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Abstract: In this work, we study the inclusion problem of the sum of two monotone operators and
the fixed-point problem of nonexpansive mappings in Hilbert spaces. We prove the weak and strong
convergence theorems under some weakened conditions. Some numerical experiments are also given
to support our main theorem.
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1. Introduction

Let H be a real Hilbert space. We study the following inclusion problem: find £ € H such that
0 € A% + B% 1)

where A : H — H is an operator and B : H — 2! is a set-valued operator.
If A := VF and B := dG, where VF is the gradient of F and G is the subdifferential of G which is
defined by

0G(x)={z€e H: (y—x,z) + G(x) < G(y),Vy € H}. )
Then problem (1) becomes the following minimization problem:
min F(x)+ G(x) 3)

To solve the inclusion problem via fixed-point theory, let us define, for r > 0, the mapping
T, : H — H as follows:

T, = (I+rB) I —-rA). (4)

It is known that solutions of the inclusion problem involving A and B can be characterized via
the fixed-point equation:

Tx=x < x=(I+rB) !(x—rAx)
& x—rAx € x+rBx
< 0e€ Ax + Bx,
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which suggests the following iteration process: x; € H and
Xpi1 = (I+ rnB)*l(xn — 1 Axy),n >1, (5)

where {r,} C (0, 00).
Xu [1] and Kamimura-Takahashi [2] introduced the following inexact iteration process:
u,x1 € Hand

Xpi1 = &ptt + (1 —ay)Jr,x0 +ep,n > 1, (6)

where {a,} C (0,1),{rn} C (0,00),{ex} C Hand J,, = (I +r,B)~!. Strong convergence was
proved under some mild conditions. This scheme was also investigated subsequently by [3-5] with
different conditions. In [6], Yao-Noor proposed the generalized version of the scheme (6) as follows:
u,x; € Hand

Xpy1 = Qplh + ,ann + (1 - ,Bn - “n)]rnxn +en,n>1, (7)

where {a,}, {Bn} C (0,1) with 0 < a, +Bn < 1,{rn} C (0,00) and {e,} C H. The strong
convergence is discussed with some suitable conditions. Recently, Wang-Cui [7] also studied
the contraction-proximal point algorithm (7) by the relaxed conditions on parameters: a, — 0,
Z ay = oo, limsup B, < 1, hmmfrn > 0, and either Z llen]] < oo or HE”H — 0.

n=1 n—o0 n=1

Takahashi et al. [8] introduced the following Halpern-type iteration process: u, x; € H and
Xpg1 = aptt + (1= an) Jr, (X0 — 10 Axy),n > 1, (8)

where {a,} C (0,1),{r,} C (0,00), A is an a-inverse strongly monotone operator on H and B is a
maximal monotone operator on H. They proved that {x, } defined by (8) strongly converges to zeroes
of A + B if the following conditions hold:

(i) im a, =0, szn_oo

n—co
n=1

(ii) 2 |1 — an| < o0;
n=1
[ee]

(iii) Y [rpq1 — 1| < oo
n=1
(iv) 0 <a<r, <2a.

Takahashi et al. [8] also studied the following iterative scheme: u,x; € H and
Xp41 = BnXn + (1- ﬁn)(lxnu + (1 —an)]r, (xn —1nAxy)),n > 1, )

where {a, }, {Bn} C (0,1) and {r,} C (0, c0). They proved that {x, } defined by (9) strongly converges
to zeroes of A + B if the following conditions hold:

(i) lim a, =0, nglan = o0;

(i) 0<b< B, <c<1;
(i) lim |tue1 —1n| =0;
(iv)

10 0<a§rn<21x.

There have been, in the literature, many methods constructed to solve the inclusion problem for
maximal monotone operators in Hilbert or Banach spaces; see, for examples, in [9-11].
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Let C be a nonempty, closed, and convex subset in a Hilbert space H and let T be a nonexpansive
mapping of C into itself, that is,

ITx = Ty| < |lx =yl (10)

for all x,y € C. We denote by F(T) the set of fixed points of T.
The iteration procedure of Mann’s type for approximating fixed points of a nonexpansive mapping
T is the following: x; € C and

Xpa1 = apXy + (1 —a,)Tx,, n>1 (11)

where {a,} is a sequence in [0, 1].
On the other hand, the iteration procedure of Halpern’s type is the following: x; = x € C and

Xpi1 =X+ (1 —ay)Tx,, n>1 (12)

where {«a,} is a sequence in [0, 1].
Recently, Takahashi et al. [12] proved the following theorem for solving the inclusion problem
and the fixed-point problem of nonexpansive mappings.

Theorem 1. [12] Let C be a closed and convex subset of a real Hilbert space H. Let A be an a-inverse strongly
monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is
included in C. Let ]y = (I + AB)~1 be the resolvent of B for A > 0 and let T be a nonexpansive mapping of C
into itself such that F(T) N (A + B) 710 # @. Let x; = x € C and let {x,} C C be a sequence generated by

Xpt1 = Buxn + (1 — Bu) T(anx + (1 — an) Ja, (X0 — AnAxy)) (13)
foralln € N, where {A,,} C (0,2a),{Bn} C (0,1) and {a,} C (0,1) satisfy

O0<a<A, <b<2, 0<c<B,<d<],
o

,1131;0()\,1 — A1) = 0, lim &, = olmdn;an = 0.

Then {x,} converges strongly to a point of F(T) N (A + B)~!0.

In this paper, motivated by Takahashi et al. [13] and Halpern [14], we introduce an iteration of
finding a common point of the set of fixed points of nonexpansive mappings and the set of inclusion
problems for inverse strongly monotone mappings and maximal monotone operators by using the
inertial technique (see, [15,16]). We then prove strong and weak convergence theorems under suitable
conditions. Finally, we provide some numerical examples to support our iterative methods.

2. Preliminaries

In this section, we provide some basic concepts, definitions, and lemmas which will be used in the
sequel. Let H be a real Hilbert space with inner product (-, -) and norm || - ||. When x,, is a sequence in
H, x, — x implies that {x, } converges weakly to x and x, — x means the strong convergence. In a
real Hilbert space, we have

1A%+ (1= M)yl? = Allx[* + (1 = DIyl = A1 = A) x = y]?, (14)

forallx,y € Hand A € R.
We know the following Opial’s condition:

liminf || x, — u|| < liminf||x, — | (15)
n—oo n—oo
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if x, = uand u # v.

Let C be a nonempty, closed, and convex subset of a Hilbert space H. The nearest point projection
of H onto C is denoted by P, that is, ||x — Pcx|| < ||x —y|| forall x € H and y € C. The operator Pc is
called the metric projection of H onto C. We know that the metric projection Pc is firmly nonexpansive,
forallx,y € H

IPcx = Peyl|* < (Pex — Pey, x —y). (16)
or equivalently
IPcx — Peyl|* < [|x = y[I> = (I = Pc)x — (I = Pe)yl|*. (17)
It is well known that P¢ is characterized by the inequality, forall x € Hand y € C
(x — Pcx,y — Pcx) <0. (18)

In a real Hilbert space H, we have the following equality:

TN S NTORTT B STINRTE
(x,9) = el + 311~ 51—y (19)
and the subdifferential inequality
Ix+yl1* < llxll* +2(y, x + ) (20)

forall x,y € H.
Let @ > 0. A mapping A : C — H is said to be a-inverse strongly monotone iff

x — vy, Ax — Ay) > a||Ax — Ay|]? (21
y y y

forall x,y € C.
A mapping f : H — H is said to be a contraction if there exists a € (0,1) such that

1£(x) = FWI < allx =yl (22)

forall x,y € H.

Let B be a mapping of H into 2H. The effective domain of B is denoted by dom(B), that is,
dom(B) = {x € H : Bx # @}. A multi-valued mapping B is said to be a monotone operator on
Hiff (x —y,u—v) > 0forall x,y € dom(B), u € Bx and v € By. A monotone operator B on H is
said to be maximal iff its graph is not strictly contained in the graph of any other monotone operator
on H. For a maximal monotone operator B on H and r > 0, we define a single-valued operator
Jr = (I+rB)~': H — dom(B), which is called the resolvent of B for r.

Lemma 1. [17] Let {ay, } and {c, } be sequences of nonnegative real numbers such that

Ay < (1—38p)ay +by+cp, V> 1 (23)

where {8y} is a sequence in (0,1) and {b,} is a real sequence. Assume Y_ c, < oco. Then the following
n=1

results hold:
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(i) If by < 6, M for some M > 0, then {ay, } is a bounded sequence.
(ii) If Z 8y = co and limsup by, /8, < 0, then nli_r)roloan =0.

=1 n—00

Lemma 2. [17] Let {T',} be a sequence of real numbers that does not decrease at infinity in the sense that there
exists a subsequence {I'y, } of {T'n } which satisfies Ty, < T, 11 for all i € N. Define the sequence {{(1) }n>n,
of integers as follows:

P(n) = max{k <n:Ty <Tii1}, (24)

where ng € N such that {k < ny: Ty < Ty 1} # @. Then, the following hold:

(i) P(ng) <P(ng+1) < ..and Pp(n) — oo,
(ll) Fl/’(”) S FWMH and Fn S I’[p(n)ﬂ, Vn Z no.

Lemma 3. [18] Let H be a Hilbert space and {x,} a sequence in H such that there exists a nonempty set
S C H satisfying:
(i) For every % € S, lim || xn — %|| exists.
n—oo
(ii) Any weak cluster point of {x, } belongs to S.

Then, there exists X € S such that {x, } weakly converges to X.

Lemma 4. [18] Let {¢pp} C [0,00) and {6, } C [0, c0) verify:

(1) ¢n+1 - 4771 S en (4771 - 4711—1) + 571/
(i1) 2 Op < 00,
n=1
(iti) {6} C [0,6], where 6 € [0,1].
Then {¢n} is a converging sequence and Y [Ppui1 — ¢u]+ < oo, where [t]y := max{t,0}

n=1

(forany t € R).

3. Strong Convergence Theorem

In this section, we are now ready to prove the strong convergence theorem in Hilbert spaces.

Theorem 2. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let A be an a-inverse
strongly monotone mapping of H into itself and let B be a maximal monotone operator on H such that the
domain of B is included in C. Let Jy = (I + AB)~! be the resolvent of B for A > 0 and let S be a nonexpansive
mapping of C into itself such that F(S) N (A + B)~10 # @. Let f : C — C be a contraction. Let x9,x; € C
and let {x,} C C be a sequence generated by

Yn = Xp+ Gn(xn - xnfl)/
Xnt1 = PaXn+ (1 - ﬁﬂ)s(“ﬂf(xn) + (1 - “n)])\,l (]/n - )\nA]/n)) (25)

forall n € N, where {ay} C (0,1),{Bn} C (0,1),{An} C (0,2a) and {6, } C [0,6], where 6 € [0,1) satisfy

(C1) lim ay = Oandn;lrxn = oo;
(C2) Timinf Bu(1— ) > 0;
(C3) 0< 1i7£r_1>ioro1f/\n <limsup A, < 2a«;

n—o0

0
(C4) Lim | x, —x, 1]| = 0.
n—0oo Ky
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Then {x, } converges strongly to a point of F(S) N (A + B)~10.

Proof. Letz = Pr()q(asp)-10f(2)- Thenz = Jj, (z — Ay Az) for all n > 1. It follows that by the firm
nonexpansivity of J ,

1 Ta, (Yn — AnAyn) — Z”z = |[r,(yn — AnAyn) — Ja,(z — /\nAZ)H2
1 (yn — AnAyn) — (2 = AnAz) |2
=T = Ja,) (g = AnAyn) = (1= Ja, ) (z = AnAz) |
[(yn = 2) = An(Ayn — Az)|?
~lyn — AuAyn — Jp, (Yn — AnAyn) —z+ A Az + ], (z — /\nAZ)”2
= |l(yn —2) = An(Ayn — A2)|?
~[yn = Au(Ayn — Az) = Jr, (yn — AuAyn) |2
= |lyn —2lI> = 2Au(yn — 2, Ayn — Az) + A7 [ Ay — Az|?
—[lyn — A (Ayn — Az) — Jr, (yn — /\nAyn)Hz

IN

< lyn — 2l = 2Anal| Ay, — Az||* + A7 Ayy — Az|?
—[lyn — An(Ayn — Az) — T, (yn — /\nAyn)Hz
= lyn— Z”2 — An(2a — Ay) || Ayn — AZH2
—lyn — An(Ayn — Az) = Jn, (yn — AuAyn) ||I*. (26)
By (C3), we obtain
1Tan (Y — AnAyn) — z|| < [lyn — 2| (27)

On the other hand, since y, = xy + 0, (xn — x,_1), it follows that

20 — 2 + On(xn — x41) ||
0 — z|| + Onllxn — 241 (28)

[yn = 2|

IN

Hence ||]a, (Yn — AnAyn) — z|| < ||xn — z|| 4 64| xn — x,,—1]| by (27) and (28).
Let wy, = anf(xn) + (1 — ay)Ja, (Yn — AnAyy) for all n > 1. Then we obtain

lwn =zl = llan(f(xn) = 2) + (1 = an)Ja, (Yn — AnAyn) — 2|
< anllf(xn) = f@I 4 anllf(z) = 2l + (1 — an) [[xn — 2|
+0n (1 — an) [0 — xp 1]
wntt|[xn — z|| + anl[ f(z) — 2| + (1 — an) ||lxn — 2]
+0, (1 — a)||xn — x5 1|
= (I—an(1—a))llxn —z|| + anl|f(2) — 2] + 04 (1 — an) ||l xn — 20-1]-

IN
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So, we have

lxps1 — 2|

7 of 19

1Bn(xn — 2) + (1 — Bu) (Swy — 2) ||

Bullxn — 2| + (1 = Bu) | Swn — 2|

Bullxn =zl + (1 = Bu) [lwn — 2|

Bullxn =zl + (1 = Bu) [(1 — an(1 — a)) [[xn — z|| + anl| f(2z) — 2|
+0n (1 — an)||xn — x4-1][]

(1 —an(1=Bu)(1—a))|xn —z|

o (1—Bn)(1—a) ”f(lz)_;ZII n %ﬂ((ll—_a;))

IANIA A

[l2¢n — 21l |-

By Lemma 1(i), we have that {x, } is bounded. We see that

%1 — 2|2

[1Bn(xn — 2) + (1 — Bu) (Swn — 2) 12
Brllxn — Z”Z + (1= Bu) || Swn — ZH2 — Bu(1 = Bu)llxn — SwnH2
< Ballxn — 2> + (1= Bu) wn — z||* = Bu(1 = Bu) | Swy — xa|*. (29)

We next estimate the following:

oo — 2>

It follows that

IN

IN

IN

oo — z||?

(wp — z,wy, — z)

(n(f(xn) —2) + (L= an)(Jn, (Yn — AnAyn) — 2), wp — 2)
an(f(xn) — f(2), wn — 2) + an(f(2) —z,wp — 2)

+(1 —an)(Jr,(Yn — AnAyn) — z,wp — 2)

anlf(xn) = f(2)l[[wn — z||

+ (@ = an)1Jr, (yn = AnAyn) — z||[|wn — z[| + an(f (2) — z, w0 — 2)
and||xn — zl|lwn — zl| + (1 = an) [ Ja, (¥n — AnAyn) — z||||wn — z||
+an(f(z) —z,wy —z)

1 1 1
E“n‘lnxn - ZHZ + E“na”wn - ZHZ + 5(1 - "‘n)HL\n (Yn — AnAyn) — ZHZ

1
"‘5(1 — ) ||wn — z||* + an (f(z) — z,wp — 2)
1 1
sznaHxn — sz + 5
1
"‘5(1 —ay(1l—a))|wy — ZHZ +an(f(z) —z,wn — z).

(1= an)llJn, (yn — AnAyn) — Z||2

Xy
< T
- 1-ay(a—-1) I
20y

+m<f(z) —2,Wn — Z). (30)

1—ay,

1—«
_ZH2+ an_ 1) ||]An(}/n_/\nAyn>_Z||2

1T—ay(a—1)
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We also have, using (19)

[ (xn = 2) + 0 (xn — x4-1)||?

= |lxn— ZHZ + 20, (xn — 2, X5 — Xy—1) + 9%||xn - xn—1||2

lyn — 2|2

1 1 1
= llaw =20 + 200 | Sl — 217 + S llxn = 201> = Sllxn — 2 = 200 + 20112

Ol — 2117

lxn = 2II? + O [lltn — 202 + llxw — 201 1> = [[25—1 — 2]”]

+67 1200 — 2x01|?

= lan =zl + Oulllxn — 2|1 — lxu—1 — 2l%] + (67 + 6n) [0 — x|

<l =zl Oullloen — 2l = -1 — 212 + 20 00 — 201 |1 (31)

Combining (26) and (31), we get

1 (Y = AnAyn) —zlI> < [lxn — 2)1* + Oa[llxn — 201> — 1201 — 2[1*] + 200 || — xp—1]|
—An (26 — Ap)|| Ayn — Az|?
—[lyn — An(Ayn — Az) — Jan (yn — )‘nAl/n)”z- (32)

Combining (30) and (32), we obtain

apa 1—ay
1—ay(a—1) 1—way(a—1)
—On %1 — 2[|* + 260 |5 — x5 1[1* = An (20 — A)[| Ay — Az|?
— |1y — Au(Ayn — Az) = n, (yn — AnAyn)||’]

lw, —z||* < llxn —z||* + [llxn — 2|1 + 6|0 — 2|2

20
+m<f(2) —Z, Wy — Z>
_ 1w, o On(le) e
= Ta@on A Ty e = 2 = v = 2]
2971(1 *lxn) _ 2 /\n(l — ocn)(21x — )\n) _ 5
+m|lxn Xp—1]| T an(a — 1) || Ay — Az||
1—ua
_T(an—l)”y” — Mi(Ayn — Az) =, (yn — AuAyn) |12
20
_l’_

mg(z) —Z,Wn — 7). (33)
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From (29) and (33), we have

1—0a,(1—a
ltupr =27 < Bullve — 22+ (1 Bu) wﬁHuxn—sz

On (1 — an) 2 2 20, (1 — ay) )
T e = 1y o =2l = lnmy = 2l) = = o = 2 |
An(1—ay) (20 — Ay)
- n(l—zx:>(t<1—1) =l Ays — Az|®

1—a, )
Tt 1y Y A (A = A2) = I, (9 = AnAy)|

20y,

gy (@) 20— 2| = 1= BlSn —

20, (1 —a)(1— Bn)
S e L

# B tn) (1, 22—, 2]P)

e L L PO P |

DO BB =)y, e

R = Mg = 42) = o (= Do) P

+ 2 Bo) (5(2) — 20, - 2) — a1 = BulS0n = &N
Set T, = ||x, — z||?,¥n > 1. We next consider two cases.

Case 1: Suppose that there exists a natural number N such that I';,;;; < I', forallnm > N.
In this case, {I';} is convergent. From (34) we obtain

0n(1—Bn)(1 —an)

1— 20, (1 —a)(1— Bn)

Tnt = 1—ay(a—1) Tn 1—ay(a—1) (T = To1)
B e s El K
St ;;)8 - 103") ln = A Ay = A2) = T, (g0 = A )|
4 2P 0) — 2,0, - 2) — (1 — BulSn — ol
It follows that
MO0 BIE =0y,
<1y Ty B0 B =) 1, -, gy o PP t)

—i—m(ﬂz) — 2z, Wy — Z).

Also, we obtain
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(1—Bn)(1—an)

H]/n - /\n(A]/n - AZ) - ]/\n (]/71 - /\HA]/”)HZ

1— n _1
Y )1 20n(1 = Bn)(1 ~ )
Srn—rn+]+ 17“71(5171) 1*0671(61*1)

20, (1 — Bn)
m(f(z) — 2z, Wy — Z).

(rn - rnfl) + ”xn - xnlez

We also have

0n(1— Bn)(1 —ay)

Bu(1—Bn)[[Swn — xul> < Tu—Tpp1 + 1—an(a—1) (T —Tno1)
20, (1 — Bu)(1 — an) 2
+ 1—an(a—1) ln = 21l
20, (1 — Bn)
+1 ~an(a—1) (f(z) —z,wp — z).
. . B .
Since lim —||x, — x,—1]| =0, lim &, = 0 and {I',} converges, we have
n—oo Ky n—o00
Ay, — Az|| — 0,

lyn — Au(Ayn — Az) — Jr, (yn — AnAyn) || — 0,

and
ISw, — x,|| = 0

as n — co. We next show that ||J5, (vn — AnAyn) — yu|| — 0 as n — co. We see that

112, Yn = AnAyn) —yull = [Jr,(Yn — AnAyn) — A (Ayn — Az) + An(Ayn — Az) — yau|
< yn = An(Ayn — Az) = Jo, (yn — AnAyn) | + An | Ayn — Az]|
— 0, as n — oo.

We also have

lwn —xull = |an(f(xn) = xn) + (1 —an) (Ja, (Yn — AnAyn) — x) |

|l f(xn) = Xn |l + lyn — An(Ayn — Az) = Jp, (¥n — AnAyn) ||
+AnllAyn — Az + [|xn — yull + anllJa, (Yn — AnAyn) — xa||

ol f(xn) = Xn |l + lyn — An(Ayn — Az) — Jp, (yn — AnAya) ||
+Anl|Ayn — Az + Onllxn — xn-1ll + anllJa, (Yn — AnAyn) — xa||
— 0, as mn — oo.

IN

We next show that ||Sx, — x,|| — 0 as n — co. We see that

|Sxn — Swy || + || Swn — x4 |

[Sxn — xal| <
< lxn — wall + [|Swy — x|

d

0, as mn — oo.
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Since {x,} is bounded, we can choose a subsequence {x,, } of {x, } which converges weakly to a
point x* € C. Suppose that x* # Sx*. Then by Opial’s Condition we obtain

liminf [|x,, — x| < lminf|/x, — Sx*||

1— 00 1—00
= liminf ||x,, — Sxp; + Sxu, — Sx™||
1—00
< liminf|[xy, — Sxp,|| + liminf [|Sx,, — Sx™|
1—>00 1—00
< liminf ||x,, — x*|.

1—00

This is a contradiction. Hence x* € F(S). From w, = a,f(xy) + (1 — an)Jr, (Yn — AnAyn),
we have

= Ja,(Yn — AnAyn).

From J), = (I + A,B)~!, we also have

W =S () (g AL BY ) (g — Andya).

1—ay,
This gives
B Wy — anf(Xn) Wy — &nf(xn)
Yn )\nAyn € T —a ®, + /\n341 —x, .
So, we obtain
Yn wy + “nf(xn) Wn — D‘Vlf(xn)
In _ gy, — CnT &njXn) p—__ )
An Yn An(1—ay) < 1—ay,

Since B is monotone, we have for (p,q) € B

<wn—ocnf(xn) Yn _ w”‘”‘”f(x”)_q> > 0.

1—a, P T T A = )

So, we have

(An(wn — anf(xn)) — pAn(l — an), yn(1 — an) — AyuAn(1 — an) — wn + anf(xn) — gAn(1 —
txi’l)> Z 0/
which implies

(Anwn — pAn — Anen (f(xn) = P)sYn — Wn — an(yYn — f(xn)) — An(1 — an)(Ayn +q)) > 0. (35)

Since (yn —x*, Ayn — Ax*) > a||Ayn — Ax*|?, Ayy — Az and y,, — x*(since ||x, — yu| — 0),
we have a||Ay, — Ax*||?> <0 and thus Az = Ax*. From (35), we have (x* — p, —Ax* — q) > 0.
Since B is maximal monotone, we have —Ax* € Bx*. Hence 0 € (A + B)x* and thus we have
x* € F(S)N (A + B)~'0.

We will show that limsup(f(z) —z,w, —z) < 0. Sine {w,} is bounded and |x, — wy| — 0,

n—oo
there exists a subsequence {wy, } of {w, } such that

li?jogp(f(z) —Z, Wy, —z) = ian;Q (f(z) —z,wy; —z2)

(f(z) —z,x*—z) < 0.
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We know that
20, (1= a)(1 = B)
< _
Iy < [1 1—an(a—1) I,
2"471( )( ﬂn) ( —ucn) _ 5 1 B -
+[ 1—an(a—1) a,(1—a) ben =221+ m@‘(z) z,wy —z)|.
. . 971(1 - ﬂ(n) 2 1 )
ay(1—a) - - <
Since llTjgp [ ay(1—a) l2n = 22 l|” + 1—2 (f(z) —z,wp —z) | < 0, by Lemma 1(ii)
IimTI, = 0.Sox, — z.

n—oo

Case 2: Suppose that there exists a subsequence {T'y,} of the sequence {T';} such that T, < T, 41
for alli € N. In this case, we define ¢ : N — N as in Lemma 2. Then, by Lemma 2, we have

Loy < Tg(n)+1- We see that

||x<p(n)+1 — Xo(n) || < (1 - ﬁ(p(n)) ||Sw(p(n) — Xo(n) ||
— 0, as n —» oo
From (34) we have
n)(l - lZ) - (p ) erp(n) (1 - ﬁ(p(ﬂ))(l - “(p(ﬂ))
Lo = |- =0 a1y |Tetw [ty (@—1) (Tp(m) = Tom)-1)
29 (1 - ;B(p n))(l Xy ) 2
+ )(a 1) ||x xqo(n)—l”
A (1 — &, )(1 Bon)) (20 )
¢(n) ) ¢(n ¢(n) 2
— AY () — Az
— () (a ) H Yo(n) “
(= Byn )( () 2
1_ “(,0( )(LI — 1) H qo(n - (p(n)(A]/(p(n) - AZ) - ]/\q,<n) (yq;(n) - )‘(p(n)A]/(p(n)) H
2090y (1 = o))
¢(n) ¢(n) _ ) _ — 2
1— ‘Xgo(n)(a — 1) <f(Z) Z, W (n) Z> ﬁq)(n)(l :B(p(n))”‘sw(p(n) Xo(n) H .
It follows that
A n (1_“ n )(1_ﬁ n )(251_)L n)
¢(n) ¢(n) @(n) ¢(n) 2
170((’7(”)(“71) Hqu)(n) _AZH
2 n(lfa)(lfﬁ n)
() (n)
< Ty~ Tpmr — |1- g01_,,%1)(”)(&_1)") Ty(n)
6 n(lf.B n)(lfa n) 20 n(lf,B n)(lfa n)
o(n) ¢(n) p(n) _ p(n) p(n) o(n) _ 2
1=y (e—1) Ton ~Totn-1) + 1=y (a—1) gt = g1
2 n (1 _.B n )
T @ a2
0 n(l_[3 11)(1_0é n) 26 n(l_ﬁ n)(l_“ n)
o(n) ¢(n) o(n) _ o(n) o(n) o(n) 2
< 1_ ‘X(p(n) (’X — 1) (r<p(n) rq)(n)fl) + 1— “(p(n) (lx — 1) H [ x(p 1”
2u n (1 _ﬁ n )
: i(“)(p(n) (a i(l)) <f(z) Z, Wep(n) — Z> (36)
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We also have

Botm) (1 = By I1SWg(n) = Xg(m I
20‘4)(11)(1 - 0‘)(1 - AB(p(n))

< Ty =Tpmer — |1 - 1=y (x—1) Lon)
0 n(lfﬁ n)(lflx n) 29 (lfﬁ n)( — & n)
p(n) p(n) p(n) _ p(n) p(n) _ 2
* wp@ 1) Tow ~Towm-1) + rp(@ 1) 1%et0 = Fp0-l
205 (1= Boin))
(n) @(n)
L o) = ™ Pon)) - }
T— g (@—1) (f(z) =z wy(n) — 2)
Bp(n) (1 = Bo(n)) (1 — apn)) 2050y (1 = Bo(n)) (1 = &)
p(n) p(n) ¢(n) _ p(n) o(n) ¢(n) _ 2
ST Tagaon e Tl ) T e e el
20,1y (1= Boim)
o(n) o(n) _ _
1 _ DC(P(n) (0( _ 1) <f(Z) Z/ w(p(i’l) Z>' (37)

We also have

(1 - .B<p(n))(1 - /X(p(n)) .
1=ty (@ — 1) Y g(m) = Aptm) (A pn) = AZ) = Ja oy Wotn) = Ap(m) AVp(n)

T _l1- zmq)(n) (1 - 0‘)(1 - ﬁq)(n))

@(n) 7 L o(n)+1 T—ay(@—1) ¢(n)

O (1 = Bo(n)(1 = 2g(n)) 1
1-— tX(P( )((X — 1)

26 (1 —/3(,; ) (1= ()
+ (lx ) qu)(rt)
Op(n) (1 — By )( )

p(n) p(n) Lo(n) _

1=y (@—1) (Tp(m) = Lop(m-1)
265(n) (1 = Bo(n)) (1 — &g () |

1-— Ix(p(n) (D( — 1)
20p(n) (1~ Bo(n))

W(ﬂz) —Z,We(n) — z). (38)

IN

r

o) ~ Lop(m-1)

20 () (1 = Byn))
ol + TEE T (2) — 20y )

— X
o)

IN

Xp(n) = Xg(m1ll?

We know that

|
=

Loty = Topm-1 o) — 217 = xp(m -1 — 2l
= [llxpm) — 2l = lxgm)—1 —ZIIHIIx (n) —ZII + X p(m)—1 — 2]
o(n) — Xp(m)—1 | lIxpm) — 2l + gy -1 — =[]

as n — oo.

IA
=

1

From (36)—(38), we have

HAy(p(n) - AZH —0, ||]/(p(n) - A(p(n)(Ayﬂn) - AZ) - ]Aq,(n) (]/(p(n) ( )A]/(p )H —0
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and ||Sw

o(n) — x(P(n)H — 0. Now repeating the argument of the proof in Case 1, we obtain
limsup(f(z) — z, wy(y) — z) < 0. We note that
n—o00
zagv(n)(l - El) (1 - lg(p(n)) r < erp(n) (1 - ﬁ(p(ﬂ))(l - ‘x(p(n)) (1_, T )
2901 = By (1~ 8gm) | = Foi) 112
1—wa,m(a—1) P LA
¢(n)
20p(n) (1~ By(w))

This gives
60, (1 —ay) (1—ay)
r ¢(n) p(n) r ST oo+ p(n) p(n) X —xoon 2
o(n) 20y (1~ 1) [Con) = Top(m-1] o (=) 12gn) = X () -1l
1
+l P <f(Z) —Z,We(n) — Z>
So limsupl,,) < 0. This means nli_r}rgol’ga(n) = nli_rggoﬂxq,(n) —z|* = 0. Hence x4, — z.

n—o0

It follows that

Hx(p(n)Jrl - ZH < Hx(p(n)Jrl — Xo(n) || + ||x(p(n) - ZH
— 0, as n — oo.

By Lemma 2, we have I';, < F(P(n) +1. Thus, we obtain

Tn = |xn *ZHZ
2
< ”xqo(n)Jrl _ZH
— 0, as mn — oo.

Hence I';, — 0 and thus x;, — z. This completes the proof. [
Remark 1. It is noted that the condition

lim (/\n - )\n+1) =0

n—oo

is removed from Theorem TTT of Takahashi et al. [12].

Remark 2. [17] We remark here that the conditions (C4) is easily implemented in numerical computation
since the valued of ||x, — x,_1|| is known before choosing 0,. Indeed, the parameter 6,, can be chosen such that

0<6, <8,, where
5 _ { min{m,f)} if Xy # Xn_1,
0 otherwise,
where {wy } is a positive sequence such that wy, = o(ay).
4. Weak Convergence Theorem

In this section, we prove the weak convergence theorem.

Theorem 3. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let A be an a-inverse
strongly monotone mapping of H into itself and let B be a maximal monotone operator on H such that the
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domain of B is included in C. Let ]y = (I + AB)~1 be the resolvent of B for A > 0 and let S be a nonexpansive
mapping of C into itself such that F(S) N (A + B)~'0 # @. Let xo,x1 € C and let {x,} C C be a sequence
generated by

Yn = Xp+ Gn(xn - xn—l)/
Xpt1 = PuXn+ (1 - ,Bn)s(])\n (yn - /\nAyn)) (39)

forall n € N, where {A,} C (0,2a),{Bn} C (0,1) and {6,} C [0,6], where 6 € [0,1) satisfy
(C1) linlinfﬁn(l — Bn) >0;
n—o00
(C2) 0< lirginf/\n <limsup A, < 2a;
n—oo

n—oo

(C3) Y ballva — x| < o

n=1

Then {x,} converges weakly to a point of F(S) N (A + B) 0.

Proof. Let z € F(S)N (A + B)~'0 and wy, = J), (yn — AuAyn)¥n > 1. Thenz = ], (z — A, Az).
From Theorem 2 we have

xns1 = 2)1* < Bullxn — zlI* + (1 = Bu) llwn — zl|* = Bu(1 = Bu)|lxn — Swall%, (40)
lwn =z = llyn —zlI> = Au(2x — Ay) | Ay, — Az|)?
—[lyn — An(Ayn — Az) — Thn (yn — /\HAVH)HZ (41)
and
lyn — 21> < (14 600)llxn — 2)1* + 205 || x0 — X1 [|* = |01 — z[|*. (42)

Combining (42) and (41), we obtain

lwn — 2> < (1+60)]1%0 — 21> + 26l x0 — xp—1[|* — 6l xp—1 — 2>
—An (20— Ay) || Ayp — AZ”2 = lyn — An(Ayn — Az) — ]y, (yn — )‘nAyn)Hz- (43)

Combining (40) and (43), we also have

2 = 2> < Bullxen —2[> + (1= Bu) [(1 + 6n)[|xn — 2[|* + 26, |30 — 21

—Onllxn—1 — Z”Z — An(20 = An) || Ayp — AZ”Z

—llyn = An(Ayn — Az) — Jx, (yn — AnAyn) [} = Bu(1 = Bu) [l xn — Swn”2

= Bullxw =zl + (1= Bn) (1 + 64|20 — 21> + 26, (1 = B |0 — x|

—0,(1 = Bn)[[x0—1 — 21> = Au(2a — A) (1 = B [| Ayn — Az])?
—(1=Bu)llyn — A (Ayn — Az) = ]z, (Yn — )\nAyn)Hz
—Bn(1 = Bu)l|xn — Swn||2
1200 = 2[1* + 6 (1 = Bu) %0 — 2|7
+26, (1 = Ba) 3w — Xnal* = 0 (1 = ) [l 201 — 2] (44)

IN

This shows that

lxn—1 —2)* = llxn —zlI> < 6u(1—Bu)[llxn — z)|* = [[xu_1 — 2]|*]
+20, (1 — Bn)[|xn — xn71||2'
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By Lemma 4, we have ||x,, — z||?> converges. Thus, lgn ||x, — z||? exists. So, by (44) we have
n—oo

An (20 = An) (1= Bu) [ Ayn — Az)* < 0u(1 = B)[llxn — 2I1* — l|xp—1 — 2I]
+20, (1 = Bu)llxn — Xnal* + 12w — 2)1* = ||xpg1 — 2|
— 0, as n — oo.
We also have
(1= Bu)llyn — Au(Ayn — Az) — ], (Yn — AnA]/n)Hz < 0u(1 = Bu)[llxn — Z”2 = [lxn-1 = ZHZ]
+26, (1 — ,Bn)Hxn - xn—1||2 + [0 — ZHZ
—[|xn41 — 2|2
— 0, as n — oo.

Moreover, we obtain

ﬁn(l - ﬁn>||xn - SwnHZ < 0a(1- ﬁn)[Hxn - ZHZ — [[xp—1 — ZHZ]
4260, (1 — Bu) 1xn — Xp—a [|* + [0 — 2)1* = [[x0s1 — 212
— 0, as n — oo.
It follows that
| Ayn — Az|| =0, |lyn — Au(Ayn — Az) — Jr, (yn — AnAyn)|| — 0and ||x, — Swy|| — 0.

By a similar proof as in Theorem 2, we can show that if there exists a subsequence {x,, } of
{x4}, such that x,, — x*, then x* € F(S) N (A + B)~10. By Lemma 3, we conclude that {x, } weakly
converges to a point in F(S) N (A + B)~'0. We thus complete the proof. [

Remark 3. [18] We remark here that the conditions (C3) is easily implemented in numerical computation.
Indeed, once x,, and x,,_1 are given, it is just sufficient to compute the update x,, 1 with (39) by choosing 6,
such that 0 < 6,, < 0, where

On = { o { Hxn—a?fl,luﬂg} if X 7 s

0 otherwise,

where {e,} C [0,00) is such that ) &, < oo.

n=1
5. Numerical Examples

In this section, we give some numerical experiments to show the efficiency and the comparison
with other methods.

Example 1. Solve the following minimization problem:
min || x [|3 +(3,5,—1)x + 9+ [| x [|1,
xeR3
where x = (y1,Y2,y3) € R3 and the fixed-point problem of S : R3 — R3 defined by

S(x) = (_2 — Y1, —4 — Y2, _y3)

For each x € R3, we set F(x) =|| x ||5 +(3,5,—1)x +9 and G(x) =|| x ||;. Put A = VF and
B = 9G in Theorem 2. We can check that F is convex and differentiable on R® with 2-Lipschitz
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continuous gradient. Moreover, G is convex and lower semi-continuous but not differentiable on R3.
We know that for r > 0

(I+7B)~"(x) = (max{| y1 | —r,0}sign(y1), max{| y2 | —r,0}sign(ya), max{| ys | —r,0}sign(ys)). ~ (45)

W, Bn = %, Ay = 0.0001 foralln € Nand 6 = 0.5. Foreachn € N,

ﬁ and define 6, = 6, as in Remark 2. The stopping criterion is defined by

We choose &, =
let w, =

En = ||xn — Ja, (I = VF)xn|| + [|xn — Sxu|| < 1073

We now study the effect (in terms of convergence and the CPU time) and consider different
choices of x( and x; as following, see Table 1.

Choice 1: xg = (1,2, —1) and x; = (1,5,1);
Choice 2: xg = (0,—2,2) and x1 = (2,0, —3);
Choice 3: xg = (—5,4,6) and x1 = (3, =5, —9);
Choice 4: xg = (1,2,3) and x; = (8,7,3).

Table 1. Using Equations (13) and (25) with different choices of xg and xy.

Equation (13) Equation (25)

Choicel  x9=(1,2,—1)  No. of Iter. 92 6
x =(1,5,1) CPU (Time) 0.045106 0.016301

Choice2  xp = (0,-2,2) No. of Iter. 92 14
x1 = (2,0,-3) CPU (Time) 0.039239 0.014759

Choice3  xp = (—5,4,6) No. of Iter. 92 14
x1 = (3,-5,—-9) CPU (Time) 0.064943 0.010813

Choice 4 xo = (1,2,3) No. of Iter. 92 14
1=(8,7,3) CPU (Time) 0.066736 0.047984

The error plotting of Equations (13) and (25) for each choice is shown in Figures 14, respectively.

Figure 1: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 1
01 T T T T T T

T T
= = = Algorithm 1.13

Algorithm 3.1 [

I
40 5 60 70 80
Number of Iterations

Figure 1. Comparison of Equations (13) and (25) for each choice 1.
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Figure 2: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 2

0.12 T T T T T T
= = = Algorithm 1.13
J Algorithm 3.1
0.1 i
0.08 [ b
0.06 [ b
0.04 b
1
B e e e e e e e e e e e o e e e ome e
40 50 60 70 80 90 100
Number of lterations
Figure 2. Comparison of Equations (13) and (25) for each choice 2.
Figure 3: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 3
01 6 T T T T T T T T T
= = = Algorithm 1.13
0.141 Algorithm 3.1
1
1
0.12H g
1
N = e e e e e e e e e o e e
20 30 40 50 60 70 80 90 100
Number of Iterations
Figure 3. Comparison of Equations (13) and (25) for each choice 3.
Figure 4: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 4
008 T T T T T T T T T
1 = = = Algorithm 1.13
0.07 w Algorithm 3.1
0.06 1 J
0.05H J
0.04 b
--\---_\_-_\---F--'F-——\———\—
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Number of Iterations

Figure 4. Comparison of Equations (13) and (25) for each choice 4.
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