x).
From H1, H2 and H4, we have

(7ti(si) — mi(8;)) <1 ngj, Z;) <0,
Yi(si, p)

<Yi<si'p) _ 1P41(P>> <1 i\Sis ) 0.

Yi(si, p)  $ar(P) Y;(si, p)

Moreover, if Ry < 1, then ¢41(7) — $41(p) < 0. Thus, for all s;, y;, p, x > 0, we have dtl < 0and
O

du1 = 0atIly. LIP I, is globally asymptotically stable.
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Proof of Theorem 3. Define U, (51,52, w1, W2, Y1, Y2, U1, Uz, P, X)

Si wi
. [ YiE,p) o pu(@)
ST S/ Yi(17,P) i | @ Py ¥1i(17) i

Yi Ui
i ¥2i (i) [ Wsi(a)
koi | yi — i — d kai | ui — it — d
e (y 4 y/_lPZi(W) 17) e (u ! J ¥3i(17) 77)

2
U =) 7
i=1

hy; T
Y (5 B , Yi(si (t=0),p(t—0))
+k11)\le1( ir p)0/®lz (T)O/F( Yi(s_z‘/ﬁ) )dedT
hy; T
o Yi(si (t—0),p(t—0))
+k2i/\2iYi(sil p) @21‘ (T) F —— dodt
b/ 0/ ( l(Si/ P) )
hs; T
Yi(si (t—0),p(t—0))
+k31/\31Y1(5up) O3 (T) F . 7 dodt
b/ O/ ( Yi(si/ P) )
By T
. ‘ Poi(yi (t —0))
+k417717~/]21(]/1)0/®41 (T)O/F (lpzi(yi) )deT
hs; T
i} " (Wai(ui (= 0))
+hsivigsi(it;) | Osi(T) | F| -~ | dodt
o/ > o/ < i (1 > ]
[ pa(p) [ pa(®)
_ 41 = 42
e (”‘P‘ﬁ ¢41<n>d’7) e ("‘x‘f m(v)d”)‘

Note that, Uy (51,82, w1, W, y1,Y2, U1, U, p,x) > 0 for all sq,sp, wy,wo, y1,y2,p,x > 0 and
Uy (51,52, W1, Wy, 71, 2, 11, lp, P, X) = 0. Calculating % along the solutions of system (10)—(15), we get
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2 .
=L [ (1) e -t

B hy;
+ ki (1 - lpli(wl)) )\11/®1iYi(Si (t=7),p(t—1))dr — (a; + ﬁz‘)lPli(wi))

Ao / O Yi(si (t —7T),p (t = T))dT + ajipy;(w;) — Wilpzi(]/i))
0
h

+ ki <1 - lpsl:(ﬁl:)> (Asi/®3iYi(Si (t—1),p(t—T1))dT - Vil/J?)i(”i))
0

+ Yi(s‘i,ﬁ)kli/\li/@li In (Yi(si (t;izs)i:z)(t — r))) -

I
+ kaiA; / @y (Yi(si,p) = Yi(si(t—7),p(t—1)))dt
0

hy;
_ Yi(si (t—7),p(t—71))
+Y;( i,P)kZi/\ziO/@zi In ( (s, p) ) dt
hs;
+ k3iAzi / @3 (Yi(si,p) = Yi(si (t—1),p(t—7)))dr
0
h3;
_ Yi(si(t—1),p(t—1))
+Y;( i/p)k3i/\3i0/®3i In ( Yi(si, ) ) dt
By
+ k4i77i0/®4i (1/)21‘(%') — oi(yi (= 7)) + ¥oi(7;) In (W)) dt
hs;
_ P3i(ui (t— 1))
+ k5iVi0/®5i <llf3i(ui) — 3i(u; (t — 7)) + ¢3i(i1;) In (W)) dT]
e\ & [, f 7
41\ P
1 ke (1 - 1P41(P)> l; (Nimof@zﬁlpz:‘(yi (t—71))dt + MiViO/®5i1P3i(ui (t— T))df)
~ b (1= 2L (g () + s ()l
+ ke (1 - iigz;) (ra1(p)Pan (x) — wips(x)). (A10)
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Collecting terms of Equation (A10), applying 7;(5;) = A;Y;(5;, ) and using the equilibrium
conditions for I'y:

(a; 4+ Bi) i (@) = AMiFiiYi(5, ), koittithoi (i) = (kli/\lipli+k2i/\2iF2i)Yi(§i/ﬁ)/

Vi3 () = A3iF3Yi(51,P), ke18a1 (P Z%AY (51, P) — wke1a (P) sz (%),
i=1

we obtain

a2 ] Yi(5i,p)
th — l;ryi [(7‘[1'(5,‘) — 1;(5)) (1 o Yi(Si,ﬁ)>

o Y;(5i, p) - [ Yisip)  pa(lp)
#a7%t5,7) (1~ Y(;a)) #4065 (3~ )

hll

+kiAiFYi(E P) — kA Y / @, it 7 (S_) )(1;11(;3))4)“ (@) 47
Y (5.p) /@ Nt Tl D)

kniduiFyYi (5 p) :‘Z %EEZ; (kyidaiFui + kaidaiFar) i (i, P)
+ kaidsiFaiYi(3, P) — kaidaiYi(5i, P) 073{(931 Yilsi(t () ]’; )(;;(T))"’3l(“l)) dt
kY (50, P 7@1, (Yf(si (t ;i(?i,' ;’)(t - T))) dt
+ kaidai Y (50, P) 07% In (Yi(si t ;(TS) 5)“ - T») dr
+ kaidai Y (5i, P) ?1631- In <Yi(si (t ;i(fs)i: Z )(t - T)>> dr

, (kudiFy + kzﬁiﬁm) / o0 in (4]21 (1,1]21((3/1) r))) N

2
+ Y 7iAiYi(5, p)

i=1

h51
kai/\3iF3iYi(§i,ﬁ)/ (7,031'(1/!1' (t—‘r)))
+—=—>= 7 [O5In| —————)dT
Fs; ) > P3i(u;)

hy;
Yi kll/\llFll + kZzAZzFZZ)Yz(gz ﬁ) l/JZi(]/i (t — T))¢41 (ﬁ)
Oy — d
-3 Fy / e (p)

i=1

71k31A31F31Y 5i,p 1P3z Ui (t - T))1P41( )
E @)
Fs; / T i (i) ar (p) ar

i=1
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By Equalities (A1) with §; = 5;,W; = @;,; = ¥;,1; = #1; and p = p, we can get

A, & - Yi(5i, P)
G = Lo (i) - s (1- 5
(s g (YiGip)  $a(p)\ (1 Yilsip)
AN p) Yi(si, p) 1#41(77)) (1 Yi(Sz‘/P)>
Y53 Yi(5i, ) Y1 (p)Yi(si, p)
i) [F (31 )+ F (o)
o vs v (P20 () P (wi)
~kudiRiYi(S:, p)F (1/121' (yi)ri(@;) >
hy;
o o (1(@;)Yi(si (f—T t—T
KA Yi(5i, ) 0/ O F ( Pt ) dt
ho;
Y (5 B (2 (7)) Yi(si (t— 1), p(t—71))
FuhaYi(5u P )0/ ®2’F< i (i)Y Sz/P) >dT
hs;
o $3i () Yi(si (t = 7) f—T
—k3i)\3iYi(Si/P)0/®3iF< 3 )Y, 51/ )dT

 (kyiriFy + koidgiFai) Yi(5i, P OuF (9’)21 yi (t— ))1P41(?5)) d
Fa / 92 (70 4(p) ‘

k3lA3ZF3l P3i(ui (t —7))¢Pa1(P) -
/®Sl < IPBz( 1)1/741( ) )d

From H1-H4, we get % < 0 and dg% = 0 at II,. LIP implies that Il is globally
asymptotically stable. [
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