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Abstract: The present paper attempts to investigate the problem of robust H∞ control for a class of
uncertain singular neutral time-delay systems. First, a linear matrix inequality (LMI) is proposed to
give a generalized asymptotically stability condition and an H∞ norm condition for singular neutral
time-delay systems. Second, the LMI is utilized to solve the robust H∞ problem for singular neutral
time-delay systems, and a state feedback control law verifies the solution. Finally, four theorems are
formulated in terms of a matrix equation and linear matrix inequalities.
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1. Introduction

Singular systems are more convenient than regular ones for describing many practical systems
because a singular system involves both differential equations and algebraic equations. Applications of
singular systems can be found in circuit systems, chemical systems, biological systems, robot systems,
and power systems [1]. Therefore, many scholars have paid attention to the study of singular systems,
and a number of important results have been reported (see, e.g., [2–4]).

As is known to all, a time delay frequently arises in practical systems and is often the cause of
instability and poor performance. Hence, the stability problem for a singular system with a time delay
has attracted many researchers’ attention in the past several decades (see, e.g., [5–10]).

In some real physical systems and industrial systems, disturbances that are attributable to external
signals may cause instability and degrade the system’s performance. Hence, the effect of disturbances
on the considered systems should be taken into account. Since H∞ control is used to keep systems less
sensitive to disturbances, problems of H∞ control for time-delay systems have been widely explored,
and findings related to these problems have been reported many times in the literature [11–25] as
a result of their frequent applications in power systems, large-scale systems, and circuit systems.
Recently, scholars (such as [11–15]) have started to study the H∞ problem for singular time-delay
systems by using a linear matrix inequality (LMI) approach, which yields not only the existence
conditions valid for singular systems’ regular problems but also characterizations of H∞ controllers,
leading to a convex optimization problem [16–29].

The robust H∞ control problem for uncertain singular time-delay systems was investigated
by Ji et al. in [24], where the LMI condition was obtained by constructing a degenerate Lyapunov
function on the basis of [23]. However, the condition does not satisfy ‖ Ãd22 ‖< 1, which renders
the design procedure of the LMI law comparatively untenable. Moreover, the problem for singular
neutral time-delay systems was not investigated in [24], and some information about the condition
itself cannot be revealed even if the method can be applied to a singular neural time-delay system.
Also, because of the continuity of the function, it is more difficult to study the neural time-delay system
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than it is to study singular time-delay systems. Consequently, it is of more theoretical and practical
significance to study singular neutral time-delay systems as compared with time-delay systems.

The present paper derives a sufficient condition for the existence of the H∞ controller on the
basis of the LMI approach combined with a class of novel augmented Lyapunov functions, which
thus facilitate the attainment of the H∞ controller using the Matlab LMI toolbox combined with a
matrix equation.

2. Problem Statement and Preliminaries

Consider the following uncertain singular neutral time-delay system:

Eẋ− (C + ∆C)ẋ(t− τ) = (A + ∆A)x(t) + (Aτ + ∆Aτ)x(t− τ)

+ (B + ∆B)u(t) + Bωω(t),

z(t) = Dx(t), (1)

x(t) = Φ(t), t ∈ [−τ, 0],

ẋ(t) = Φ̇(t), t ∈ [−τ, 0],

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input vector; ω(t) ∈ Rp is the disturbance
input vector belonging to L2[0,+∞); z(t) ∈ Rq is the control output vector; τ > 0 is a constant
time delay; Φ(t) is a vector-valued initial function belonging to C1([−τ, 0], Rn); E, C, A, Aτ , B, Bω, D
are constant matrices with appropriate dimensions, where E may be singular and is assumed to be
rankE = r < n; and ∆A, ∆Aτ , ∆B, Bω are unknown matrices representing time-varying parameter
uncertainties and can be described as

[∆A, ∆Aτ , ∆B, ∆C] = GF(t)[Na, Nτ , Nb, Nc], (2)

where G and Na, Nτ , Nb, Nc are known constant matrices and F : R+ → Rm×n is a known matrix with
Lebesgue measurable elements and satisfies

σ(F(t)) ≤ 1. (3)

It is assumed in the present paper that ‖Γẋ(t)‖ ≤ ‖Γx(t)‖ for the arbitrary positive-definite
matrix Γ.

The parametric uncertainties ∆A, ∆Aτ , ∆B, ∆C are said to be admissible if Equations (2) and (3)
both hold.

Next is a discussion of the system in Equation (1) with no force counterpart item. First, the system
is described as Equation (4),

Eẋ− Cẋ(t− τ) = Ax(t) + Aτx(t− τ)

z(t) = Dx(t), (4)

x(t) = Φ(t), t ∈ [−τ, 0],

ẋ(t) = Φ̇(t), t ∈ [−τ, 0].

The following definitions and lemmas are very useful for deriving the main results of this paper.

Definition 1 ([1]). (1) : The pair (E, A) is known as regular if det(sE− A) is not identically zero. (2) : The
pair (E, A) is known as impulse free if det(sE− A) = rank(E).

Definition 2 ([24]). The singular neutral time-delay system (Equation (4)) is known as regular and impulse
free if the pair (E, A) is regular and impulse free.
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Remark 1. The regularity and impulses of the pair (E, A) ensure the system (Equation (4)) with τ 6= 0 to be
regular and impulse free, and they further ensure the existence of a unique solution to the system in Equation (4)
on [−τ,+∞).

Since (E, A) is regular and impulse free, there exist two nonsingular matrices Q and P such that
the system in Equation (4) is equivalent to

ẋ1(t) = A1x1(t) + Aτ11x1(t− τ) + Aτ12x2(t− τ) + C11 ẋ1(t− τ) + C12 ẋ2(t− τ),

0 = x2(t) + Aτ21x1(t− τ) + Aτ22x2(t− τ) + C21 ẋ1(t− τ) + C22 ẋ2(t− τ), (5)

with the coordinate transformation[
x1

x2

]
= P−1x, x1 ∈ Rn1 , x2 ∈ Rn2

and
QEP = diag(In1 , 0), QAP = diag(A1, In2)

QAτ P =

[
Aτ11 Aτ12

Aτ21 Aτ22

]
, QCP =

[
C11 C12

C21 C22

]
,

where n1 + n2 = n. Obviously, the system in Equation (5) has a unique solution on [−τ,+∞).

Definition 3 ([29]). If a matrix X satisfies the Penrose condition AXA = A, then there exists a solution to
the generalized inverse for AXA = A or {1} inverse of A, and thus, the matrix X is denoted by X = A(1) or
X ∈ A{1}, where A{1} denotes the set of all {1} inverse of A.

Lemma 1 ([24]). For a given symmetry matrix A =

[
A11 A12

A21 A22

]
, where A11, A12, A21, A22 have

appropriate dimensions, A21 = AT
12. Then, the following two conditions are equivalent.

C1 : A < 0 C2 : A22 < 0, A11 − A12 A−1
22 A21 < 0.

Lemma 2 ([18]). For any x, y ∈ Rn, ε > 0, the inequality 2xTy ≤ εxTx + 1
ε yTy holds.

Therefore, Lemma 3 can be obtained by using a method similar to that in J. Lee (1994).

Lemma 3. For given matrices Q = QT , H, E, and F of appropriate dimensions,

Q + HFE + ET FT HT + Ψ1FΨ2 + ΨT
2 FTΨT

1 + Φ1FΦ2 + ΦT
2 FTΦT

1 < 0,

for all F satisfies FT F ≤ I if there exist positive numbers ε1 > 0, ε2 > 0, ε3 > 0 such that

Q + ε1HHT + ε−1
1 ETE + ε2Ψ1ΨT

1 + ε−1
2 ΨT

2 Ψ2 + ε3Φ1ΦT
1 + ε−1

3 ΦT
2 Φ2 < 0.

Proof. By Lemma 2, for ∀ z ∈ Rn \ {0}, there exists an ε1 > 0 such that

zT HFEz =
1
2
× 2zT HFEz ≤ 1

2
ε1zT HFFT HTz +

1
2

ε−1
1 zTETEz ≤ 1

2
ε1zT HHTz +

1
2

ε−1
1 zTETEz,

zTET FT HTz =
1
2
× 2zTET FT HTz ≤ 1

2
ε−1

1 zTET FT FEz +
1
2

ε1zT HHTz ≤ 1
2

ε−1
1 zTETEz +

1
2

ε1zT HHTz,

hold simultaneously. Thus,

HFE + ET FT HT ≤ ε1HHT + ε−1
1 ETE,
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can be obtained. Similarly, there exist positive numbers ε2, ε3 such that the following inequalities
also hold

Ψ1FΨ2 + ΨT
2 FTΨT

1 ≤ ε2Ψ1ΨT
1 + ε−1

2 ΨT
2 Ψ2,

Φ1FΦ2 + ΦT
2 FTΦT

1 ≤ ε3Φ1ΦT
1 + ε−1

3 ΦT
2 Φ2.

Lemma 4 ([29]). Let A ∈ Cm×n, B ∈ Cp×q, D ∈ C m×q. Then, the matrix equation AXB = D is consistent
if and only if, for some A(1) and B(1), AA(1)DB(1)B = D is satisfied, in which case the general solution is
X = A(1)DB(1) + Y− A(1)AYBB(1) for arbitrary Y ∈ C n×p.

Robust H∞ control problem. The present paper attempts to address the robust H∞ control
problem by considering the linear state feedback control law as

u(t) = Kx(t)

to construct K such that u(t) in Equation (6) will
(a) stabilize the resultant closed-loop system and
(b) guarantee the H∞ performance J =

∫ ∞
0 (zT(t)z(t) − γ2ωT(t)ω(t))dt < 0 under the zero-initial

condition of x(t) and ẋ(t) for any nonzero ω(t) ∈ L2[0, ∞) and for all admissible parameter
uncertainties satisfying Equations (2) and (3).

3. Results

In the following, the problem of robust H∞ control is considered for the singular neutral system
in Equation (1) with F(t) = 0 and u(t) = 0.

Theorem 1. Consider the system in Equation (1) with F(t) = 0 and u(t) = 0. For a given scalar γ > 0,
the system in Equation (1) is regular, impulse free, and stable, and the H∞ norm from ω(t) to z(t) is less than
γ, if there exist symmetric positive-definite matrices P, Q, R, L and matrices S, Sτ , Sω such that the following
linear matrix inequality holds:

Σ =



Σ11 Σ12 Σ13 Σ14 LT DT AT R
∗ Σ22 Σ23 Σ24 0 0 AT

τ R
∗ ∗ Σ33 Σ34 0 0 CT R
∗ ∗ ∗ Σ44 0 0 BT

ωR
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −R


< 0, (6)

where
Σ11 = ET PA + AT PE + ATVST + SVT A + Q,
Σ12 = ET PAτ + SVT Aτ + ATVST

τ , Σ13 = ET PC + SVTC,
Σ14 = ET PBω + SVT Bω + ATVST

ω, Σ22 = −Q + SτVT Aτ + AT
τ VST

τ ,
Σ23 = SτVTC, Σ24 = Sτ , VT Bω + AT

τ VST
ω, Σ33 = −ET RE− LT L,

Σ34 = CTVST
ω, Σ44 = −γ2 I + SωVT Bω + BT

ωVST
ω,

and V ∈ Rn×(n−r) is any matrix that has full column rank and satisfies ETV = 0.

Proof. The nonlinear singular system (Equation (1)) is proved below to be regular and impulse free.
Since rank(E) = r≤ n, there exist two nonsingular matrices F and G ∈ Rn×n such that

E = GEF =

[
Ir 0
0 0

]
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Then, V can be parameterized as

V = GT

[
0
Φ

]
, where Φ ∈ R(n−r)×(n−r) is any nonsingular matrix. Next,

A = GAF =

[
A11 A12

A21 A22

]
, P = G−T PG−1 =

[
P11 P12

P21 P22

]
,

S = FTS =

[
S11

S21

]
, V = G−TV =

[
0
Φ

]
can be defined. Since Σ11 < 0 and Q > 0, the following

inequality can be formulated easily:

Ω = ET PA + AT PE + ATVST + SVT A < 0.

Pre- and post-multiplying Ω < 0 by FT and F, respectively, yields

FTΩF = ET PA + AT PE + ATVST
+ SVT A

=

[
Ω11 Ω12

Ω21 AT
22ΦST

21 + S21ΦT A22

]
< 0 (7)

From [17], the following matrix inequalities can be formulated easily:

AT
22ΦST

21 + S21ΦT A22 < 0, (8)

and thus, A22 is nonsingular.
Then, it can be proved that

det(sE− A) = det(G−1)det(sE− A)det(F−1)

= det(G−1)det(−A22)det(sIr − (A11 − A12 A−1
22 A21))det(F−1),

which implies that det(sE− A) is not identically zero and deg(det(sE− A)) = r = rank(E). Then, the
pair (E, A) is regular and impulse free, which implies that the system in Equation (1) is regular and
impulse free.

In the following, the system in Equation (1) with u(t) = 0 and F(t) = 0 is proved to be
asymptotical with the condition of ω(t) = 0 and an H∞ performance under the zero-initial condition of
x(t) and ẋ(t) for any nonzero ω(t) ∈ L2[0, ∞). Construct a Lyapunov–Krasovskii function candidate
as follows:

V0(xt) = xT(t)ET PEx(t) +
∫ t

t−τ
xT(s)Qx(s)ds +

∫ t

t−τ
ẋT(s)(ET RE + LT L)ẋ(s)ds, (9)
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where P> 0, Q> 0, R> 0, and L> 0. From this follows the derivation of V0(t, xt) with respect to t along
the trajectory of the system in Equation (1) with the condition of F(t) = 0 and u(t) = 0 that

V̇0(xt) = 2(Ex(t))T P(Eẋ(t)) + xT(t)Qx(t)− xT(t− τ)Qx(t− τ) + (Eẋ(t))T R(Eẋ(t))

−ẋT(t− τ)ET REẋ(t− τ) + ẋT(t)LT Lẋ(t)− ẋT(t− τ)LT Lẋ(t− τ)

= 2xT(t)ET P(Ax(t) + Aτx(t− τ) + Bωω(t) + Cẋ(t− τ)) + xT(t)Qx(t)

−xT(t− τ)Qx(t− τ) + (Eẋ(t))T R(Eẋ(t))− ẋT(t− τ)ET REẋ(t− τ)

+ẋT(t)LT Lẋ(t)− ẋT(t− τ)LT Lẋ(t− τ) (10)

= xT(t)(ET PA + AT PE + Q)x(t) + 2xT(t)ET PAτx(t− τ)

+2xT(t)ET PBωω(t) + 2xT(t)ET PCẋ(t− τ)− xT(t− τ)Qx(t− τ)

+(Eẋ(t))T R(Eẋ(t))− ẋT(t− τ)(ET RE + LT L)ẋ(t− τ) + ẋT(t)LT Lẋ(t)

= xT(t)(ET PA + AT PE + Q)x(t) + 2xT(t)ET PAτx(t− τ)

+2xT(t)ET PBωω(t) + 2xT(t)ET PCẋ(t− τ)− xT(t− τ)Qx(t− τ)

+(Eẋ(t))T R(Eẋ(t))− ẋT(t− τ)(ET RE + LT L)ẋ(t− τ) + xT(t)LT Lx(t).

For the system in Equation (1), the following holds

(Eẋ(t))T R(Eẋ(t)) = (Ax(t) + Aτx(t− τ) + Bωω(t) + Cẋ(t− τ))T R(Ax(t)

+Aτx(t− τ) + Bωω(t) + Cẋ(t− τ))

=
[

xT(t) xT(t− τ) ẋT(t− τ) ωT(t)
]

U


x(t)

x(t− τ)

ẋ(t− τ)

ω(t)

 (11)

where

U =


AT RA AT RAτ AT RC AT RBω

∗ AT
τ RAτ AT

τ RC AT
τ Bω

∗ ∗ CT RC CT RBω

∗ ∗ ∗ BT
ωRBω

 .

For ETV = 0, it can be deduced that

0 = 2(xT(t)S + xT(t− τ)Sτ + ωT(t)Sω)VTEẋ(t)

= 2xT(t)SVT(Ax(t) + Aτx(t− τ) + Bωω(t) + Cẋ(t− τ))

+2xT(t− τ)SτVT(Ax(t) + Aτx(t− τ) + Bωω(t) + Cẋ(t− τ)) (12)

+2ωT(t)SωVT(Ax(t) + Aτx(t− τ) + Bωω(t) + Cẋ(t− τ)),

where S is any matrix with appropriate dimensions.
Noting the zero-initial condition of x(t), V(x0) = 0, and V(x∞) > 0, then

J =
∫ ∞

0
(zT(t)z(t)− γ2ωT(t)ω(t))dt

≤
∫ ∞

0
(zT(t)z(t)− γ2ωT(t)ω(t)) + V̇0(t, xt)dt

=
∫ ∞

0
x(t)T DT Dx(t)− γ2ωT(t)ω(t) + V̇0(t, xt)dt. (13)
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By substituting Equations (10), (11), and (12) into (13), the following can be obtained:

J ≤
[

xT(t)xT(t− τ)ẋT(t− τ)ωT(t)
]

Θ


x(t)

x(t− τ)

ẋ(t− τ)

ω(t)

,

where Θ =


Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗ Θ33 Θ34

∗ ∗ ∗ Θ44

, with

Θ11 = ET PA + AT PE + ATVST + SVT A + Q + LT L + DT D + AT RA,
Θ12 = ET PAτ + SVT Aτ + ATVST

τ + AT RAτ ,
Θ13 = ET PC + SVTC + AT RC,
Θ14 = ET PBω + SVT Bω + ATVST

ω + AT RBω,
Θ22 = −Q + SτVT Aτ + AT

τ VST
τ + AT

τ RAτ ,
Θ23 = SτVTC + AT

τ RC,
Θ24 = SτVT Bω + AT

τ VST
ω + AT

τ RBω,
Θ33 = −ET RE− LT L + CT RC,
Θ34 = CTVST

ω + CT RBω,
Θ44 = −γ2 I + Sω,
VT Bω + BT

ωVST
ω + BT

ωRBω.
If Θ < 0, there exists a scalar λ > 0 such that J ≤ −λ ‖ x(t) ‖2; thus, according to [3], the system

in Equation (1) with u(t) = 0 and F(t) = 0 is asymptotically stable. By Lemma 1, Θ < 0 is equivalent
to Σ < 0.

It is easy to obtain from the result of Theorem 1 the following conclusion about the H∞

performance analysis.

Theorem 2. Consider the system in Equation (1) with u(t) = 0. For a given scalar γ > 0, the system is
regular, impulse free, and stable, and the H∞ norm from ω(t) to z(t) is less than γ if there exist symmetric
positive-definite matrices P, Q, R, L and matrices S, Sτ , Sω, and ε > 0 such that the following linear matrix
inequality holds:

Σ =



Σ11 Σ12 Σ13 Σ14 LT DT AT R (ET P + SVT)G εNT
a

∗ Σ22 Σ23 Σ24 0 0 AT
τ R SτVTG εNT

τ

∗ ∗ Σ33 Σ34 0 0 CT R 0 εNT
c

∗ ∗ ∗ Σ44 0 0 BT
ωR SωVTG 0

∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R RTG 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0, (14)

where Σij is as defined in Theorem 1.

Proof. It follows from Equation (14) by Lemma 1 that

Σ + ε−1ΨΨT + εΦTΦ < 0 (15)

where Σ is as defined in Theorem 1, and

Ψ = [GT PE + GTVST , GTVST
τ , 0, GTVST

ω, 0, 0, GT R]T , Φ = [Na, Nτ , Nc, 0, 0, 0, 0].
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It follows from Equation (15) by Lemma 3 that

Ω11 Ω12 Ω13 Ω14 LT DT Ω17

∗ Ω22 Ω23 Ω24 0 0 Ω27

∗ ∗ Ω33 Ω34 0 0 Ω37

∗ ∗ ∗ Ω44 0 0 Ω47

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −R


< 0, (16)

where
Ω11 = ET P(A + ∆A) + (A + ∆A)T PE + (A + ∆A)TVST + SVT(A + ∆A) + Q,
Ω12 = ET P(Aτ + ∆Aτ) + SVT(Aτ + ∆Aτ) + (A + ∆A)TVST

τ ,
Ω13 = ET P(C + ∆C) + SVT(C + ∆C),
Ω14 = ET PBω + SVT Bω + (A + ∆A)TVST

ω,
Ω17 = (A + ∆A)T R,
Ω22 = −Q + SτVT(Aτ + ∆Aτ) + (Aτ + ∆Aτ)TVST

τ ,
Ω23 = SτVT(C + ∆C),
Ω24 = SτVT Bω + (Aτ + ∆Aτ)TVST

ω,
Ω27 = (Aτ + ∆Aτ)T R,
Ω33 = −ET RE− LT L,
Ω34 = (C + ∆C)TVST

ω,
Ω37 = (C + ∆C)T R,
Ω44 = −γ2 I + SωVT Bω + BT

ωVST
ω,

Ω47 = BT
ωR,

and V ∈ Rn×(n−r) is any matrix that has full column rank and satisfies ETV = 0.
In the following, the robust H∞ synthesis problem of the system in Equation (1) is to be considered

for the system in Equation (1) with F(t) = 0.

Theorem 3. Consider the system in Equation (1) with F(t) = 0. For a given scalar γ > 0, if there exist
symmetric positive-definite the matrices P, Q, R, L and matrices S, Y1, Y2 such that the matrix equation and the
linear matrix inequality in the following hold simultaneously,

[Y1, Y2][PET + VST , R](1)[PET + VST , R] = [Y1, Y2] (17)

Ξ =



Ξ11 Ξ12 Ξ13 Ξ14 LT Bω AR + BY2

∗ −Q 0 0 0 0 Aτ R
∗ ∗ −ET RE− LT L 0 0 0 CR
∗ ∗ ∗ −γ2 I 0 0 DR
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −R


< 0, (18)

then, the control law

u(t) = (Y1, Y2)(PET + VST , R)(1) + Y(I − (PET + VST , R)(PET + VST , R)(1))x(t)

(where Y is an arbitrary matrix of appropriate dimension, I is a unit matrix, V ∈ Rn×(n−r) is any matrix
with full column rank and satisfies ETV = 0, and Ξ11 = EPAT + APET + AVST + SVT AT + Q + BY1 +

YT
1 BT , Ξ12 = EPAT

τ + SVT AT
τ , Ξ13 = EPCT + SVTCT , Ξ14 = EPDT + SVT DT) stabilizes the singular

neutral system and guarantees the H∞ norm bound within γ in the closed-loop system.
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Proof. Substituting the state feedback control law u(t) = Kx(t) into the system in Equation (1) with
F(t) = 0, the closed-loop system

Eẋ(t) = (A + BK)x(t) + Aτx(t− τ) + Bωω(t) + Cẋ(t− τ), (19)

z(t) = Dx(t),

can be obtained. Since det(sE− (A+ BK)) = det(sET − (A+ BK)T), the pair (E, (A+ BK)) is the same
as the pair (ET , (A + BK)T) in that they are both regular and impulse free. Therefore, the solutions of
det(sE− (A + BK)− Aτe−sτ − Cse−sτ) = 0 are equivalent to the solutions of det(sET − (A + BK)T −
AT

τ e−sτ − CTse−sτ) = 0. According to the definition the H∞ norm, the H∞ norm of the system in
Equation (20) can be given as

‖G‖∞ = sup
ν∈R

σ[D(jνE− (A + BK)− Aτe−jντ − Cjνe−jντ)−1Bω ],

which is equal to

‖J‖∞ = sup
ν∈R

σ[BT
ω(jνET − (A + BK)T − AT

τ e−jντ − CT jνe−jντ)−1DT ]

Hence, it can be shown that the regularity, impulse-free state, asymptotic stability, and H∞

performance of the system in Equation (19) are equivalent to the following system regularity,
impulse-free state, asymptotic stability, and H∞ performance; that is,

ET ẏ(t) = (A + BK)Ty(t) + AT
τ y(t− τ) + DTω(t) + CT ẋ(t− τ),

z(t) = BT
ωx(t).

Then, by replacing A by (A+BK)T ,Aτ by AT
τ ,D by BT

ω ,E by ET ,C by CT in Equation (7) and setting
Sτ = 0, Sω = 0, Y1 = K(PET + VST), Y2 = KR, Matrix Equation (17) and Linear Matrix Inequality (18)
can be directly obtained.

Now, the result for the problem of robust H∞ control for the system in Equation (1) is given.
According to Theorem 3, the robust H∞ performance of the system (Equation (1)) will be stated
as follows.

Theorem 4. Consider the uncertain singular neutral time-delay system (Equation (1)). For a given scalar γ > 0,
if there exist symmetric positive-definite matrices P, Q, R, L and matrices S, Y1, Y2 and ε1 > 0, ε2 > 0, ε3 > 0
such that the matrix equation and the linear matrix inequality in the following hold simultaneously,

[Y1, Y2][PET + VST , R](1)[PET + VST , R] = [Y1, Y2] (20)

Π =



Π11 Π12 Π13 Π14 LT Π15 Π16 Π17 Π18 Π19

∗ Π22 0 0 0 0 Aτ R 0 0 0
∗ ∗ Π33 0 0 0 CR 0 0 0
∗ ∗ ∗ −γ2 I 0 0 DR 0 0 0
∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R σ1 σ2 σ3

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3 I


< 0, (21)
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where σ1 = RT NT
a + YT

2 NT
b , σ2 = RT NT

τ , σ3 = RT NT
c , then the control law

u(t) = (Y1, Y2)(PET + VST , R)(1) + Y(I − (PET + VST , R)(PET + VST , R)(1))x(t),

where Y is an arbitrary matrix of appropriate dimension, I is a unit matrix, V ∈ Rn×(n−r) is any matrix with
full column rank and satisfies
ETV = 0, and
Π11 = EPAT + APET + AVST + SVT AT + Q + BY1 + YT

1 BT + ε1GGT ,
Π12 = EPAT

τ + SVT AT
τ ,

Π13 = EPCT + SVTCT ,
Π14 = EPDT + SVT DT ,
Π15 = Bω,
Π16 = AR + BY2,
Π17 = EPNT

a + SVT NT
a + YT

1 NT
b ,

Π18 = EPNT
τ + SVT NT

τ ,
Π19 = EPNT

c + SVT NT
c ,

Π22 = −Q + ε2GGT ,
Π33 = −ET RE− LT L + ε3GGT ,
stabilizes the uncertain singular neutral system and guarantees the H∞ norm bound within γ in the
closed-loop system.

Proof. By replacing A by A + GF(t)Na, Aτ by Aτ + GF(t)Nτ , B by B + GF(t)Nb, and C by C +

GF(t)Nc in Theorem 3, the following matrix inequality can be obtained.

Ξ + Ψ1F(t)Ψ2 + ΨT
2 FT(t)ΨT

1 + Φ1F(t)Φ2 + ΦT
2 FT(t)ΦT

1 + Λ1F(t)Λ2 + ΛT
2 FT(t)ΛT

1 < 0,

where Ξ is as defined in Equation (18), and

Ψ1 = [GT , 0, 0, 0, 0, 0, 0]T , Ψ2 = [NaPET + NaVST + NbY1, 0, 0, 0, 0, 0, NaR + NbY2],

Φ1 = [0, GT , 0, 0, 0, 0, 0]T , Φ2 = [Nτ PET + NτVST , 0, 0, 0, 0, 0, Nτ R],

Λ1 = [0, 0, GT , 0, 0, 0, 0]T , Λ2 = [NcPET + NcVST , 0, 0, 0, 0, 0, NcR].

By Lemma 3, it can be proved that the inequality above is satisfied if there exist scalars ε1 >

0, ε2 > 0, and ε3 > 0 such that

Ξ + ε1Ψ1ΨT
1 + ε−1

1 ΨT
2 Ψ2 + ε2Φ1ΦT

1 + ε−1
2 ΦT

2 Φ2 + ε3Λ1ΛT
1 + ε−1

3 ΛT
2 Λ2 < 0,

which is equal to Equation (21) under the condition of Equation (20).

4. Numerical Illustration

The following numerical example is presented to illustrate the usefulness of the proposed
theoretical results.

Example 1. Consider the system in Equation (1) with the parameter matrices as follows:

E =

[
1 0
0 0

]
, C =

[
0.5 0
0 0

]
, A =

[
−3.45 0.82
1.35 1.94

]
, Aτ =

[
0.35 0.12
0.13 0.15

]
,

B =

[
0.6
−0.5

]
, Bω =

[
1
1

]
, D =

[
1 0.4

]
, ∆B =

[
0
0

]
, ∆C =

[
0.4 cos(2t) 0

0 0

]
, ∆A =
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[
0.3 sin(3t) 0

0 0.3 sin(3t)

]
, ∆Aτ =

[
0.3 cos(t) 0

0 0.3 cos(t)

]
,

ω(t) = 0.3 sin(t). ε1 = 0.16, ε2 = 0.25,ε1 = 0.47.

Let γ = 0.45. By using Theorem 4 and the Matlab LMI Toolbox, the gain matrices P, Q, R, L can be
designed as

P =

[
13.2741 −0.4528
−0.4528 11.0398

]
, Q =

[
16.0723 −0.2634
−0.2634 14.9513

]
, R =

[
9.4157 −0.1823
−0.1823 6.0351

]
,

L =

[
15.1369 −0.3027
−3.027 12.1039

]
.

With the zero-initial condition and the parameters given above, Figure 1 gives the simulations
for the trajectory z(t) of the system in Equation (1) under the control law in Theorem 4. Figure 1
demonstrates the effectiveness of the proposed control method.

0 1 2 3 4 5 6

time t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

z(
t)

z(t)

Figure 1. The trajectory of z(t) of the system in Equation (1).

5. Conclusions

The problem of robust H∞ control for an uncertain singular neutral system is investigated. A new
approach is introduced in order to ensure the singular system (Equation (1)) is regular and impulse
free. On that basis, the matrix equation and an LMI ensure that the system, which is asymptotic
and guarantees the H∞ norm bound within γ in the closed-loop system for all admissible parameter
uncertainties, can be obtained. The needed controller can be constructed by solving the matrix equation
and the LMI. It should be emphasized that the controller has a generalized inverse form, which is
different from the result of [17]. Also, this method can be applied to some practical systems.
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