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Abstract: This paper is devoted to studying the existence of best proximity points and convergence
for a class of generalized contraction pairs by using the concept of proximally-complete pairs
and proximally-complete semi-sharp proximinal pairs. The obtained results are generalizations
of the result of Sadiq Basha (Basha, S., Best proximity points: global optimal approximate solutions,
J. Glob. Optim. 2011, 49, 15–21) As an application, we give a result for nonexpansive mappings in
normed vector spaces.
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1. Introduction and Preliminaries

Let (X, d) be a metric space. Consider two nonempty subsets P and Q of X. Given a non-self
mapping f : P → Q, then if P ∩ f (P) = ∅, the fixed point equation f (t) = t has no solution, that is
d(t, f (t)) > 0 for all t in P. The object of best proximity theory is to locate z ∈ P such that d(z, f (z))
is minimum and so as to ensure the existence of a point a ∈ X verifying d(a, f (a)) = d(P, Q),
where d(P, Q) = inf{d(ξ, ϑ) : ξ ∈ P, ϑ ∈ Q}. In this case, a is called a best proximal point of f .
Best proximity point theorems furnish sufficient conditions yielding the existence of approximate
solutions, which are optimal, as well. The investigation of best proximity points is an attractive topic
for optimization theory; see [1–33]. Consider:

P0 = {ξ ∈ P : d(ξ, ϑ) = d(P, Q), for some ϑ ∈ Q} (1)

and:
Q0 = {ϑ ∈ Q : d(ξ, ϑ) = d(P, Q), for some ξ ∈ P}. (2)

In the case that P∩Q 6= ∅, the subsets P0 and Q0 are nonempty. Moreover, if P0 or Q0 is nonempty,
then again, P0 and Q0 are nonempty. In the same direction, the following lemma gives some sufficient
conditions in the case of reflexive Banach spaces.

Lemma 1 ([18]). Let P be a nonempty, bounded, closed, and convex subset of a reflexive Banach space X. Then,
P0 and Q0 are nonempty.
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Let N∗ (resp. N) be the set of positive (resp. nonnegative) integers. In [3], Sadiq Basha proved the
following result.

Theorem 1 ([3]). Let P and Q be two nonempty compact subsets of a metric space (X, d). Suppose that
f : P→ Q and g : Q→ P are two mappings satisfying the following conditions:

(i) f and g are contractive;
(ii) d( f ξ, gϑ) < d(ξ, ϑ) whenever d(P, Q) < d(ξ, ϑ) for (ξ, ϑ) ∈ P×Q.

Then, there exist z ∈ P and w ∈ Q such that:

d(z, f z) = d(w, gw) = d(z, w) = d(P, Q).

Further, for an arbitrary element ξ0 ∈ P0, let ξ2n+1 = f ξ2n and ξ2n = gξ2n−1 for n ≥ 1. Then, (ξ2n)

converges to z, and (ξ2n+1) converges to w.

The concept of proximally complete pairs was first initiated by Espínola et al. [9] and was used to
study the existence and convergence to best proximity points for cyclic contraction mappings.

Definition 1 ([14]). Let P and Q be nonempty subsets of a metric space (X, d). Let (ξn) be a sequence in
P ∪Q such that (ξ2n) in P and (ξ2n+1) in Q for n ≥ 0. If for each ε > 0, there exists an integer n0 such that
for all even integers p ≥ n0 and odd integers q ≥ n0, d(ξp, ξq) < d(P, Q) + ε, then (ξn) is called a cyclical
Cauchy sequence.

Lemma 2 ([9]). (i) The sequence (ξn) in P ∪Q such that (ξ2n) in P and (ξ2n+1) in Q for n ≥ 0 is cyclical
Cauchy if:

lim
n,m→∞

d(ξ2n, ξ2m+1) = d(P, Q).

(ii) Any cyclical Cauchy sequence can have more than one accumulation point.

Example 1. We endow on X = R2 the metric:

d((ξ1, ϑ1), (ξ2, ϑ2)) = |ξ1 − ξ2|+ |ϑ1 − ϑ2|.

Let P = {(1, u) : −2 ≤ u ≤ 2} and Q = {(0, u) : −1 ≤ u ≤ 1}. Consider the sequence (θn)n≥0

defined by θn = ( 1+(−1)n

2 , 1 + (−1)n

n+1 ). Then, θ2n = (1, 1 + 1
2n+1 ) and θ2n+1 = (0, 1− 1

2n+1 ), so (θ2n) is in P
and (θ2n+1) is in Q. Furthermore, lim

n→∞
θ2n = (1, 1) ∈ P and lim

n→∞
θ2n+1 = (0, 1) ∈ Q. Then, (θn) does not

converge. Moreover,

lim
n,m→∞

d(θ2n, θ2m+1) = lim
n,m→∞

(1 + | 1
2n + 1

+
1

2m + 2
|) = 1 = d(P, Q).

Thus, the sequence (θn) is cyclical Cauchy.

Lemma 3 ([9]). Let (X, d) be a metric space. Given P and Q two nonempty subsets of X, then:

(i) Every cyclical Cauchy sequence is bounded.
(ii) If d(P, Q) = 0, then every cyclical Cauchy sequence (ξn) ⊆ P ∪Q is a Cauchy sequence.

Definition 2 ([9]). Let P and Q be nonempty subsets of a metric space (X, d). The pair (P, Q) is called
proximally complete if, for every cyclically Cauchy sequence (ξn) ⊆ P ∪Q, (ξ2n) and (ξ2n+1) have convergent
subsequences in P and Q, respectively.

In the following, we give cases where the pair (P, Q) is proximally complete.
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Theorem 2 ([9]). Let (X, d) be a metric space. Let P and Q be nonempty subsets of X. We have:

(i) If (P, Q) is a boundedly-compact pair, then it is proximally complete.
(ii) If (P, Q) is a closed pair such that d(P, Q) = 0 and (X, d) is complete, then (P, Q) is proximally complete.

Theorem 3 ([9]). Consider a uniformly-convex Banach space (X, ||.||). Then, any nonempty, closed and convex
pair (P, Q) of X is proximally complete.

Theorem 4 ([9]). If (P, Q) is a proximally-complete pair of a metric space X, then the subsets P0 and Q0 are
closed in X.

Definition 3 ([9]). Let P and Q be nonempty subsets of a metric space (X, d). The pair (P, Q) is called
semi-sharp proximinal if, for all ξ ∈ P and ϑ ∈ Q, there exist at most ξ? ∈ Q and at most ϑ? ∈ P such that
d(ξ, ξ?) = d(ϑ?, ϑ) = d(P, Q).

Example 2 ([19]). Let (X, ||.||) be a strictly Banach convex space. Then, every closed and convex pair (P, Q)

of X is semi-sharp proximinal.

Example 3. Consider X = R2 endowed with the metric defined by:

d((ξ1, ϑ1), (ξ2, ϑ2)) = |ξ1 − ξ2|+ |ϑ1 − ϑ2|.

Let P = {(1, 2), (2, 2)} and Q = {(2, 1), (1, 1)}. We have d(P, Q) = 1. Furthermore,

d((1, 2), (1, 1)) = d((2, 2), (2, 1)) = 1, d((1, 2), (2, 1)) = d((2, 2), (1, 1)) = 2.

Then, (P, Q) is semi-sharp proximinal.

Definition 4 ([34]). A nonnegative function ϕ defined on [0, ∞) is said to be a (c)-comparison function if:
(ϕ1) ϕ is non-decreasing;
(ϕ2) there are p0 ∈ N and r ∈ (0, 1) so that for p ≥ p0 and s > 0,

ϕp+1(s) ≤ rϕp(s) + up, (3)

where the series ∑∞
p=1 up is convergent and up ≥ 0. ϕp is the pth iterate of ϕ.

Lemma 4 ([34]). Let ϕ : [0, ∞)→ [0, ∞) be a (c)-comparison function. Then,
(i) (ϕn(s))n∈N converges to zero as n→ ∞, for each s > 0;
(ii) ϕ(s) < s for each s > 0;
(iii) ϕ is continuous at zero, and ϕ(0) = 0;
(iv) the series ∑∞

n=0 ϕn(s) < ∞ for each t > 0.

In the paper of Sadiq Bacha [3], the two considered mappings are supposed to be contractive.
While in this paper (Theorem 5), the contractivity of mappings and Condition (b) in Theorem 2.1
of [3] are omitted. We just take weaker hypotheses, and we get the same result by considering
proximally-complete pairs or proximally-complete semi-sharp proximinal pairs. We give conditions
ensuring the existence of best proximity points via contraction pairs. We also provide a result
for nonexpansive mappings in normed vector spaces. The obtained results are supported by
some examples.

2. Main Results

The first theorem is:



Mathematics 2019, 7, 176 4 of 12

Theorem 5. Let (P, Q) be a proximally-complete pair in a metric space (X, d). Let f : P→ Q and g : Q→ P
be non-self mappings such that for all (x, y) ∈ P×Q,

D( f x, gy) ≤ ϕ(D(x, y)), (4)

where ϕ is a c-comparison function and D(x, y) := d(x, y)− d(P, Q).
Then, there exist ξ? ∈ P and ϑ? ∈ Q such that:

d(ξ?, f ξ?) = d(ϑ?, gϑ?) = d(ξ?, ϑ?) = d(P, Q).

Proof. Let ξ0 ∈ P. Define the sequence (ξn) in P ∪Q as follows:

ξ2n+1 = f ξ2n and ξ2n = gξ2n−1, n = 1, 2, · · ·

By (4), we have:
D(ξ1, ξ2) = D( f ξ0, gξ1) ≤ ϕ(D(ξ0, ξ1)).

Again:
D(ξ2, ξ3) = D( f ξ2, gξ1) ≤ ϕ(D(ξ2, ξ1)) ≤ ϕ2(D(ξ0, ξ1)).

Continuing in this way, we find that:

D(ξn, ξn+1) ≤ ϕn(D(ξ0, ξ1)) ∀ n ≥ 0. (5)

If d(P, Q) = 0, it is easy to show that there exists x ∈ P ∩Q such that d(x, f x) = d(x, gx) = 0 =

d(P, Q). Moreover, the sequence (ξn) converges to a common fixed point of f and g.
From now on, suppose that d(P, Q) > 0. If D(ξ2n, ξ2n+1) = 0 for some n, then ξ2n is a best

proximity point of f . From (4), we have:

D(ξ2n+1, gξ2n+1) = D( f ξ2n, gξ2n+1) ≤ ϕ(D(ξ2n, ξ2n+1)) = ϕ(0) = 0

and so, ξ2n+1 is a best proximity point of g. Similarly, if D(ξ2n+1, ξ2n+2) = 0 for some n, then ξ2n+1 is a
best proximity point of g, and ξ2n+2 is a best proximity point of f .

Suppose now that D(ξn, ξn+1) > 0 for all n ≥ 0. Passing to the limit in Inequality (5), we get
lim

n→∞
D(ξn, ξn+1) = 0. Hence,

lim
n→∞

d(ξn, ξn+1) = d(P, Q). (6)

We claim that (ξn) is bounded. In view of (6), it suffices to prove that (ξ2n+1) is bounded. We argue
by contradiction. Then, there exists N ∈ N∗ such that:

d(ξ2, ξ2N+1) > M and d(ξ2, ξ2N−1) ≤ M, (7)

where the real M > 0 is chosen in order that:

M− d(P, Q) > ϕ2
(

d(ξ0, ξ1) + ϕ[d(ξ0, ξ1)− d(P, Q)] + M
)

. (8)

Using (4), we have:

d(ξ2, ξ2N+1)− d(P, Q) = d( f ξ2N , gξ1)− d(P, Q)

≤ ϕ
(

d(ξ2N , ξ1)− d(P, Q)
)

= ϕ
(

d( f ξ0, gξ2N−1)− d(P, Q)
)

≤ ϕ2
(

d(ξ0, ξ2N−1)− d(P, Q)
)

.
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From (7), we get:

M− d(P, Q) < ϕ2
(

d(ξ0, ξ2N−1)− d(P, Q)
)

≤ ϕ2
(

d(ξ0, ξ1) + d(ξ1, ξ2) + d(ξ2, ξ2N−1)− d(P, Q)
)

= ϕ2
(

d(ξ0, ξ1) + d( f ξ0, gξ1) + d(ξ2, ξ2N−1)− d(P, Q)
)

≤ ϕ2
(

d(ξ0, ξ1) + ϕ[d(ξ0, ξ1)− d(P, Q)] + d(ξ2, ξ2N−1)
)

≤ ϕ2
(

d(ξ0, ξ1) + ϕ[d(ξ0, ξ1)− d(P, Q)] + M
)

.

We deduce that:

M− d(P, Q) < ϕ2
(

d(ξ0, ξ1) + ϕ[d(ξ0, ξ1)− d(P, Q)] + M
)

,

which is a contradiction with respect to (8). Hence, (ξn) is bounded.
We claim that (ξn) is a cyclical Cauchy sequence. Letting m ≥ n, we have by (4),

D(ξ2n, ξ2m+1) = D( f ξ2m, gξ2n−1) ≤ ϕ(D(ξ2m, ξ2n−1))

≤ ϕ2(D(ξ2m−1, ξ2n−2))

...

≤ ϕ2n(D(ξ0, ξ2(m−n)+1)).

Since (ξn) is bounded and ϕ is non-decreasing, by passing to the limit in the above inequality,
we get lim

m,n→∞
D(ξ2n, ξ2m+1) = 0, which implies that:

lim
n,m→∞

d(ξ2n, ξ2m+1) = d(P, Q). (9)

Then, (ξn) is a cyclical Cauchy sequence. Since (P, Q) is a proximally-complete pair, the sequence
(ξn) has a subsequence (ξ2nk ) converging to some element ξ? ∈ P. Again, (ξn) has a convergent
subsequence (ξ2mk+1) to some ϑ? ∈ Q.

We claim that ξ? is a best proximity of f . We have:

D(ξ?, ξ2nk−1) = d(ξ?, ξ2nk−1)− d(P, Q) ≤ d(ξ?, ξ2nk ) + d(ξ2nk , ξ2nk−1)− d(P, Q).

Using (6), we obtain:
lim
k→∞

D(ξ?, ξ2nk−1) = 0. (10)

By (4),
D(ξ2nk , f ξ?) = D( f ξ?, gξ2nk−1) ≤ ϕ(D(ξ?, ξ2nk−1)).

Taking k→ ∞ and using (10) together with the fact that ϕ is continuous at zero, we obtain that:

D(ξ?, f ξ?) = lim
k→∞

D(ξ2nk , f ξ?) = ϕ(0) = 0,

which implies that D(ξ?, f ξ?) = 0, and so, d(ξ?, f ξ?) = d(P, Q). Similarly, ϑ? is a best proximity of g,
i.e., d(ϑ?, gϑ?) = d(P, Q). From (9), we have d(ξ?, ϑ?) = d(P, Q).

The following illustrates Theorem 5.
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Example 4. Consider X = R2 with the metric defined as d((ξ1, ϑ1), (ξ2, ϑ2)) = |ξ1 − ξ2| + |ϑ1 − ϑ2|.
Let P = {1} × [0, 1] and Q = {0} × [0, 1]. Note that d(P, Q) = 1 and (P, Q) is a proximally-complete pair.
For x ∈ [0, 1], define f : P→ Q and g : Q→ P as follows:

f (1, x) = (0,
x2 + 1

4
) and g(0, x) = (1,

x2 + 1
4

).

Taking x, y ∈ [0, 1], one writes:

D( f (1, x), g(0, y)) = d( f (1, x), g(0, y))− 1 =
1
4
|x2 − y2| = 1

4
(x + y)|x− y|

≤ 1
2
|x− y| = 1

2
(d((1, x), (0, y))− 1)

=
1
2

D((1, x), (0, y)).

Then, the condition contraction (4) is verified with ϕ(t) = 1
2 t. Hence, f has a best proximity in P, and g

has a best proximity in Q. Here, (1, 2−
√

3) is the unique best proximity of f and (0, 2−
√

3) is the unique
best proximity of g. Furthermore, d((1, 2−

√
3), (0, 2−

√
3)) = 1 = d(P, Q).

The following results are simple consequences of Theorem 5. We omit their proofs.

Corollary 1. Let (P, Q) be a proximally-complete pair in a metric space (X, d). Let f : P→ Q and g : Q→ P
be non-self maps such that for all (x, y) ∈ P×Q,

d( f x, gy) ≤ λd(x, y) + (1− λ)d(P, Q),

where λ ∈ [0, 1). Then, there are ξ? ∈ P and ϑ? ∈ Q so that:

d(ξ?, f ξ?) = d(ϑ?, gϑ?) = d(ξ?, ϑ?) = d(P, Q).

Corollary 2. Let (P, Q) be a proximally-complete pair in a metric space (X, d). Let f : P ∪Q→ P ∪Q be a
non-self mapping such that f (P) ⊆ Q, f (Q) ⊆ P and for all (x, y) ∈ P×Q,

D( f x, f y) ≤ ϕ(D(x, y)),

where ϕ is a c-comparison function and D(x, y) := d(x, y)− d(P, Q). Then, there are ξ? ∈ P and ϑ? ∈ Q,
so that:

d(ξ?, f ξ?) = d(ϑ?, f ϑ?) = d(ξ?, ϑ?) = d(P, Q).

Corollary 3. Let (P, Q) be a proximally-complete pair in a metric space (X, d). Let f : P ∪Q→ P ∪Q be a
given non-self map such that f (P) ⊆ Q, f (Q) ⊆ P and for all (x, y) ∈ P×Q,

d( f x, f y) ≤ λd(x, y) + (1− λ)d(P, Q),

where λ ∈ [0, 1). Then, there are ξ? ∈ P and ϑ? ∈ Q so that:

d(ξ?, f ξ?) = d(ϑ?, f ϑ?) = d(ξ?, ϑ?) = d(P, Q).

Our second main result is:
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Theorem 6. Let (P, Q) be a proximally-complete semi-sharp proximinal pair in a metric space (X, d). Let f :
P→ Q and g : Q→ P be non-self maps such that for all (x, y) ∈ P×Q,

D( f x, gy) ≤ ϕ(D(x, y)), (11)

where ϕ is a c-comparison function and D(x, y) := d(x, y)− d(P, Q). Then, the following hold:

(i) There is ξ? ∈ P such that d(ξ?, f ξ?) = d(P, Q);
(ii) ξ? is a fixed point of g f , i.e., g f ξ? = ξ?, and f ξ? is a fixed point of f g, i.e., f g( f ξ?) = f ξ?;
(iii) For any ξ0 ∈ P, let ξ2n+1 = f ξ2n and ξ2n = gξ2n−1. Then, the sequence (ξ2n) converges to ξ?, and the

sequence (ξ2n+1) converges to f ξ?.

Proof. Let ξ0 ∈ P. Define the sequence (ξn) by ξ2n+1 = f ξ2n and ξ2n = gξ2n−1. By Theorem 5,
there exists (ξ?, ϑ?) ∈ P×Q so that:

d(ξ?, f ξ?) = d(ϑ?, gϑ?) = d(ξ?, ϑ?) = d(P, Q).

From (11),
D( f ξ?, g f ξ?) ≤ ϕ(D(ξ?, f ξ?)) = ϕ(0) = 0.

Then, D( f ξ?, g f ξ?) = 0, and so, d( f ξ?, g f ξ?) = d( f ξ?, ξ?) = d(ξ?, ϑ?) = d(P, Q). Since (P, Q)

is semi-sharp proximinal, then ϑ? = f ξ? and g f ξ? = ξ?. It follows that f g( f ξ?) = f (g f ξ?) = f ξ?.
By Theorem 5, the sequence (ξn) is cyclical Cauchy in P ∪ Q. Furthermore, the sequence (ξ2n) has
a convergent subsequence (ξ2nk ) to ξ?, and the sequence (ξ2n+1) has a convergent subsequence
(ξ2nk+1) to ϑ? = f ξ?. Following Theorem 3.3 of [9] and since (P, Q) is a semi-sharp proximinal pair,
the sequence (ξ2n) is Cauchy. Furthermore, (ξ2n) has a convergent subsequence to ξ?. Then, (ξ2n)

converges to ξ?. Similarly, we show that (ξ2n+1) converges to f ξ?.

The following examples support Theorem 6.

Example 5. Consider X = R2 with the metric defined as d((ξ1, ϑ1), (ξ2, ϑ2)) = |ξ1 − ξ2| + |ϑ1 − ϑ2|.
Let P = {(1, 1), (1, 2)} and Q = {(2, 1), (2, 2)}. We have d(P, Q) = 1, and (P, Q) is a proximally-complete
semi-sharp pair. Define f : P→ Q and g : Q→ P as follows:

f (1, 1) = f (1, 2) = (2, 2) and g(2, 2) = g(2, 1) = (1, 2).

The condition (11) is verified for each c-comparison function ϕ. Here, (1, 2) is the unique best proximity
of f . Furthermore, (1, 2) is the unique fixed point of g f , and f (1, 2) = (2, 2) is the unique fixed point of f g.
Again, if θ0 = (1, 1) with θ2n+1 = f θ2n and θ2n = gθ2n−1, then θ2n = (1, 2) for all n ≥ 1 and θ2n+1 = (2, 2)
for all n ≥ 0.

Example 6. Consider the metric space (X, d) given by Example 5. Consider the subsets P = {(s, 0), s ∈ [0, 1]}
and Q = {(t, 1), t ∈ [0, 1]}. Here, d(P, Q) = 1. For all x = (s, 0) ∈ P and y = (t, 1) ∈ Q, there exist a
unique u = (s, 1) ∈ Q and a unique v = (t, 0) ∈ P such that d(x, u) = d(y, v) = 1 = d(P, Q), so (P, Q) is a
proximally-complete semi-sharp pair. For s, t ∈ [0, 1], define f : P→ Q by f (s, 0) = ( s+1

2 , 1) and g : Q→ P
g(t, 1) = ( t+1

2 , 0). Let x = (s, 0) ∈ P and y = (t, 1) ∈ Q, then:

D( f x, gy) = D(((
s + 1

2
, 1), (

t + 1
2

, 0))

= | s− t
2
|+ 1− d(P, Q)

= | s− t
2
|

= ϕ(D(x, y)|,
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where ϕ(t) = t
2 . There exists a unique point x? = (1, 0) ∈ P such that d(x?, f x?) = 1 = d(P, Q) and

g f x? = g(1, 1) = x?. Here, (1, 2) is the unique fixed point of g f and f (1, 2) = (2, 2) is the unique fixed point
of f g. For any θ0 = (s, 0) ∈ P, let θ2n+1 = f θ2n and θ2n = gθ2n−1. Then, the sequence (θ2n) converges to x?,
and the sequence (θ2n+1) converges to f x?.

The following corollaries are consequences of Theorem 6.

Corollary 4. Let (P, Q) be a proximally-complete semi-sharp proximinal pair in a metric space (X, d). Let f :
P→ Q and g : Q→ P be non-self mappings such that for all (x, y) ∈ P×Q,

d( f x, gy) ≤ λd(x, y) + (1− λ)d(P, Q), (12)

where λ ∈ [0, 1). Then, the following hold:

(i) There exists a point ξ? ∈ P such that d(ξ?, f ξ?) = d(P, Q);
(ii) ξ? is a fixed point of g f , i.e., g f ξ? = ξ?, and f ξ? is a fixed point of f g, i.e., f g( f ξ?) = f ξ?;
(iii) For any ξ0 ∈ P, let ξ2n+1 = f ξ2n and ξ2n = gξ2n−1. Then, the sequence (ξ2n) converges to ξ?, and the

sequence (ξ2n+1) converges to f ξ?.

Corollary 5. Let (P, Q) be a proximally-complete semi-sharp proximinal pair in a metric space (X, d). Let f :
P ∪Q→ P ∪Q be a non-self mapping such that f (P) ⊆ Q, f (Q) ⊆ P and for all (x, y) ∈ P×Q,

D( f x, f y) ≤ ϕ(D(x, y)),

where ϕ is a c-comparison function and D(x, y) := d(x, y)− d(P, Q). Then, the following hold:

(i) There exists a point ξ? ∈ P such that d(ξ?, f ξ?) = d(P, Q);
(ii) ξ? is a fixed point of f 2 in P, and f ξ? is a fixed point of f 2 in Q;
(iii) For any ξ0 ∈ P, let ξn+1 = f ξn. Then, the sequence (ξ2n) converges to ξ?, and the sequence (ξ2n+1)

converges to f ξ?.

Corollary 6. Let (P, Q) be a proximally-complete semi-sharp proximinal pair in a metric space (X, d). Let f :
P ∪Q→ P ∪Q be a non-self mapping such that f (P) ⊆ Q, f (Q) ⊆ P and for all (x, y) ∈ P×Q,

d( f x, f y) ≤ λd(x, y) + (1− λ)d(P, Q),

where λ ∈ [0, 1). Then, the following hold:

(i) There exists a point ξ? ∈ P such that d(ξ?, f ξ?) = d(P, Q);
(ii) ξ? is a fixed point of f 2 in P and f ξ? is a fixed point of f 2 in Q;
(iii) For any ξ0 ∈ P, let ξn+1 = f ξn. Then, the sequence (ξ2n) converges to ξ?, and the sequence (ξ2n+1)

converges to f ξ?.

In the following, we give a result from Corollary 1 for nonexpansive mappings in normed
vector spaces.

Theorem 7. Let X be a normed vector space and P, Q be two nonempty subsets of X. Given f : P→ Q and
g : Q→ P are non-self mappings such that for all (x, y) ∈ P0 ×Q0,

|| f x− gy|| ≤ ||x− y||, (13)

where P0 and Q0 are defined by (1) and (2), respectively. Suppose that:

(i) ∅ 6= P0 is convex and boundedly compact;
(ii) Q0 is compact;
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(iii) The functions z→ ||z− f z|| and z→ ||z− gz|| are lower semi-continuous in P0 and Q0, respectively.

Then, there exists (ξ?, ϑ?) ∈ P0 ×Q0 such that:

||ξ? − f ξ?|| = ||ϑ? − gϑ?|| = d(P, Q).

Proof. Since P0 6= ∅, there exists (ξ0, ϑ0) ∈ P0 × Q0 such that ||ξ0 − ϑ0|| = d(P, Q). We claim that
f : P0 → Q0 and g : Q0 → P0. Let x ∈ P0, so there exists y ∈ Q0, such that ||x − y|| = d(P, Q).
From (13),

d(P, Q) ≤ || f x− gy|| ≤ ||x− y|| = d(P, Q),

which implies that || f x− gy|| = d(P, Q), and so, f (P0) ⊂ Q0. Similarly, we show that g(Q0) ⊂ P0.
For n ≥ 1, consider: {

fnx = 1
n ϑ0 + (1− 1

n ) f x for x ∈ P0,

gny = 1
n ξ0 + (1− 1

n )gy for y ∈ Q0.

Since P0 is convex, we have that gn : Q0 → P0. Again, for x ∈ P0,, there exists y ∈ Q0 such that
||x− y|| = d(P, Q). From (13),

d(P, Q) ≤ || fnx− gny|| ≤ 1
n
||ξ0 − ϑ0||+ (1− 1

n
)|| f x− gy||

≤ 1
n
||ξ0 − ϑ0||+ (1− 1

n
)||x− y|| = d(P, Q),

which implies that || fnx− gny|| = d(P, Q), and so, fnx ∈ Q0, that is fn : P0 → Q0.
Let (x, y) ∈ P0 ×Q0. Then:

|| fnx− gny|| ≤ 1
n
||ξ0 − ϑ0||+ (1− 1

n
)|| f x− gy||

≤ (1− 1
n
)||x− y||+ 1

n
d(P, Q).

Since (P0, Q0) is proximally complete, by Corollary 1, there exists (ξn, ϑn) ∈ P0 ×Q0 such that:

||ξn − fnξn|| = ||ϑn − gnϑn|| = ||ξn − ϑn|| = d(P, Q) for n ∈ N∗.

We have:
||ξn − f ξn|| ≤ ||ξn − fnξn||+

1
n
||ϑ0 − f ξn||.

Since f ξn ∈ Q0 and Q0 is compact, we get:

lim
n→∈∞

||ξn − f ξn|| = d(P, Q). (14)

Again,

||ξn|| ≤ ||ξn − fnξn||+
1
n
||ϑ0||+ (1− 1

n
)|| f ξn|| = d(P, Q) + ||ϑ0||+ || f ξn||,

which implies that (ξn) is bounded. Since P0 is boundedly compact, there exist ξ? ∈ P0 and (ξnk ) a
subsequence of (ξn) such that lim

k→∞
ξnk = ξ?. From (14) and Assumption (iii), we have:

||ξ? − f ξ?|| ≤ lim inf
k→∞

||ξnk − f ξnk || = lim
k→∞
||ξnk − f ξnk || = d(P, Q),

which implies that ||ξ? − f ξ?|| = d(P, Q).
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On the other hand, we have:

||ϑn − gϑn|| ≤ ||ϑn − gnϑn||+
1
n
(||ξ0||+ ||gϑn||)

≤ d(P, Q) +
1
n
(||ξ0||+ || f ξn − gϑn||+ || f ξn||)

≤ d(P, Q) +
1
n
(||ξ0||+ ||ξn − ϑn||+ || f ξn||)

= d(P, Q) +
1
n
(||ξ0||+ d(P, Q) + || f ξn||).

This implies that:
lim

n→∞
||ϑn − gϑn|| = d(P, Q). (15)

Notice that (ϑn) is bounded because ||ξn − ϑn|| = d(P, Q) and (ξn) is bounded. Since Q0 is
compact, there exist ϑ? ∈ Q0 and a subsequence (ϑnk ) of (ϑn) such that lim

k→∞
ϑnk = ϑ?. By assumption

(iii), we have ||ϑ? − gϑ?|| = d(P, Q).

As particular cases from Theorem 7, we have:

Corollary 7. Let X be a normed vector space and P, Q be two nonempty subsets of X. Let f : P ∪Q→ P ∪Q
be a non-self map such that f (P) ⊆ Q, f (Q) ⊆ P and for all (x, y) ∈ P0 ×Q0,

|| f x− f y|| ≤ ||x− y||.

Suppose that:

(i) ∅ 6= P0 is convex and boundedly compact;
(ii) Q0 is compact;
(iii) The function z→ ||z− f z|| is lower semi-continuous in P0.

Then, there exists ξ? ∈ P0 such that:

||ξ? − f ξ?|| = d(P, Q).

Corollary 8. Let X be a normed vector space and P, Q be two nonempty subsets of X. Let f : P ∪Q→ P ∪Q
be a non-self map such that f (P) ⊆ Q, f (Q) ⊆ P and for all (x, y) ∈ P0 ×Q0,

|| f x− f y|| ≤ ||x− y||.

Suppose that:

(i) ∅ 6= P0 is convex and boundedly compact;
(ii) Q0 is compact;
(iii) The function z→ ||z− f z|| is lower semi-continuous in Q0.

Then, there is ϑ? ∈ Q0 such that:

||ϑ? − f ϑ?|| = d(P, Q).

Remark 1. Corollaries 2, 3, 5, 6, 7, and 8 remain true by replacing f : P ∪ Q → P ∪ B with f : A× Q →
P× B (keeping other hypotheses).
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3. Conclusions

In this paper, we considered proximally-complete pairs and proximally-complete semi-sharp
proximinal pairs as weaker hypotheses with respect to [3] to get convergence and best proximity points.
We applied Theorem 5 to provide a result for nonexpansive mappings in normed vector spaces.
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