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Abstract: By using a certain general conic domain as well as the quantum (or q-) calculus, here we
define and investigate a new subclass of normalized analytic and starlike functions in the open unit
disk U. In particular, we find the Hankel determinant and the Toeplitz matrices for this newly-defined
class of analytic q-starlike functions. We also highlight some known consequences of our main results.
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1. Introduction and Definitions

Let the class of functions, which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

be denoted by L (U). Also let A denote the class of all functions f , which are analytic in the open unit
disk U and normalized by

f (0) = 0 and f ′ (0) = 1.

Then, clearly, each f ∈ A has a Taylor–Maclaurin series representation as follows:

f (z) = z +
∞

∑
n=2

anzn (z ∈ U) . (1)

Suppose that S is the subclass of the analytic function class A, which consists of all functions
which are also univalent in U.

A function f ∈ A is said to be starlike in U if it satisfies the following inequality:

<
(

z f ′ (z)
f (z)

)
> 0 (z ∈ U) .
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We denote by S∗ the class of all such starlike functions in U.
For two functions f and g, analytic in U, we say that the function f is subordinate to the function

g and write this subordination as follows:

f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w which is analytic in U, with

w (0) = 0 and |w (z)| < 1,

such that
f (z) = g

(
w (z)

)
.

In the case when the function g is univalent in U, then we have the following equivalence (see, for
example, [1]; see also [2]):

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

Next, for a function f ∈ A given by (1) and another function g ∈ A given by

g(z) = z +
∞

∑
n=2

bnzn (z ∈ U) ,

the convolution (or the Hadamard product) of f and g is defined here by

( f ∗ g) (z) := z +
∞

∑
n=2

anbnzn =: (g ∗ f ) (z) . (2)

Let P denote the well-known Carathéodory class of functions p, analytic in the open unit disk U,
which are normalized by

p (z) = 1 +
∞

∑
n=1

cnzn, (3)

such that
<
(

p (z)
)
> 0 (z ∈ U) .

Following the works of Kanas et al. (see [3,4]; see also [5]), we introduce the conic domain Ωk
(k = 0) as follows:

Ωk =

{
u + iv : u > k

√
(u− 1)2 + v2

}
. (4)

In fact, subjected to the conic domain Ωk (k = 0), Kanas and Wiśniowska (see [3,4]; see also [6])
studied the corresponding class k-ST of k-starlike functions in U (see Definition 1 below). For fixed
k, Ωk represents the conic region bounded successively by the imaginary axis (k = 0), by a parabola
(k = 1), by the right branch of a hyperbola (0 < k < 1), and by an ellipse (k > 1).

For these conic regions, the following functions play the role of extremal functions.
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pk(z) =



1 + z
1− z

= 1 + 2z + 2z2 + · · · (k = 0)

1 +
2

π2

[
log
(

1 +
√

z
1−
√

z

)]2

(k = 1)

1 +
2

1− k2 sinh2
[(

2
π

arccos k
)

arctan
(
h
√

z
)]

(0 5 k < 1)

1 +
1

k2 − 1

[
1 + sin

(
π

2K(κ)

∫ u(z)√
κ

0

dt√
(1− t2)(1− κ2t2)

)]
(k > 1) ,

(5)

where

u(z) =
z−
√

κ

1−
√

κz
(z ∈ U) ,

and κ ∈ (0, 1) is so chosen that

k = cosh
(

πK′(κ)
4K(κ)

)
.

Here K(κ) is Legendre’s complete elliptic integral of first kind and

K′(κ) = K
(√

1− κ2
)

,

that is, K′ (κ) is the complementary integral of K (κ) (see, for example, ([7], p. 326, Equation 9.4 (209))).
Indeed, from (5), we have

pk(z) = 1 + p1z + p2z2 + p3z3 + · · · . (6)

The class k-ST is defined as follows.

Definition 1. A function f ∈ A is said to be in the class k-ST if and only if

z f ′ (z)
f (z)

≺ pk (z) (∀ z ∈ U; k = 0) .

We now recall some basic definitions and concept details of the q-calculus which will be used in
this paper (see, for example, ([7], p. 346 et seq.)). Throughout the paper, unless otherwise mentioned,
we suppose that 0 < q < 1 and

N = {1, 2, 3 · · · } = N0 \ {0} (N0 := {0, 1, 2, · · · }) .

Definition 2. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =


1− qλ

1− q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N) .

Definition 3. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =


1 (n = 0)

n
∏

k=1
[k]q (n ∈ N) .
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Definition 4 (see [8,9]). The q-derivative (or q-difference) operator Dq of a function f defined, in a given
subset of C, by

(
Dq f

)
(z) =


f (z)− f (qz)
(1− q) z

(z 6= 0)

f ′ (0) (z = 0) ,

(7)

provided that f ′ (0) exists.

From Definition 4, we can observe that

lim
q→1−

(
Dq f

)
(z) = lim

q→1−

f (z)− f (qz)
(1− q) z

= f ′ (z)

for a differentiable function f in a given subset of C. It is also known from (1) and (7) that

(
Dq f

)
(z) = 1 +

∞

∑
n=2

[n]q anzn−1. (8)

Definition 5. The q-Pochhammer symbol [ξ]n,q (ξ ∈ C; n ∈ N0) is defined as follows:

[ξ]n,q =

(
qξ ; q

)
n

(1− q)n =


1 (n = 0)

[ξ]q [ξ + 1]q [ξ + 2]q · · · [ξ + n− 1]q (n ∈ N) .

Moreover, the q-gamma function is defined by the following recurrence relation:

Γq (z + 1) = [z]q Γq (z) and Γq (1) = 1.

Definition 6 (see [10]). For f ∈ A, let the q-Ruscheweyh derivative operatorRλ
q be defined, in terms of the

Hadamard product (or convolution) given by (2), as follows:

Rλ
q f (z) = f (z) ∗ Fq,λ+1 (z) (z ∈ U; λ > −1) ,

where

Fq,λ+1 (z) = z +
∞

∑
n=2

Γq (λ + n)
[n− 1]q!Γq (λ + 1)

zn = z +
∞

∑
n=2

[λ + 1]q,n−1

[n− 1]q!
zn.

We next define a certain q-integral operator by using the same technique as that used by Noor [11].

Definition 7. For f ∈ A, let the q-integral operator Fq,λ be defined by

F−1
q,λ+1 (z) ∗ Fq,λ+1 (z) = z

(
Dq f

)
(z) .

Then

Iλ
q f (z) = f (z) ∗ F−1

q,λ+1 (z)

= z +
∞

∑
n=2

ψn−1anzn (z ∈ U; λ > −1) , (9)

where

F−1
q,λ+1 (z) = z +

∞

∑
n=2

ψn−1zn
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and

ψn−1 =
[n]q!Γq (λ + 1)

Γq (λ + n)
=

[n]q!

[λ + 1]q,n−1
.

Clearly, we have
I0

q f (z) = z
(

Dq f
)
(z) and I1

q f (z) = f (z) .

We note also that, in the limit case when q→ 1−, the q-integral operator Fq,λ given by Definition 7
would reduce to the integral operator which was studied by Noor [11].

The following identity can be easily verified:

zDq

(
Iλ+1

q f (z)
)
=

(
1 +

[λ]q

qλ

)
Iλ

q f (z)−
[λ]q

qλ
Iλ+1

q f (z) . (10)

When q→ 1−, this last identity in (10) implies that

z
(
Iλ+1 f (z)

)′
= (1 + λ) Iλ f (z)− λIλ+1 f (z) ,

which is the well-known recurrence relation for the above-mentioned integral operator which was
studied by Noor [11].

In geometric function theory, several subclasses belonging to the class of normalized analytic
functions class A have already been investigated in different aspects. The above-defined q-calculus
gives valuable tools that have been extensively used in order to investigate several subclasses of
A. Ismail et al. [12] were the first who used the q-derivative operator Dq to study the q-calculus
analogous of the class S∗ of starlike functions in U (see Definition 8 below). However, a firm footing
of the q-calculus in the context of geometric function theory was presented mainly and basic (or q-)
hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava
(see, for details, ([13], p. 347 et seq.); see also [14]).

Definition 8 (see [12]). A function f ∈ A is said to belong to the class S∗q if

f (0) = f ′ (0)− 1 = 0 (11)

and ∣∣∣∣ z
f (z)

(
Dq f

)
z− 1

1− q

∣∣∣∣ 5 1
1− q

. (12)

It is readily observed that, as q→ 1−, the closed disk:∣∣∣∣w− 1
1− q

∣∣∣∣ 5 1
1− q

becomes the right-half plane and the class S∗q of q-starlike functions reduces to the familiar class S∗
of normalized starlike functions in U with respect to the origin (z = 0). Equivalently, by using the
principle of subordination between analytic functions, we can rewrite the conditions in (11) and (12) as
follows (see [15]):

z
f (z)

(
Dq f

)
(z) ≺ p̂ (z)

(
p̂ (z) =

1 + z
1− qz

)
. (13)

The notation S∗q was used by Sahoo and Sharma [16].
Now, making use of the principle of subordination between analytic functions and the

above-mentioned q-calculus, we present the following definition.



Mathematics 2019, 7, 181 6 of 15

Definition 9. A function p is said to be in the class k-Pq if and only if

p (z) ≺ 2pk (z)
(1 + q) + (1− q) pk (z)

,

where pk (z) is defined by (5).

Geometrically, the function p (z) ∈ k-Pq takes on all values from the domain Ωk,q (k = 0) which
is defined as follows:

Ωk,q =

{
w : <

(
(1 + q)w

(q− 1)w + 2

)
> k

∣∣∣∣ (1 + q)w
(q− 1)w + 2

− 1
∣∣∣∣} .

The domain Ωk,q represents a generalized conic region.
It can be seen that

lim
q→1−

Ωk,q = Ωk,

where Ωk is the conic domain considered by Kanas and Wiśniowska [3]. Below, we give some basic
facts about the class k-Pq.

Remark 1. First of all, we see that

k-Pq ⊆ P
[

2k
2k + 1 + q

]
,

where P
[

2k
2k+1+q

]
is the well-known class of functions with real part greater than 2k

2k+1+q . Secondly, we have

lim
q→1−

k-Pq = P (pk) ,

where P (pk) is the well-known function class introduced by Kanas and Wiśniowska [3]. Thirdly, we have

lim
q→1−

0-Pq = P ,

where P is the well-known class of analytic functions with positive real part.

Definition 10. A function f is said to be in the class ST (k, λ, q) if and only if

z
(

DqIλ
q f
)
(z)

f (z)
∈ k-Pq (k = 0; λ = 0) ,

or, equivalently,

<

 (1 + q)
z(DqIλ

q f )(z)
f (z)

(q− 1)
z(DqIλ

q f )(z)
f (z) + 2

 > k

∣∣∣∣∣∣∣
(1 + q)

z(DqIλ
q f )(z)

f (z)

(q− 1)
z(DqIλ

q f )(z)
f (z) + 2

− 1

∣∣∣∣∣∣∣ .

Remark 2. First of all, it is easily seen that

ST (0, 1, q) = S∗q ,

where S∗q is the function class introduced and studied by Ismail et al. [12]. Secondly, we have

lim
q→1−

ST (k, 1, q) = k-ST ,
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where k-ST is a function class introduced and studied by Kanas and Wiśniowska [4]. Finally, we have

lim
q→1−

ST (0, 1, q) = S∗,

where S∗ is the well-known class of starlike functions in U with respect to the origin (z = 0).

Remark 3. Further studies of the new q-starlike function class ST (k, λ, q) , as well as of its more consequences,
can next be determined and investigated in future papers.

Let n ∈ N0 and j ∈ N. The following jth Hankel determinant was considered by Noonan and
Thomas [17]:

Hj (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+j−1
an+1 . .
. . .
. . .
. . .
an+j−1 . . . . an+2(j−1)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where a1 = 1. In fact, this determinant has been studied by several authors, and sharp upper bounds on
H2 (2) were obtained by several authors (see [18–20]) for various classes of functions. It is well-known
that the Fekete–Szegö functional

∣∣a3 − a2
2

∣∣ can be represented in terms of the Hankel determinant
as H2 (1). This functional has been further generalized as

∣∣a3 − µa2
2

∣∣ for some real or complex µ.
Fekete and Szegö gave sharp estimates of

∣∣a3 − µa2
2

∣∣ for µ real and f ∈ S , the class of normalized
univalent functions in U. It is also known that the functional

∣∣a2a4 − a2
3

∣∣ is equivalent to H2 (2)
(see [18]). Babalola [21] studied the Hankel determinant H3 (1) for some subclasses of normalized
analytic functions in U. The symmetric Toeplitz determinant Tj (n) is defined by

Tj (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+j−1
an+1 . .
. . .
. . .
. . .
an+j−1 . . . . an

∣∣∣∣∣∣∣∣∣∣∣∣
,

so that

T2 (2) =

∣∣∣∣∣∣∣
a2 a3

a3 a2

∣∣∣∣∣∣∣ , T2 (3) =

∣∣∣∣∣∣∣
a3 a4

a4 a3

∣∣∣∣∣∣∣ , T3 (2) =

∣∣∣∣∣∣∣∣∣∣∣

a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣∣∣∣∣∣
,

and so on.
For f ∈ S , the problem of finding the best possible bounds for ||an+1| − |an|| has a long history

(see, for details, [22]). It is a known fact from [22] that∣∣ |an+1| − |an|
∣∣ < c

for a constant c. However, the problem of finding exact values of the constant c for S and its various
subclasses has proved to be difficult. In a very recent investigation, Thomas and Abdul-Halim [23]
succeeded in obtaining some sharp estimates for Tj (n) for the first few values of n and j involving
symmetric Toeplitz determinants whose entries are the coefficients an of starlike and close-to-
convex functions.
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In the present investigation, our focus is on the Hankel determinant and the Toeplitz matrices for
the function class ST (k, λ, q) given by Definition 10.

2. A Set of Lemmas

In order to prove our main results in this paper, we need each of the following lemmas.

Lemma 1 (see [20]). If the function p (z) given by (3) is in the Carathéodory class P of analytic functions with
positive real part in U, then

2c2 = c2
1 + x

(
4− c2

1

)
and

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

) (
1−

∣∣∣x2
∣∣∣) z

for some x, z ∈ C with |x| 5 1 and |z| 5 1.

Lemma 2 (see [24]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions
with positive real part in U. Also let µ ∈ C. Then

|cn − µckcn−k| 5 2 max (1, |2µ− 1|) (1 5 k 5 n− 1) .

Lemma 3 (see [22]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions
with positive real part in U. Then

|cn| 5 2 (n ∈ N) .

This last inequality is sharp.

3. Main Results

Throughout this section, unless otherwise mentioned, we suppose that

q ∈ (0, 1) , λ > −1 and k ∈ [0, 1] .

Theorem 1. If the function f (z) given by (1) belongs to the class ST (k, λ, q) , where k ∈ [0, 1] , then

|a2| 5
(1 + q) p1

2qψ1
,

a3 5
1

2qψ2

(
p1 +

∣∣∣∣∣p2 − p1 +

(
q2 + 1

)
p2

1
2q

∣∣∣∣∣
)

and

a4 5
(1 + q)

4 (q + q2 + q3)ψ3

(
2p1 + 4

∣∣∣∣∣p2 − p1 +

(
2 + q2) p2

1
4q

∣∣∣∣∣
+

∣∣∣∣∣2p3 + 2p1 − 4p2 −
(
2
(
1 + q2)− q

)
p2

1
q

+

(
4q2 − 3q + 2

)
q

p1 p2

+

(
q2 + 2q− 1

)
2q2 p3

1

∣∣∣∣∣
)

, (14)

where pj (j = 1, 2, 3) are positive and are the coefficients of the functions pk (z) defined by (6). Each of the above
results is sharp for the function g (z) given by

g (z) =
2pk (z)

(1 + q) + (1− q) pk (z)
.
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Proof. Let f (z) ∈ ST (k, λ, q). Then, we have

z
(

Dq f
)
(z)

f (z)
= q (z) ≺ Sk (z) , (15)

where

Sk (z) =
2pk (z)

(1 + q) + (1− q) pk (z)
,

and the functions pk (z) are defined by (6).
We now define the function p (z) with p (0) = 1 and with a positive real part in U as follows:

p (z) =
1 + S−1

k
(
q (z)

)
1− S−1

k
(
q (z)

) = 1 + c1z + c2z2 + · · · . (16)

After some simple computation involving (16), we get

q (z) = Sk

(
p (z) + 1
p (z)− 1

)
.

We thus find that

Sk

(
p (z) + 1
p (z)− 1

)
= 1 +

(
q + 1

2

)[
p1c1

2
z +

{
p1c2

2
+

(
p2

4
− p1

4
+

(
(q− 1) p2

1
8

))
c2

1

}
z2

+

{
p1c3

2
+

(
p2

2
− p1

2
+

(
(q− 1) p2

1
4

))
c1c2

+

(
p1

8
− p2

4
−

(q− 1) p2
1

8
+

p3

8
− (q− 1) p1 p2

8
+

(q− 1)2 p3
1

32

)
c3

1

}
z3

]
+ · · · . (17)

Now, upon expanding the left-hand side of (15), we have

z
(

DqIλ
q f
)
(z)

f (z)
= 1 + qψ1a2z +

{(
q + q2

)
ψ2a3 − qψ2

1a2
2

}
z2

+
{(

q + q2 + q3
)

ψ3a4 −
(

2q + q2
)

ψ1ψ2a2a3 + qψ3
1a3

2

}
z3 + · · · . (18)

Finally, by comparing the corresponding coefficients in (17) and (18) along with Lemma 3, we
obtain the result asserted by Theorem 1.

Theorem 2. If the function f (z) given by (1) belongs to the class ST (k, λ, q) , then

T3 (2) 5
[(

1 + q
2qψ1

)
p2

1 +

(
1 + q

4 (q + q2 + q3)ψ3

)
[Ω1 + Ω2]

]
·
[

4

(
(1 + q)2

16q2ψ2
1

)
p2

1 + 16 |Ω3|+
p2

1
4q2ψ2

2
+ 2Ω5 p2

1

∣∣∣∣∣2− Ω4

Ω5 p2
1

∣∣∣∣∣
]

,
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where

Ω1 = 2p1 + 4

∣∣∣∣∣p2 − p1 +

(
2 + q2)

4q
p2

1

∣∣∣∣∣ ,

Ω2 =

∣∣∣∣∣2p3 + 2p1 − 4p2 −
(

2
(

1 + q2
)
− q
)

p2
1

+

(
4q2 − 3q + 2

q

)
p1 p2 +

(
q2 + q + 1

2q2 p3
1

) ∣∣∣∣∣,
Ω3 =

1
2q2ψ2

2

(
p2

4
− p1

4
+

(
q2 + 1

)
p2

1
8q

)2

−Ω5 ·
[

p3

4
+

p1

4
− p2

2

−
[
2
(
1 + q2)− q

]
p2

1
8q

+
4q2 − 3q + 2

8q
p1 p2 +

(
q2 + 2q− 1

16q2

)
p3

1

]
,

Ω4 =
p1

2q2ψ2
2

(
p2

4
− p1

4
+

(
q2 + 1

)
p2

1
8q

)
−Ω5 p1

(
p2 − p1 +

(
2 + q2) p2

1
4q

)
,

Ω5 =
(1 + q)2

16q2 (1 + q + q2)ψ1ψ3

and pj (j = 1, 2) are positive and are the coefficients of the functions pk (z) defined by (6).

Proof. Upon comparing the corresponding coefficients in (17) and (18), we find that

a2 =
(1 + q) p1c1

4qψ1
, (19)

a3 =
1

2qψ2

[
p1c2

2
+

(
p2

4
− p1

4
+

(
q2 + 1

)
p2

1
8q

)
c2

1

]
, (20)

a4 =
(1 + q)

4 (q + q2 + q3)ψ3

[
p1c3 +

(
p2 − p1 +

(
2 + q2) p2

1
4q

)
c1c2

+

(
p3

4
+

p1

4
− p2

2
−
(
2
(
1 + q2)− q

)
p2

1
8q

+

(
4q2 − 3q + 2

)
8q

p1 p2

+

(
q2 + 2q− 1

)
16q2 p3

1

)
c3

1

]
. (21)

By a simple computation, T3 (2) can be written as follows:

T3 (2) = (a2 − a4)
(

a2
2 − 2a2

3 + a2a4

)
.

Now, if f ∈ ST (k, λ, q) , then it is clearly seen that

|a2 − a4| 5 |a2|+ |a4|

5
(

1 + q
2qψ1

)
p2

1 +

(
1 + q

4 (q + q2 + q3)ψ3

)
(Ω1 + Ω2) .
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We need to maximize
∣∣a2

2 − 2a2
3 + a2a4

∣∣ for a function f ∈ ST (k, λ, q). So, by writing a2, a3, and
a4 in terms of c1, c2, and c3, with the help of (19)–(21), we get∣∣∣a2

2 − 2a2
3 + a2a4

∣∣∣
=

∣∣∣∣∣
(
(1 + q)2

16q2ψ2
1

)
p2

1c2
1 −Ω3c4

1 −Ω4c2
1c2 −

p2
1

8q2ψ2
2

c2
2 + Ω5 p2

1c1c3

∣∣∣∣∣ . (22)

Finally, by applying the trigonometric inequalities, Lemmas 2 and 3 along with (22), we obtain
the result asserted by Theorem 2.

As an application of Theorem 2, we first set ψn−1 = 1 and k = 0 and then let q→ 1− . We thus
arrive at the following known result.

Corollary 1 (see [25]). If the function f (z) given by (1) belongs to the class S∗, then

T3 (2) 5 84.

Theorem 3. If the function f (z) given by (1) belongs to the class ST (k, λ, q) , then∣∣∣a2a4 − a2
3

∣∣∣ 5 1
4q2ψ2

2
p2

1, (23)

where k ∈ [0, 1] and pj (j = 1, 2, 3) are positive and are the coefficients of the functions pk (z) defined by (6).

Proof. Making use of (19)–(21), we find that

a2a4 − a2
3 =

A (q)
16q2ψ1ψ3

p2
1c1c3 +

(
A (q)ψ2

2 − ψ1ψ3

16q2ψ1ψ2
2ψ3

p1 p2 −
A (q)ψ2

2 − ψ1ψ3

16q2ψ1ψ2
2ψ3

p2
1

+
A (q)

(
2 + q2)ψ2

2 − 2
(
1 + q2)ψ1ψ3

64q2ψ1ψ3
p3

1

)
c2

1c2 +
1

16q2ψ2
2

p2
1c2

2

+

[
A (q)

64q2ψ1ψ3
p1 p3 +

(
A (q)ψ2

2 − ψ1ψ3

64q2ψ1ψ2
2ψ3

)
p2

1 +

(
ψ1ψ3 − A (q)ψ2

2
32q2ψ1ψ2

2ψ3

)
p1 p2

+

(
2
(
1 + q2)ψ1ψ3 −

(
2
(
1 + q2)− q

)
A (q)ψ2

2

128q3ψ1ψ2
2ψ3

)
p3

1

+

(
A (q)

(
4q2 − 3q + 2

)
ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q3ψ1ψ2
2ψ3

)
p2

1 p2

+

(
A (q)

(
q2 + 2q− 1

)
ψ2

2 −
(
1 + q2)2

ψ1ψ3

256q4ψ1ψ2
2ψ3

)
p4

1 −
1

64q2ψ2
2

p2
2

]
c4

1, (24)

where

A (q) =
(1 + q)2

1 + q + q2 .
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We substitute the values of c2 and c3 from the above Lemma and, for simplicity, take Y = 4− c2
1

and Z = (1− |x|2)z. Without loss of generality, we assume that c = c1 (0 5 c 5 2), so that

a2a4 − a2
3 =

[
q (1− q) A (q)ψ2

2
128q2ψ1ψ3

p3
1 +

A (q)
64q2ψ1ψ3

p1 p3

+

(
A (q)

(
4q2 − 3q + 2

)
ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q3ψ1ψ2
2ψ3

)
p2

1 p2

+

(
A (q)

(
q2 + 2q− 1

)
ψ2

2 −
(
1 + q2)2

ψ1ψ3

256q4ψ1ψ2
2ψ3

)
p4

1 −
1

64q2ψ2
2

p2
2

]
c4

+

[
A (q)ψ2

2 − ψ1ψ3

32q2ψ1ψ2
2ψ3

p1 p2 +
A (q)

(
2 + q2)ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q2ψ1ψ3
p3

1

]
c2xY

·
[
− A (q)

64q2ψ1ψ3
p2

1c2Yx2 − 1
64q2ψ2

2
p2

1x2Y2 +
A (q)

32q2ψ1ψ3
p2

1cYZ

]
. (25)

Upon setting Z = (1− |x|2)z and taking the moduli in (25) and using trigonometric inequality,
we find that ∣∣∣a2a4 − a2

3

∣∣∣ 5 |λ1| c4 + |λ2| |x|Yc2 +
A (q)

64q2ψ1ψ3
p2

1Y |x|2 c2

+
1

64q2ψ2
2

p2
1 |x|

2 Y2 +
A (q)

32q2ψ1ψ3
p2

1c2Y
(

1− |x|2
)

= Λ (c, |x|) , (26)

where

λ1 =
q (1− q) A (q)ψ2

2
128q2ψ1ψ3

p3
1 +

A (q)
64q2ψ1ψ3

p1 p3

+

(
A (q)

(
4q2 − 3q + 2

)
ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q3ψ1ψ2
2ψ3

)
p2

1 p2

+

(
A (q)

(
q2 + 2q− 1

)
ψ2

2 −
(
1 + q2)2

ψ1ψ3

256q4ψ1ψ2
2ψ3

)
p4

1 −
1

64q2ψ2
2

p2
2

λ2 =
A (q)ψ2

2 − ψ1ψ3

32q2ψ1ψ2
2ψ3

; p1 p2 +
A (q)

(
2 + q2)ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q2ψ1ψ3
p3

1.

Now, trivially, we have
Λ′ (|x|) > 0

on [0, 1], and so
Λ (|x|) 5 Λ (1) .

Hence, by puting Y = 4− c2
1 and after some simplification, we have

∣∣∣a2a4 − a2
3

∣∣∣ = (|λ1| − |λ2|+
ψ1ψ3 − A (q)ψ2

2
64q2ψ1ψ3

p2
1

)
c4

+

(
4 |λ2|+

(
A (q)ψ2

2 − ψ1ψ3

16q2ψ1ψ3
p2

1

))
c2 +

1
4q2ψ2

2
p2

1

= G (c) . (27)
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For optimum value of G (c), we consider G′ (c) = 0, which implies that c = 0. So G (c) has a
maximum value at c = 0. We therefore conclude that the maximum value of G (c) is given by

1
4q2ψ2

2
p2

1,

which occurs at c = 0 or

c2 = −
128 |λ2| q2ψ1ψ3 + 4A (q)ψ2

2 − 2ψ1ψ3 p2
1(

64q2 (|λ1| − |λ2|)ψ1ψ3 + ψ1ψ3 − A (q)ψ2
2 p2

1
) .

This completes the proof of Theorem 3.

If we put ψn−1 = 1 and let q→ 1− in Theorem 3, we have the following known result.

Corollary 2 (see [26]). If the function f (z) given by (1) belongs to the class k-ST , where k ∈ [0, 1] , then

∣∣∣a2a4 − a2
3

∣∣∣ 5 p2
1

4
.

If we put
p1 = 2 and ψn−1 = 1,

by letting q→ 1− in Theorem 3, we have the following known result.

Corollary 3 (see [18]). If f ∈ S∗, then ∣∣∣a2a4 − a2
3

∣∣∣ 5 1.

By letting k = 1, ψn−1 = 1, q→ 1− and

p1 =
8

π2 , p2 =
16

3π2 and p3 =
184

45π2

in Theorem 3, we have the following known result.

Corollary 4 (see [27]). If the function f (z) given by (1) belong to the class SP , then∣∣∣a2a4 − a2
3

∣∣∣ 5 16
π4 .

4. Concluding Remarks and Observations

Motivated significantly by a number of recent works, we have made use of a certain general
conic domain and the quantum (or q-) calculus in order to define and investigate a new subclass of
normalized analytic functions in the open unit disk U, which we have referred to as q-starlike functions.
For this q-starlike function class, we have successfully derived several properties and characteristics.
In particular, we have found the Hankel determinant and the Toeplitz matrices for this newly-defined
class of q-starlike functions. We also highlight some known consequences of our main results which
are stated and proved as theorems and corollaries.
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