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Abstract: By using a certain general conic domain as well as the quantum (or g-) calculus, here we
define and investigate a new subclass of normalized analytic and starlike functions in the open unit
disk U. In particular, we find the Hankel determinant and the Toeplitz matrices for this newly-defined
class of analytic g-starlike functions. We also highlight some known consequences of our main results.
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1. Introduction and Definitions

Let the class of functions, which are analytic in the open unit disk
U={z:z€C and |[z] <1},

be denoted by £ (U). Also let .A denote the class of all functions f, which are analytic in the open unit
disk U and normalized by
f(0)=0 and f'(0)=1.

Then, clearly, each f € A has a Taylor-Maclaurin series representation as follows:

f(z)=z+ ianz” (zeU). (1)
n=2

Suppose that S is the subclass of the analytic function class A, which consists of all functions
which are also univalent in U.
A function f € Ais said to be starlike in U if it satisfies the following inequality:

R (ZJ{/(S)> >0 (zeD).
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We denote by S* the class of all such starlike functions in U.
For two functions f and g, analytic in U, we say that the function f is subordinate to the function
g and write this subordination as follows:

f=g or f(z)=<g(z),
if there exists a Schwarz function w which is analytic in U, with
w(0)=0 and lw(z)| <1,
such that

fz) =g(w(z))

In the case when the function g is univalent in U, then we have the following equivalence (see, for
example, [1]; see also [2]):

f(z) <g(z) (z€U) < f(0)=g(0) and f(U)C g(U).
Next, for a function f € A given by (1) and another function g € A given by
g(z) =z+ ) b2" (z€U),
n=2
the convolution (or the Hadamard product) of f and g is defined here by
(fxg)(z) :=z+ Zanbnz” =: (g*f) (2). 2)
n=2

Let P denote the well-known Carathéodory class of functions p, analytic in the open unit disk U,
which are normalized by

P =1+ ) e, ©
n=1
such that
R(p(z)) >0 (zel).

Following the works of Kanas et al. (see [3,4]; see also [5]), we introduce the conic domain (2

(k 2 0) as follows:
Qk—{u+iv:u>k\/(u—1)2+vz}. 4)

In fact, subjected to the conic domain () (k = 0), Kanas and Wisniowska (see [3,4]; see also [6])
studied the corresponding class k-ST of k-starlike functions in U (see Definition 1 below). For fixed
k, O represents the conic region bounded successively by the imaginary axis (k = 0), by a parabola
(k = 1), by the right branch of a hyperbola (0 < k < 1), and by an ellipse (k > 1).

For these conic regions, the following functions play the role of extremal functions.
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1+z

l_Z:1+2z+2z2+~- (k=0)
2
2 1+ 4z
1+7_52{10g<1_\\2>} (k=1)
pr(z) = ) ) ()
1+ T2 sinh? K” arccos k) arctan (h\/i)] (0<k<1)
14+ o [14sin | 52 /(f) i (k>1)
I R G Y/ Furey prey ’
where JE
z— /K
u(z)zl—ﬁz (zel),
and x € (0,1) is so chosen that
B 7K’ (%)
k = cosh < IK(x) > .

Here K(x) is Legendre’s complete elliptic integral of first kind and
K'(x) = K <\/1 - KZ) )

that is, K’ (x) is the complementary integral of K (x) (see, for example, ([7], p. 326, Equation 9.4 (209))).
Indeed, from (5), we have
pe(2) =1+ prz+p2® +paz + - ©6)

The class k-S7T is defined as follows.

Definition 1. A function f € A is said to be in the class k-ST if and only if

2f (2)
< pk (z VzeU; k20).
RO )
We now recall some basic definitions and concept details of the g-calculus which will be used in
this paper (see, for example, ([7], p. 346 et seq.)). Throughout the paper, unless otherwise mentioned,
we suppose that 0 < g < 1and

N=1{1,23-}=N\{0}  (No:={0,1,2---}).

Definition 2. Let g € (0,1) and define the g-number [A], by

1—q)‘

= (ALeC)
(A, =

n—1

qu:1+q+q2++qn71 (/\ZI’ZEN)

Definition 3. Let g € (0,1) and define the q-factorial [n],! by
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Definition 4 (see [8,9]). The g-derivative (or g-difference) operator Dy of a function f defined, in a given
subset of C, by

f(z) - f(g2)
LEZI) qzo)
D)= U792 %
f(0) (z=0),
provided that f' (0) exists.
From Definition 4, we can observe that
lim (Dyf) (z) = tim LB LU g

qg—1— g—1— (1 — q)Z

for a differentiable function f in a given subset of C. It is also known from (1) and (7) that

(Dyf) i gz (8)

Definition 5. The g-Pochhammer symbol [],, . (¢ € C; n € No) is defined as follows:

1—
C e+, +2, - Ern-1,  (eN).
Moreover, the g-gamma function is defined by the following recurrence relation:
Ig(z+1)=[z],Tg(z) and T,q(1)=1

Definition 6 (see [10]). For f € A, let the g-Ruscheweyh derivative operator Ré‘ be defined, in terms of the
Hadamard product (or convolution) given by (2), as follows:

Ryf(2) = f (2) * Fypsa (2) (zelUA>-1),

where A1)
o T, (A+n) + 1
_ q _ ‘7” Pk
Far (2) = 2 [ —1] 'rq(A+1)Z Z+Z CEER

We next define a certain g-integral operator by using the same technique as that used by Noor [11].
Definition 7. For f € A, let the g-integral operator F, 5 be defined by

ft;/\l+1 (2) % Fyprs1 (2) = 2 (Dyf) (2).

Then
T () = f(2) * Fily (2)
=z+ i P, _1a,2" (zeU;, A>-1), 9)
n=2

where

‘Fq_/\+1 *Z+Z¢’n 12"
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and
[n] T (A +1) B ]!

Pn-1= L,(A+n) A+,

Clearly, we have
I,?f(z):z(qu) (z) and I;f(z):f(z).

We note also that, in the limit case when g — 1—, the g-integral operator J; , given by Definition 7
would reduce to the integral operator which was studied by Noor [11].
The following identity can be easily verified:

A A
2D, (I;“ f (z)) = <1 + [qi”) T)f (z) - [qiq T)Mf (2). (10)

When g — 1—, this last identity in (10) implies that

2 (T (2)) = (14 )T (2) - AT £ (2),

which is the well-known recurrence relation for the above-mentioned integral operator which was
studied by Noor [11].

In geometric function theory, several subclasses belonging to the class of normalized analytic
functions class A have already been investigated in different aspects. The above-defined g-calculus
gives valuable tools that have been extensively used in order to investigate several subclasses of
A. Ismail et al. [12] were the first who used the g-derivative operator D; to study the g-calculus
analogous of the class §* of starlike functions in U (see Definition 8 below). However, a firm footing
of the g-calculus in the context of geometric function theory was presented mainly and basic (or g-)
hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava
(see, for details, ([13], p. 347 et seq.); see also [14]).

Definition 8 (see [12]). A function f € A'is said to belong to the class Sy if

fO)=f(0)-1=0 (11)

and

zZ
_1_q

1 1
= (qu)z—l_q’ < 12)

It is readily observed that, as § — 1—, the closed disk:

’w N P

l—q| = 1-9¢
becomes the right-half plane and the class S; of g-starlike functions reduces to the familiar class §*
of normalized starlike functions in U with respect to the origin (z = 0). Equivalently, by using the
principle of subordination between analytic functions, we can rewrite the conditions in (11) and (12) as
follows (see [15]):

z
f(2)

The notation S{;‘ was used by Sahoo and Sharma [16].

Now, making use of the principle of subordination between analytic functions and the
above-mentioned g-calculus, we present the following definition.

A @<5@  (PE=-17s). 13
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Definition 9. A function p is said to be in the class k-P if and only if

. 2pi (2)
PO Tt - @

where py (z) is defined by (5).

Geometrically, the function p (z) € k-P; takes on all values from the domain (), (k = 0) which
is defined as follows:

- 1+qw Atqguw
Qk’q_{w'%((q—l)w+2 >k(q—1)w+2 1| ¢.
The domain () ; represents a generalized conic region.
It can be seen that

Iim O, = Q),
qg—1— kg k

where (), is the conic domain considered by Kanas and Wisniowska [3]. Below, we give some basic
facts about the class k-P;.

Remark 1. First of all, we see that

2k
P C =
Py &P {2k+1+q]’

where P {

T q} is the well-known class of functions with real part greater than ﬁ Secondly, we have

lim k-Py; =P (pk),

g—1-
where P (py) is the well-known function class introduced by Kanas and Wisniowska [3]. Thirdly, we have

lim 0-P; =P,

q—1-
where ‘P is the well-known class of analytic functions with positive real part.

Definition 10. A function f is said to be in the class ST (k, A, q) if and only if

Z(Dl;z(ij;)(Z)ek—Pq (kz0; A20),
or, equivalently,
(1+q)% » (1+q)% »
(%D%H (q—1)%+z '

Remark 2. First of all, it is easily seen that
ST(0,1,9) =S
where S is the function class introduced and studied by Ismail et al. [12]. Secondly, we have

lim ST (k,1,q9) = k-ST,

g—1-
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where k-ST is a function class introduced and studied by Kanas and Wisniowska [4]. Finally, we have

lim ST (0,1,9) = S,

qg—1—
where S* is the well-known class of starlike functions in U with respect to the origin (z = 0).

Remark 3. Further studies of the new g-starlike function class ST (k, A, q) , as well as of its more consequences,
can next be determined and investigated in future papers.

Let n € Ny and j € N. The following jth Hankel determinant was considered by Noonan and
Thomas [17]:

an g1 - - - Apgj1
An+1

Hilm) =1 | | '
Aptj-1 - © e Ay

where a1 = 1. In fact, this determinant has been studied by several authors, and sharp upper bounds on
H> (2) were obtained by several authors (see [18-20]) for various classes of functions. It is well-known
that the Fekete-Szeg® functional |a3 — a3| can be represented in terms of the Hankel determinant
as Hy (1). This functional has been further generalized as |a3 — pa3| for some real or complex .
Fekete and Szegd gave sharp estimates of |a3 — pa3| for y real and f € S, the class of normalized
univalent functions in U. It is also known that the functional |ayay — a§| is equivalent to H» (2)
(see [18]). Babalola [21] studied the Hankel determinant 3 (1) for some subclasses of normalized
analytic functions in U. The symmetric Toeplitz determinant 7; (1) is defined by

an Apy1 - - - Opgj-
Ap41
Tj (n) = ,
ﬂn+]',1 . . . . an
so that
ap az a4
a 4az az a4
T2(2) = ,  T2(3) = , T3(2)=|a3 ay a3 |,
as az ag as
ag az ap
and so on.

For f € S, the problem of finding the best possible bounds for ||a,.11| — |a,|| has a long history
(see, for details, [22]). It is a known fact from [22] that

| lansa] = lan] | <c

for a constant c. However, the problem of finding exact values of the constant ¢ for S and its various
subclasses has proved to be difficult. In a very recent investigation, Thomas and Abdul-Halim [23]
succeeded in obtaining some sharp estimates for 7; (1) for the first few values of 7 and j involving
symmetric Toeplitz determinants whose entries are the coefficients a, of starlike and close-to-
convex functions.
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In the present investigation, our focus is on the Hankel determinant and the Toeplitz matrices for
the function class ST (k, A, q) given by Definition 10.

2. A Set of Lemmas

In order to prove our main results in this paper, we need each of the following lemmas.

Lemma 1 (see [20]). If the function p (z) given by (3) is in the Carathéodory class P of analytic functions with
positive real part in U, then

2c2:c%+x(4—c%)

d
" 4C3:c:{’+2(4—c%) c1x —C1 (4—c%) x2+2<4—c%) (1— ‘XZDZ

for some x,z € Cwith |x| < 1and |z| £ 1.

Lemma 2 (see [24]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions
with positive real part in U. Also let u € C. Then

len — peken—i| < 2max (1, |2p — 1)) (1sksn-1).

Lemma 3 (see [22]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions
with positive real part in U. Then
len| £2 (neN).

This last inequality is sharp.

3. Main Results

Throughout this section, unless otherwise mentioned, we suppose that
g€(0,1), A> -1 and k€[0,1].
Theorem 1. If the function f (z) given by (1) belongs to the class ST (k, A, q) , where k € [0,1], then

|2y < A+9m

7

29
1 (¢ +1) p?
< - _ A §
a3:2qlpz <P1+ p2—p1+ 2
and
1+9) (24 4?) p?
< (1+q 2 4|p, — Rl AVY e
”‘J‘—4(61+q2+613)l/13(pl+ I
2(14+4¢%) —q)p> (44> —-3g+2
s+ 2y — dpy — qq) q)ri, (49 qq ) i
(4 +29-1) ,
+TP1 , (14)

where p; (j = 1,2,3) are positive and are the coefficients of the functions py (z) defined by (6). Each of the above
results is sharp for the function g (z) given by

2p (2)
T+g)+(1—q)p(z)

g(2)=(
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Proof. Let f (z) € ST (k, A,q). Then, we have

z (Dyf) (2)

W =q(z) < 5¢(z), (15)
where e (2)
2) — Pr \z
) = T - @)

and the functions py (z) are defined by (6).
We now define the function p (z) with p (0) = 1 and with a positive real part in U as follows:

_ 145 (a(2))
1-5(a(2))

After some simple computation involving (16), we get

a(z) = S (fm)

p(z) =1+caz+e?+---. (16)

We thus find that

()

2.3
pi_p2 @-1Dpt ps @-Vpp2, @-D°p7\ 3| 5| ..
+ ( 3 1 3 + 3 3 + 0 ez |+ (17)
Now, upon expanding the left-hand side of (15), we have
2 (D7} f) (2)
N /. 2 2,22
116 =1+qyarz + {<q+q ) Poas qt,blaz}z
+ { (q +q*+ qa) P3ay — <2q + qz) P1¢oarasz + ql/ffag} D (18)

Finally, by comparing the corresponding coefficients in (17) and (18) along with Lemma 3, we
obtain the result asserted by Theorem 1. [J

Theorem 2. If the function f (z) given by (1) belongs to the class ST (k, A, q), then
T3(2) = K ) + ( M +0Q
&= gy ) g

1+9)%\ ri 2
- |4 +16 Q3] + —L- +20
l ( 164297 . 1061 + 49243 i

Q
2- %
Qsp]

|
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where
2+ ¢
Oy =2p; +4 Pz—PH‘( 4qq)P%,
0 = 2P3+2P1—4P2—(2(1+¢72>—Q)P%
+<4q2—3q+2>pp +(q2+q+1p3>
- 1P2 A~ ,
q 22 "1
2
_ 1 (p p (@YY s o P2
Q3_2q2¢§<4 17T 8 N PR
2(1+¢%) —q]p? 49> —3q+2 P+20—1\ ,
84 Ty PR e 1)
2 2 2 2
_m (p2 p, (@D L e+
04_2424;5(4 1T gy Qspr{ p2=p1t '
Qs = (1+q)°
164% (149 +4%) 193

and p; (j = 1,2) are positive and are the coefficients of the functions py (z) defined by (6).

Proof. Upon comparing the corresponding coefficients in (17) and (18), we find that

(1+49)pa
T 19
. 49y (19)
_ 1 pe, (p op, (@+DR)
az = qupz [ 5 + <4 4 + 8q Cl , (20)
(1+9)

a4 g p1C3 _|_ pz — Pl + qu)p% C1C2
40+ 7 +9°) ¢ 4q

2(1+¢%) —q)p* (49> —3g+2
+<T+T_pz2_<( )= | (g-39+2)

8q 8q

2

g-+2q—1
( 1642 )p%) C%] '

(21)

By a simple computation, 73 (2) can be written as follows:
T3 (2) = (a2 — ag) (a% —2a% + a2a4) :
Now, if f € ST (k, A, q), then it is clearly seen that

|42 — aa| < |az| + a4

I+4qY) » 1+g )
< (71
- <2q¢1)p1+ (4(q+q2+q3)¢3 (O 4+ D).
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We need to maximize |a3 — 243 + apa, for a function f € ST (k, A, q). So, by writing a5, a3, and
a4 in terms of ¢y, ¢, and c3, with the help of (19)—(21), we get

’a% —2a} + 112114’

(1+9) 2 oo 2
-0 Q - — Q . 22
‘ ( 16977 pict — Oaci — Oacicz B2g3 2 oA )

Finally, by applying the trigonometric inequalities, Lemmas 2 and 3 along with (22), we obtain
the result asserted by Theorem 2. O

As an application of Theorem 2, we first set ¢,_1 = 1 and k = 0 and then let ¢ — 1— . We thus
arrive at the following known result.

Corollary 1 (see [25]). If the function f (z) given by (1) belongs to the class S*, then

T (2) < 84.

Theorem 3. If the function f (z) given by (1) belongs to the class ST (k, A, q) , then
‘ﬂztu - ﬂ%’ = % ri, (23)
4q9%;

where k € [0,1] and p; (j = 1,2,3) are positive and are the coefficients of the functions py. (z) defined by (6).

Proof. Making use of (19)—(21), we find that

o Al A(q) 3 — 193 CA@YE -y
R T ( o@pgdys T T 16yl
A(q) (2+¢%) 93 —2(1+q%) Py 1
* 64q22¢’1¢’3 —) e 16973 Pics
Alg) AP =13\ o (13— A9 ¥3
64q2¢ lP P1P3 + ( 64q2¢1¢%¢3 ) P1 + ( 32q2¢1¢%lp3 p1p2
N 2(1+¢*) 1z — (2(1+4%) —q) A(9) ¥3
128319343
Aq) (42 =3q+2) i —2(1+4*) ¢1ys | ,
’ ( 12803919393 Pir
Aq) (P +29—1)¢3 - (1+42)2¢1¢3 g 1 2| 4
! ( 2569419313 P gy 2| Y 9
where

_ (149’
AW =
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We substitute the values of ¢; and c3 from the above Lemma and, for simplicity, take Y = 4 — ¢?
and Z = (1 — |x|?)z. Without loss of generality, we assume that ¢ = ¢; (0 < ¢ < 2), so that

z_lq(l—q)A(q)lﬁﬁ s, Al

fala = 1287915 'L 6aPgns
A(q) (49> =3 +2) 93 —2 (1 + %) P19
1284391 pZps
- (A(q) (7 +20 - 1) 43 - (1+q2>2¢1¢3> ;1 ] ;

+ pip2

256041925 U eagzyg 2| €

A(q) 93 — 1y — Al 2+ 3 -2(1+4° )1P1¢’3
32q21 313 ! 12842113

Alq) 2 2402 Y2 4+ Alq)
- prc°Yx
647 yprys ! T R

AxY

_|_

Plz

2
64q21/12 plcYZ] . (25)

Upon setting Z = (1 — |x|?)z and taking the moduli in (25) and using trigonometric inequality,
we find that

A(q) 2y |k 2
6492143

1 2 4 A(q) 22 2
64 2#]2 Pl\ | Y Wmclf(l—lxl)

= A x]), (26)

’a2a4 - u%‘ < M| et 4 |Ag x| Y2 +

where

q(l—q)A(q)¢%P3+ Al(q)
128421y 1 647y ¢

1= pips

L (AW (497 =39 +2) 93 —2(1+4) Y1y e
128319343 !

(Al (?+29-1) 93— A+ pys\ 4 1

25604133 1 eag2g?
A(q) ¥3 — 193 Ag) 2+4)¥3—2(1+7°) ¥is 5
Ay = ———= "~ .
2 32924133 g2+ 128429193 71

Now, trivially, we have
A (|x]) > 0
on [0,1], and so
A(lx]) = A(1).

Hence, by puting Y = 4 — ¢? and after some simplification, we have

649713

A 2 _ 1
(o (M ) o

_ 2
P (M1|A|+lmwp2>c4
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For optimum value of G (c), we consider G’ (¢) = 0, which implies that ¢ = 0. So G (¢) has a
maximum value at ¢ = 0. We therefore conclude that the maximum value of G (¢) is given by

1

2
7;«) ,
g3

which occurs at ¢ = 0 or

2 128 | Az | 4> P13 + 4A () 3 — 213 p? _
(6442 (|A1] = |A2]) rps + s — A (q) ¥3p3)

This completes the proof of Theorem 3. [J

If we put ¢,_; = 1 and let g — 1— in Theorem 3, we have the following known result.

Corollary 2 (see [26]). If the function f (z) given by (1) belongs to the class k-ST, where k € [0,1], then

=R

‘a2a4 — a%‘ <

If we put
pr=2 and ¢,_1=1,

by letting ¢ — 1— in Theorem 3, we have the following known result.

Corollary 3 (see [18]). If f € S*, then
‘a2a4 — a%‘ <1.

By lettingk =1, ¢,_1 =1,4 =+ 1—and

8 16 184

L= =g and P e

in Theorem 3, we have the following known result.

Corollary 4 (see [27]). If the function f (z) given by (1) belong to the class SP, then

16

2
jmas —ad < 2.

4. Concluding Remarks and Observations

Motivated significantly by a number of recent works, we have made use of a certain general
conic domain and the quantum (or g-) calculus in order to define and investigate a new subclass of
normalized analytic functions in the open unit disk U, which we have referred to as g-starlike functions.
For this g-starlike function class, we have successfully derived several properties and characteristics.
In particular, we have found the Hankel determinant and the Toeplitz matrices for this newly-defined
class of g-starlike functions. We also highlight some known consequences of our main results which
are stated and proved as theorems and corollaries.
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