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Abstract: This paper discusses a monotone variational inequality problem with a variational
inequality constraint over the common solution set of a general system of variational inequalities
(GSVI) and a common fixed point (CFP) of a countable family of nonexpansive mappings and an
asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical
constrained variational inequality (THCVI), and introduces some Mann-type implicit iteration
methods for solving it. Norm convergence of the proposed methods of the iteration methods
is guaranteed under some suitable assumptions.
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1. Introduction

Let C be a convex closed nonempty subset of a real Hilbert space H with norm || - || and
inner product (-,-). Let Pc be the metric (or nearest point) projection from H onto C, that is,
forall x € H, Pcx € Cand |x — Pcx|| = infycc [[x —y||. Let T : C — C be a possible nonlinear
mapping. Denote by Fix(T) the set of fixed points of T, i.e., Fix(T) = {x € C : x = Tx}. We use the
notations R, — and — to indicate the set of real numbers, weak convergence and strong convergence,
respectively.

A mapping T : C — Cis said to be asymptotically nonexpansive (see [1]), if there exists a sequence
{0} C [0, +00) with limy, e 6, = 0 such that

IT"x —T"y|| < (14+6,)||lx—y| Yn>0, x,y€C.

In particular, T is said to be nonexpansive if | Tx — Ty|| < ||[x —y||, Vx,y € C, thatis, 6 = 0. If C
is also a bounded set, then the fixed-point set of T is nonempty, that is Fix(T) # @. Via iterative
techniques, fixed points of (asymptotically) nonexpansive mappings have been studied because of
their applications in convex optimization problems; see [2-10] and the references therein.

Let By, B, : C — H be two nonlinear single-valued mappings. We consider the following problem
of finding (x*,y*) € C x C such that

Vx €C,

o 1)
0, VxedC,

(x =x*, mBry* +x* —y*) =
(x —y", m2Box™ +y* —x*) >

which is called a general system of variational inequalities (GSVI) with real number constants
and pup > 0, which covers as special subcases the problems arising, especially from nonlinear
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complementarity problems, quadratic mathematical programming and other variational problems.
The reader is referred to [11-18] and the references therein. Particularly, if both B; and B, are equal to
A and x* = y*, then problem (1) become the classical variational inequality (VI), that set of solutions
is stated by VI(C, A). Note that, problem (1) can be transformed into a fixed-point problem in the
following way.

Lemma 1 ([19]). Let both x* and y* be points in C. (x*,y*) is a solution of GSVI (1) if and only if x* €
GSVI(C, By, By), where GSVI(C, By, By) is the fixed point set of the mapping G := Pc(I — p1Bq)Pc(I —
ysz), and y* = Pc(l — ‘MZBZ)X*.

A mapping A : C — H is called monotone if
(Ax — Ay, x —y) >0, Vx,y € C.
It is called #-strongly monotone if there exists a constant 77 > 0 such that
(Ax — Ay, x—y) 2 qlx =yl Vryec

Moreover, it is called a-inverse-strongly monotone (or a-cocoercive), if there exists a constant
« > 0 such that
(Ax — Ay, x —y) > a||Ax — Ay|?, vx,y € C.

Obviously, each inverse-strongly monotone mapping is monotone and Lipschitzian, and each
strongly monotone and Lipschitzian mapping is inverse-strongly monotone but the converse is not true.

Recently, Cai et al. [20] proposed a new implicit-rule for obtaining a common element of the
solution set of GSVI (1) and the fixed point set of an asymptotically nonexpansive mapping T,
and presented norm convergence of the sequence generated by the proposed rule to an element
of GSVI(C, By, Bp) NFix(T), which also solves certain VL.

On the other hand, liduka [21] considered a monotone variational inequality linked to a
inequality constraint over the set of fixed points of a nonexpansive mapping. liduka’s problem
is a triple mathematical programming in contrast with bilevel mathematical programming problems or
hierarchical constrained optimization problems or nonlinear hierarchical problem, it is referred as triple
hierarchical constrained optimization problem (THCOP). Since the THCOP is a general variational
inequality, we also call it a triple hierarchical variational inequality (THVI). This kind of problems play
an important role in nonlinear minimizer problems and nonlinear operator equations; see [22-26] and
the references therein.

To begin with, let us recall the variational inequality for a monotone mapping, A; : H — H,
over the fixed point set of a nonexpansive mapping, T : H — H:

Find % € VI(Fix(T), A;)
= {x € Fix(T) : (A1%,y — %) > 0Vy € Fix(T)},

where Fix(T) := {x € H: Tx = x} # @. liduka’s THCOP and its algorithm (Algorithm 1) are
stated below.

Problem 1. (see [21], Problem 3.1) Assume that

(C1) T: H — H is a nonexpansive mapping such that Fix(T) # @;
(C2) Ay : H — H is x-Lipschitz continuous y-strongly monotone;
(C3) Ay : H — H is {-inverse-strongly monotone;

(C4) VI(Fix(T), A1) # @.
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Then the objective is to

Find x* € VI(VI(Fix(T), A1), A3)
= {x* € VI(Fix(T), A1) : (v —x*, Apx*) > 0Vov € VI(Fix(T), A1) }.

Algorithm 1. (see [21], Algorithm 4.1)
Step 0. Take {ay }5 o, {0n}o—g C (0,00), and u > 0, choose xo € H arbitrarily, and let n := 0.
Step 1. Given x,, € H, compute x,41 € Has

Yn = T(xn — 6pA1xn),
Xpn+1 = Yn — “n,quyw

Update n := n+ 1and go to Step 1.

The purpose of this paper is to introduce and analyze some Mann-type implicit iteration methods
for treating a monotone variational inequality with a inequality constraint over the common solution
set of the GSVI (1) for two inverse-strongly monotone mappings and a common fixed point problem
(CFPP) of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping
in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI).
Here the Mann-type implicit iteration methods are based on the Mann iteration method, viscosity
approximation method, Korpelevich’s extragradient method and hybrid steepest-descent method.
Under some suitable assumptions, we prove strong convergence of the proposed methods to the
unique solution of the THCVL

2. Preliminaries

Now we recall some necessary concepts and facts. A mapping F : C — H is named to be
k-Lipschitzian if there is a real number x > 0 with

Kllx —yll = |F(x) = F()ll,  vVxyeC

Particularly, if « € (0,1), then F is said to be contractive. If x = 1, then F is said to be a
nonexpansivity. A mapping A : H — H is named to be a strongly positive bounded linear operator if
there is a real number v > 0 with

(Ax,x) > 9|lx|>? Vx € H.
For a fixed x € H, we know that there is a unique point in C, presented by Pcx, with
lx =yl = llx—Pex|, VyeC.
Pc is called a metric projection of H onto C.

Lemma 2. There hold the following important relations for metric projection Pc:

(i) (x—y, Pcx —Pcy) > ||[Pcx — Pcy|)? Vx,y € H;

(i) 0> (x — Pcx,y — Pcx),Vx € H,y € C;

(i) |lx —y|> +2(x —y,y) = [Ix[I* = |y|? Vx,y € H;

(iv) ||x —y||* > ||x — Pcx|®> + ||ly — Pcx||?, Vx € H,y € C.

Lemma 3 ([27]). Let {a,} be a sequence of real numbers with the conditions:

apeq < (1 - )\n)an + Aurn, Vn >0,
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where {A,, } and {7y, } are sequences of real numbers such that (i) {A,,} C [0,1] and Y 57 oAy = oo, and (ii)
Yoo lvnAn| < coorlimsup, , yn < 0. Then limy, ;00 a, = 0.

Lemma 4 ([27]). Let A be real number in (0,1]. Let T : C — H be a nonexpansive nonself mapping.
Let T* : C — H be a nonself mapping defined by

T'x := Tx — AuF(Tx), Vx € C.
Here F : H — H is k-Lipschitzian and n-strongly monotone. So, T* is a contraction if 0 < p < 12(—’27, ie.,
IT* =Tyl < A= A7)llx—yl,  VxyeC,
where T =1— /1 — u(2y — ux2) € (0,1].

Lemma 5 ([17]). Let the mapping A : C — H be a-inverse-strongly nonself monotone. Then, for a given
A>0, [(I-AA)x — (I—AA)y||? < |lx —y||> + A(A —2a)||Ax — Ayl In particular, if 0 < A < 2a,
then I — A A is nonexpansive.

Lemma 6 ([17]). Let the mappings By, B : C — H be a-inverse-strongly monotone and B-inverse-strongly
monotone, respectively. Let the mapping G : C — C be defined as G := Pc(I — p1B1)Pc(I — paBa).
IfO < <2aand 0 < puy < 2B, then G : C — C is nonexpansive.

Lemma 7 ([28]). Let H be a Hilbert space. We suppose that C is a convex closed nonempty set in H, and T :
C — C s an asymptotically nonexpansive nonself mapping with a nonempty fixed point set, that is, Fix(T) # @.
Then I — T is demiclosed at zero, i.e., if {x, } C C converges weakly to some x € C, and {(I — T)x, } converges
strongly to zero, then (I — T)x = 0, where I is the identity mapping on H.

Lemma 8 ([29]). Let H be a Hilbert space. We suppose that {x, } and {w, } are bounded vector sequences in H
and {By} is a real number sequence in (0,1) such that limsup, ., Bn < 1and liminf, . B > 0. We also
suppose that x, 1 = Bnxn + (1 — Bu)wy, Yn > 0 and

limsup([|w, 11— wnl = [|%n 41 = xa]) <0.
n—00

Then limy, o ||wy — x4 || = 0.

Let C be a convex closed nonempty set. Let {S,,}_, be a countable family of nonexpansive self
mappings defined on C, and {A, }$_, be a sequence of real numbers in [0, 1]. On C, we define a self
mapping W:
un,n+1 = I/
un,n = (1 - /\n)I + /\nsnun,nJrl/
un,n—l = (1 - )\n—l)l + An—lsn—l un,n/

Unj = (1= AT+ AeSilp i,

Upj—1 = (1= A1)+ A1 Se-a Ui
Up,1 = (1= A1)+ M S1Unp,

Wi = Upo = (1= Ao)I + AoSoln,1-

Such a W, is named the W-mapping generated by S;;, S;,—1, ..., Sp and Ay, A, _1, ..., Ag; see [30].
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Lemma 9 ([30]). Let C be a convex closed nonempty set in a Hilbert space H. Let {S,}5_, be a mapping
sequence of nonexpansivity on C with (;_o Fix(S,) # @. Let {An}$ ) be a number sequence in (0, b] for
some b € (0,1). Then limy, ;0o U, X exists for every x € C and k > 0.

Using Lemma 9, W : C — C is defined by Wx = lim;;—sco Wyx = limy, o Uy 0%, Vx € C. We call
W is the W-mapping defined by {S,}5°, and {A,}5> . Next, we assume that {1, }?°, is a sequence
of positive numbers in (0, b] for some b € (0,1).

Lemma 10 ([30]). Let C be a convex closed nonempty set of a Hilbert space H. Let {S,,};>_, be a mapping
sequence of nonexpansivity on C with (;_o Fix(Sy) # @. Let {A,} be a number sequence in (0, b] for
some b € (0,1). Then N;—y Fix(S,) = Fix(W).

Lemma 11 ([30]). Let C be a convex closed nonempty set of a Hilbert space H. Let {S,,}57_, be a sequence of
nonexpansive self-mappings on C with (\;_o Fix(Su) # @, and { Ay}, be a real sequence in (0, b] for some
b € (0,1). If D is any bounded subset of C, then limy, o SUp,.cp [|Wyx — Wx| = 0.

Lemma 12 ([21]). Let C be a convex closed nonempty set of a Hilbert space H. Let A : C — H bea
hemicontinuous nonself monotone mapping. Then the following hold: (i) VI(C, A) = {x* € C: (x* —y, Ay) <
0Vy € C}; (i) VI(C, A) = Fix(Pc(I — AA)) forall A > 0; (iii) VI(C, A) consists of one point, if A is strongly
monotone and Lipschitz continuous.

3. Main Results

Let C be a convex closed nonempty set of a real Hilbert space H. Let the mappings Ay, B; : C — H
be monotone for i = 1,2. Let T : C — C be an asymptotically nonexpansive self mapping and {S,,}$>
be a countable family of nonexpansive self mappings on C. We now consider the variational inequality
for mapping A; over the common solution set () of the GSVI (1) and the CFPP of {S,}°> , and T:

Find ¥ € VI(Q), A;)
={xeQ:(Ax,y—x) >0Vy € Q},

where Q) := N, Fix(S,) N GSVI(C, By, By) NFix(T) # @. This section introduces the following
general monotone variational inequality with the variational inequality constraint on the common
solution set of the GSVI (1) and the CFPP of {S,,}$° , and T, which is named as the triple hierarchical
constrained variational inequality (THCVI):

Problem 2. Assume that

(C1) T :C — Cisan asymptotically nonexpansive self mapping with a sequence {6, } C [0, +o0);

(C2)  {Su}5> is a countable family of nonexpansive self mappings on C;

(C3) By, By : C — H are a-inverse-strongly monotone and B-inverse-strongly monotone, respectively;

(C4) GSVI(C, By, By) := Fix(G) where G := Pc(Pc(I — paBy) — u1B1Pc(I — uaBy)) for real numbers
i, p2 > 0;

(C5) QO := N5y Fix(5,) NGSVI(C, By, By) NFix(T) # @;

(C6) Wy, is the W-mapping defined by Sy, Sy—1, ..., So and Ay, Ap_1, ..., Ao, where {Ay}57 o C (0,1);

(C7) A :C — H is (-inverse-strongly monotone;

(C8) Aj:C — H is n-strongly monotone and x-Lipschitzian;

(C9) f:C — Cisa d-contraction mapping with real coefficient 6 € [0,1);

(C10) VI(Q), A1) # @.

Then the objective is to

find x* € VI(VI(Q, Al),yAz — f)
={x* € VI(Q), A1) : (x* — v, (pAy — f)x*) <0Vov € VI(Q), A1)},
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for some y > 0.
Problem 3. If we put f = 0 in Problem 2, then the objective is to

find x* € VI(VI(Q), A1), Ap)
= {x* € VI(Q, A1) : (Axx*, v —x*) > 00 € VI(Q, A7)}

Here we propose the following implicit Mann-type iteration algorithms (Algorithms 2 and 3) for
solving Problems 2 and 3, respectively.

Algorithm 2.

Step 0. Take {an}5 o, {Bn}o—or {Un}oo {0n )iy C (0,00), and p > 0, choose xo € C arbitrarily, and
let n:= 0.

Step 1. Given x, € C, compute x,,.1 € Cas

Uy = (1 - ')’n)wnun + YnXn,
Yn = PC(I - 5nAl)Gun/ (2)
Xp1 = BnXn + (1= Bu) Pelanf (xn) + (I — anppA2) T"yn].

Update n := n + 1 and go to Step 1.

Algorithm 3.

Step 0. Take {an }5 o, {Bn oo 10} oeo 100}y C (0,00), and y > 0, choose xog € C arbitrarily,
and let n := 0.

Step 1. Given x, € C, compute x,,.1 € Cas

Up = (1 - 'Yn)wnzn + YnXn,

Uy = Pc(un — paBaun),

zn = Pc(vn — p1B1on),

Yn = Pc(zn — 6nA1zn),

Xp1 = PnXn + (1 - .BTI)PC(I - ’XVIVAZ)Tnyn'

Update n := n + 1 and go to Step 1.

We are now able to state and prove the main results of this paper: the following convergence
analysis is presented for our Algorithms 2 and 3.

Theorem 1. Assume that yq is a real number in (0,2«), and yy is a real number in (0,2p). Let § < T :=
1—+/1—u2y —ux?) € (0,1] for u € (0, 12(—2) We suppose { A }57, is a real sequence in (0, b] for some real
number b in (0,1). We also suppose that {a,},{Bn},{vn} C (0,1] and {5,,} C (0,2{] such that

(i) Yoo tn = c0and limy ey = 0;

(ii) On < ap V1 > 0 and limy, eo 2 = 0;

(iii) liminf, .o By > 0and limsup,, . Bn < 1;

(iv) iminf, o yn > 0, limsup,, o vn < 1and im, se0 [Ynt1 — Y| = 0;
() limy_e [|[ T yy — Ty | = 0.

Then the sequence {xy }_, generated by Algorithm 2 satisfies the following properties:

(a)  {xn} is bounded;

(b)  limy—eo ||Xn — Ynl|| = 0, limy o0 ||Xn — GXp || = 0, limy o0 ||Xn — Txy|| = 0 and limy,se0 || X0 —
Wax,|| = 0;

©  iftimy, Pl = 0, then x, — x* € VI(Q, Ay).
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Proof. First of all, for any x,y € C, by Lemma 4, we have

[Pvi,a,) (f + 1= 1A2)x = Pyyaa,) (f + 1= pA2)yll < dlx =yl + (1 = )|x —y[| = [1 = (r = 9)][lx —yl,

which implies that Pyyq a,)(f + I — pAz) is a contraction. Banach’s Contraction Principle tells us
that Pyy,4,)(f + I — #Az) has a fixed point. Indeed, it is also unique, say x* € C, that is, x* =
Pyya,a;) ( f + I — pAy)x*. Utilizing Lemma 12, we get

{x*} = Fix(Pyyq a,) (f + 1 — pAz)) = VI(VI(Q, A1), pAz — f).

That is, the Problem 2 has the unique solution. Since liminf, ;o 4 > 0 and limsup,,_,  vn <1,
we can suppose that {y,} C [ag, bo| is subset of (0,1) for some ag,by € (0,1). Since G : is defined
from C to C as G := Pc(Pc(I — upBy) — u1B1Pc(I — uzBs)). Here pp € (0,2a) and uy € (0,28), G is
nonexpansive by Lemma 6. It is easy to see that for each n > 0 there exists a unique element u,, € C
such that

Uy = YnXn + (1 - '}’n)wnun- 3)

As a matter of fact, we utilize F,x := y,x, + (1 — v,)Wyx Vx € C. Since each W,, : C — Cisa
nonexpansive mapping, we get

[Fax = Fayll = (1= ) [[Wx = Way[| < (1 =)l —yl,  VrxyeC

Also, from {7, } C [ag, bo] and [ag, by] C (0,1) wehave 0 <1— 17, <1,¥n > 0. Thus, F,: C — C
is a contraction. Banach’s Contraction Principle infers there exists a unique element u, in set C
satisfying (3).

Here, we are able to divide the rest of the proof into several steps.

Step 1. We claim that all the vector sequences {x.},{yn}, {zn}, {un}, {vn}, {T"yn} and
{A(T"yn)} are bounded, where v, = Pc(u, — upBouy) and z, = Pc(v, — p1B1vy,) for all n > 0.
Indeed, it is clear that (2) can be rewritten as

Uy = (1 - ’Yn)wnun + YnXxn,

Zn = Gy,

Yn = PC(I - 5nAl)Zn/

Xng1 = (1= Bu) Pc[(I — anprA2) T"yn + an f (xXn)] + BnXn-

4)

Take an arbitrary

p € Q= () Fix(S,) NGSVI(C, By, B,) N Fix(T).
n=0
Then p = Wyp, p = Tp and p = Gp. Since each W,, : C — C is nonexpansive, (4) infers to
[ = pll < (U =v)l[n = pll +vallxn = pll,

which hence yields
[un = pll < o = pll, Vn>0. 5)

It is easy to infer from (4) that

zn — pll = |Gun — pl| < [Jun —pll < [lxn —pll, Yn>0. (6)
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Since liminf, ;o f > 0 and limsup, ,.Bn < 1, we suppose that {B,} C [cd]
Since lim;; 0 Z—Z = 0, we can also suppose that

6, < D‘n(T_(;)(l_d) < an(r—é).

Note that 6, < &y, Vn > 0. {-inverse-strong monotonicity of A; and Lemma 5 yield
[yn =PIl < (I =6nA1)zn — (I = 0nA1)p — Sndapll < onllArpll + llzn — pIl < llxn — pll +oullArpll.  (7)
Utilizing Lemma 4 and (7), we obtain from (4) that

[xn1 = pll
< (1= Bu)llen(f(xn) — pAzp) + (I — anpA2) T"yn — (I — anpA2)p|l + Bullxn — pll
< (1= Bu)[andllxn — pll + anl| f(p) — wA2p|| + (1 — anT) (1 +0) lyn — pll] + Bullxn — pl|
< Bullxn —pll + (1 = Bu){andllxn — pll + anl[pA2p — f(p)|l
+ (1= an)[[[xn — pll + 6nl| Arpll] + 0n[0nl[ Arpll + [lxn — plI]}
< Bullxn —pll + (1 = Bu){andllxn — pll + anl[pA2p — f(p)|l
+ (1 = anT)[lxn = pll + Onl[A1pll] + Onllxn — pll + (T — &)andn|| Arpll}

<[ —an(1=Bu) (T = 0)]llxn = pll + Oullxn — pll + anllpAzp — f(p)I| + anllArpll

<[1- w]nxn —pll+ an(lfé)(T*fS) . 2(\|A1p(!tla\lp)tézf{5f(p)\\)

< max (AR SO, 13, — p}.

By simple induction, we have

2([1f(p) — pAzp|) + 1 Arp
(1—d)(t—9)

%1 = pl| < max{ Nxo=plly,  vn=>0.

Therefore, {x,} is a bounded vector sequence, and so are all the other sequences
{ynt {zn}, {un}, {T"yn} and {A2(T"yn)} (due to the Lipschitz continuity of T and Aj). Since each
W, enjoys the nonexpansivity on C, we get

[Wattn || < [[Whttn = pl| + [Pl < [lun = pll+ I,

which yields that {W,u,} is bounded too. In addition, from Lemma 2 and p is a element in Q) C
GSVI(C, By, By), it also follows that (p, q) is a solution of GSVI (1) where g = Pc(I — ppB;)p. Note that
vy = Pc(I — upBy)uy for all n > 0. Then by Lemma 5, we get

[onll < |Pc(I — p2Ba)un — Pc(I — paBa)pll + [lg]] < llun — pll + [19]|-

This yields vector sequence {v,, } is bounded.

Step 2. We claim that ||x, — x,11|| — 0 and |lyn — yn11l| = 0 as n — oco. Indeed, we set
Xp+1 = BnXn + (1 — Bn)wn, Vi > 0. Then w, = Pc[(I — anpA2)T"yn + anf(xn)]. It follows from
(4) that

w1 = wall < a1 f (1) + (1= a1 pA2) Ty — a f (xn) — (1= anpA) Ty |
<7 ypr = Tyl + 1Ty — Tull + it [ A2 (T ) |
+ an || A2 (T"yn) | + a1 || f (1) || + an|f (xn) | (8)
< (U4 O )y = vl + 1Ty — Tyl + aea (L f (1)
+ A2 Ty ) 1) + an([Lf Con) | + [ A2(T"y) |-
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Since vector sequence {J, } falls into (0,2¢] and A; is {-inverse-strongly monotone, by Lemma 5
we obtain

Y1 —ynll <N (zns1 = Sns1A1zu11) — (20 — SnArza) ||
< (zng1 = ng1412n41) — (20 — Ong1A12n) || + [0 — Sny1 || Arzall )
< H”nH - “nH + ’571 - 5n+1‘HAlzn”'

Since simple calculations show that

unttnirll < Ynallxn = Xuall + (1= Y1) [Wattn — Wisqtp 4 |
+ 17 = Yurr [|Watkn — xn |
< Yagllxn = X1l + (U= Y ) Wty 1 — W1t ||
+ ||Wnun - Wnun+1||] + |')’n - ')’n+1|||wnun - xn”
< (=Y ) IWantty 1 = Wity || + Yt 16 — x|
+ ltn — w1 ll] + [vn — Ynsa [[|[Wattn — xal],

it follows that

aollun — unrall < aollxn1 = xnll + [Wagattnir = Wattwgall + aollxn — Wattall[yn1 — vl (10)

Since D := {u, : n > 0} C C is bounded subset, by the argument process in Lemma 11 we get
Yorosup,cp [[Wip1x — Wyx|| < co. Thus we have

Z [Wig1ttn 1 — Watty 1| < oo (11)
n=0

Therefore, from (8)—(10) we deduce that

||wn _wn+1||
<100 = SnalllArzall + G llyn — yusall + 1T yn — Tyl + [[tn — g1 |
+ a1 (I Cens ) |+ A2 (T ys ) ) 4 an ([Lf o) |+ | A2(T"yn) )

W, —
< L Wattn 1 = Wzt |+ 21 = 2all + [yngn — a2l 415, — 5,45 ][] Azl

+ 0ur1llyn — Yurrll + 1Ty = Tyl + awed (1f Conen) |+ A2 (T )
+ an | (Lf (xn) [| + AT ) []),

which immediately attains

lwn — w1l — |20 — Xpq1]|
U — |

W,
< %Hwnun“rl = Wasrttnia | + [7n — Ynsa [W

ag + 00 = Snra [l Avzall (12)

+0ur1llyn = Yuill + 1 T"yn = Tyl + awea (1f Conen) |+ 1| A2(T" Hynia) 1)
+ an([1f ) | + AT ) [])-

Since
. n _ n+l _1; _
nh_If(}OHT Yyn—T ynH—nh_I}ologn—O,
from (11) and conditions (i), (ii), (iv) we get limsup,,_, . (||wy — wy41]| — [|xn — X441]]) < 0. Hence,
by condition (iii) and Lemma 8, we get lim, o ||[w, — x5 || = 0. Consequently,

;}E}I;o(l = Bn)l|wn — xn|| = r}l_{{}o |20 — xu 41l = 0. (13)
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Again from (9) and (10) we conclude that

ao||yn — Yns1ll

< agllxn — xpiall + [Wattnp1 — Wttt || + aolyn — vnsal
[Wattn — xu| + 160 — Ontalao | A1zl — O

and ||zy11 — zu|| = ||Gupi1 — Guy|| < ||ups1 — un|| — 0. Thus,
Jim |lyn = ynall = lm fJug —wppa || = lm flzp = 2,4 = 0. (14)
Step 3. We claim that lim,_,0 ||Gxy — x4|| = 0 as n — co. Indeed, noticing w, = Pc[(I —

anptA2) Ty + o f(x)] ¥ > 0, we obtain from Lemma 2 that for each p € (),

(P —wn, (I = anpA2) T"yn + anf (xn) — Pelanf (xn) + (I — anppAz) T"yn]) < 0. (15)

From (15), we have

lwn — plI* = (Pc[(I — anpA2) Ty + anf (xn)] — anf (xn) — (I — anppA2) T"Yu, wn — p)
+{(I = anppA2) T"yn + anf(xn) — p,wn — p)
< (I — anpA2)T"yn + anf(xn) — p,wn — p)
= (wn —p, (I = anptA2) T"yn — (I — anptA2) p) + an(f (xn) — pA2p, wn — p)
<[ =anD)[T"yn — pll + anllxn — pl]l[wn — pll + an(wn — p, f(p) — pA2p)
[(1—ﬂlnT)HT"yn—2PH+“n(5Hxn—P\H2 + %Hwn . pHZ + 06n<wn . P/f(P) . VA2P>r

A

IN

which leads to

lw, — pl|?
< (1= an®) | Ty — plI* + Sanllxn — plI* = 200 (wn — p, pA2p — f(p))
< (1—a,7)(1+ 9n)2||yn - P||2 + andl|xy — PHZ — 20 (W, — p, wA2p _f(P)>

< (1= an0)|lyn — plI* + andl|xn — plI* + 022+ 02) |yn — plI* — 200 (wy — p, uAzp — f(p)).
(16)
From (7) and (16), we get

%41 = pII?

< Bullxn = pl* + (1= Bu) [nb|xn — plI* + (1 = anT)[[yn — plI* + 02 (2 + 64 [lyn — p|I>
+ 20, (f(p) — wAz2p,wn — p)]

< Bullxn = plIP + (1= Bu){andllxn — plI* + (1 — an7) (|20 — pl| + 0nl| Arpl])? (17)
+6u(2+6n) |lyn — pII* +20u(f(p) — pA2p,wn — p)}

< Bullxn = pl* + (1= Bu) [nd||xn — plI*> + (1 = an7)||z0 — pl|]
+0nll A1pll2llzn — pll + Sull Arpll) + 61(2+ 6n)llyn — pII* + 20| f (p) — pA2pllllp — wnl.-

We now note that g = Pc(p — u2Bap), vn = Pc(un — ppBouy) and z, = Pc (v, — p1B1vy). Then
zy = Guy. By Lemma 5 we have

[on = q||* < [|un — p — p2(Battn — Bop) ||I* < [un — pl|* — p2(2B — p2)|Boun — Bop||>  (18)

and
lzn = plI*> < llow — g — p1(Bron — B1g)|I* < llow — ql|* — p1 (20 — 1) | Bion — Bag|>. (19)
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Substituting (18) for (19), we obtain from (5) that

llzn = plI* < p2(p2 — 2B) | Bautn — Bop||* + 1 (p1 + 20)||Byow — Bagl|* + [|xu — pl>. (20)

Combining (17) and (20), we get

%041 — plI?
< Bullxn = plI* + (1 = Bu) {andllxn — plI* + (1 — tan)[||xn — plI?

— (2B — p2)p2|B2p — Baun||* — (20 — p1) 1| B1g — Bron|?]}

+ 6ul|A1pl|2l1zn — pll + Sull A1pll) + (24 04)0nllyn — pII* + 20| [A2p — F(p)||llp — wall
= [1— (1= 8)an(1 = Bu)lllxn — plI* = (1 — anT) (1 = Bu) [#2(2B — p2)||Bap — Bautn||?

+ (20 — p1)p1 || B1g — Brou||?] + 8ull Arpll (2l|zn — pIl + 6l A1pll)

+ (24 6)0nllyn — plI* + 20| |uAzp — £(p)||llp — wal,

which immediately yields

(1= anT)(1 = Bu) [#2(28 — p2) || Bap — Battn||* + (2& — 1) i1 || B1g — Byoal|?]
< xew = plI* = xng1 — plI? + ull Arpll (6ull Arpll + 20120 — plI)
+ (24 61)0nlyn — plI* + 20nl | Azp — fF(p) [ lp — wal
< Alxn = Xl ([[xn = pll + 1xn1 = pll) + nllA1pl| (Snl|Arpll +2(|z0 — pl|)
+ (24 60)0nlyn — plI* + 20n||lp — wall|| f(p) — pA2p||.

Due to condition (iii), iminf, ye(1 — Bn) > 0, u1 € (0,2a), pp € (0,2B), limy 006 = O,
limy, 0 &, = 0 and lim;,_, 0, = 0, we obtain from (13) that

lim ||Botty — Bap|| =0 and lim |IB1vy — B1g|| = 0. (21)
On the other hand, from Lemma 2 we have

On —q,un — (p — H2B2p) — p2Batin)

lon —qll> < (
< 3 llln = pIP + llon = ql* = lun = vw = (p = ) IP] + pi2l|on — qll [ Batn — Bopll,

which implies that
low = a1 < llun = plI* = 1(p = ) = 1n + vull* + 2p2]| o0 — qll [ Batn — Bop]|. (22)
In the same way, we derive
lzn = pII? < llon =gl = 1(p = 9) = ou + 2a|* + 21|20 = pll[|Bron = Bg. (23)

Substituting (22) for (23), we deduce from (5) that

lze =PI < llxw =PI = llun =20 = (p = DI? = lon —2zu + (p — @) |17

(24)
+ 22| Bap — Battn||[|on — q|| +2p1(B1g = Bron|[[[z0 — pI-
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Combining (17) and (24), we have

||xn+1 _PHZ
< Bullxn — pl* 4+ (1 = Bu){andlxn — plI* + (1 — an?)[[lx0 — pII> = lp — § — tn + 0u|?

—lp =g+ v — zul® + 2p1 |20 — pll||Bion — B1ql| + 2p2l|on — ql/||Battn — Bap||]}

+ 6al| A1pl| 2llzn — pll + SullArpll) + (2 + 64)6nllyn — pII* + 2an | A2p — f(p) [ lwn — p|
<1 = (t=8)an(l—Bu)lllxn — plI> = (1 = anT)(1 = Bu)[[lp — q — tin + vu)?

+lp =g+ o0 —2zal?] + 21| Brow — Baglll|za — pll + 2p2]lvn — qll[|B2p — Baua|

+ 0nllArp 1Ol Arpll +2[1zn = pl) + (2 + 61)80llyn — plI* + 2an]lwn — pllIIf (p) — nA2p,

which hence yields

(1—ant) (1= Bu)lllp — g — tn +0al® + [lp — g+ 00 — za|?]
<2 = plI* = llxnr1 = plI> +2p2llon — qll[| Bap — Bautn |
+2p1llzn — pll[1B1g — Bron|l + 0ullA1p|(0n || A1p|| + 2[|zn — p|)
+ (24 02)0ullyn — pII* + 20ullp — wallll f(p) — pA2p
< [lxn = xpal[([[xn = pll + [xn1 = pll) + 2p2|zn — ql[[|B2p — Boua ||
+2p1llyn — pll1B1g — Bizall + SullA1pl|(Onl| A1p || +2[1za — pII)
+ (24 61)6nllyn — plI* + 20n[|lp — wall|| f (p) — pA2p].

Since liminf, (1 — B4) > 0, limy 0 0y = 0, limy 00 &y = 0 and lim, 0 5, = 0, we conclude
from (13) and (21) that

Bim fuy— 00— (p— ) =0 and lim loy 2o+ (p — )| = 0. 25)
It follows that
[un — Gunll = [[un — zn|| < lun —vn —(p =l + [l —za +(p—9g)| =0 (n—>00).  (26)

Also, from (4) we have [Ju, — p||* < (1= yn)||un — pl|* + Yn{tn — p, xu — p), which together with
Lemma 2, yields [|un — pI*> < (un — p,xu — p) = 3[ll%0 = pl> + un — pI* = [lxn — n]|?]. Thus, we get

[1n =PI < Nln = pI? = [lxn — 1%,
which together with (17), yields

Ixn 1 = pII?
< Bullxn = plI> + (1= Bu) (1 = anT) |tn — P + Sau|xn — p]?]

+0n]| A1pl| Bull Avp | + 2llzn — pII) + (24 04)8ullyn — pII* +2anllp — wal[[| f (p) — pA2p|
< Bullxn = pI? + (1 = Bu){andlln — plI> + (1 = anT)[[ln — P> = [l — ua ]}

+ 0l A1l (Sull Arpll +2llzn — plI) + (2 + 84)8ullyn — plI* + 2anllp — wall [ f(p) — nA2p|
= [1—an(r =) (1 = Bu)]lln — pI? = (1 = nT) (1 = Bu)l|xn — 0 [|?

+0n ]| A1pl| (Bull Arp | + 2l|zn — pII) + (24 00)8ullyn — pII? + 2enllp — wall[l f(p) — pA2p.
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Hence we have

(1= ant)(1 = Bu)lxn — unHz

< lxn = plI* = X1 = plI* + ull Arpll (| Arpll + 2]|20 — pll)
+ (24 61)6nllyn — plI* + 20n [ A2p — F(p)Illlp — wal

< lxew = xug1 [ ([[xn = pll 4 X041 = pII) + Ol Arpll(6n | Arpll +2[120 — pII)
+ (24 02)0ullyn — plI* + 20|l f (p) — uAzpllllp — wal.

Since liminf, (1 — By) > 0, limy 00 60, = 0, limy 0 0y = 0 and limy, 0 6, = 0, we obtain
from (13) that
lim ||x, — u,|| = 0. (27)
n—oo

Also, observe that ||x,, — z, || < [|x — || + [|Gun — unl|, ||xn — Gxu|| < ||x0 — za|| + ||t — x|, and
1n = ynll < [lxn — (zn — SnArza) | < [t — znll + Onl| Arza |-
Then from (26) and (27) it follows that
nh_I};lo llxn —zull =0, r}l_{rolo [xn — Gxnl| =0 and nh_{r.}o [[xn = yull = 0. (28)

Step 4. We claim that lim, e || Tx;, — x4 || = 0 and limy, 0 || Wiy, — x5 || = 0. Indeed, combining
(4) and (27), we obtain

b
_Obo 2tn — ttu]| =0 (n — o). (29)

Tn

Since each W, is nonexpansive on C, from (27) and (29) we get

[Wixtn — xnl| - < [|Whttn — un| + [[un — x|l + [|[Wnxn — Wi ||

(30)
< |[Whttyy — un|| + 2|ty — x4|| = 0 (n — 0).
We note that {B,} C [c,d] and [c,d] C (0,1) for some c,d € (0,1), and observe that

120 = Tyl < llxn — X1 | + 1Ty — xpia |
< lxn — xpqall + Bullxn — Tyl + (1 = Bu) [ T"yn — Pc[(I — anpA2) T"yn + anf (xn)]|l
< lxn = xpgall + Bullxn — Ty |l + (1 = Br)an ([[HA2 (T yu) | + [ f (xa) |])-

Then we have
(= d)llxn = Tyl < llxn =20 ll + (1= d)an ([ f (en) [| + [l A2 (T y) [})-
Hence we get

A =d)lyn =T"yul < A =d)llyn = xull + 1 = d)[xn = T"yu
< (U= d)llyn = xnll + llxn = 2npall + an (1= d) (1 f Cen) | + [ A2(T"yu) [)-

Consequently, from (13), (28) and limy, 00 &, = 0, it follows that

nlg’f.}o Jxn = T"yu| =0 and nlgr.}o lyn = T"yull = 0. (31)
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We also note that

[y = Tyull < llyn — T"yall + 1T yn — T yull + [Ty — Tynl|
< Q40T = yull + Ty — T"yu|-

From limy, e || T"yn — T"1y,|| = 0 and (31), we get
nlgro‘o lyn — Tyn|| = 0. (32)
In addition, noticing that
llxn = Txull < llxn = ynll + [lyn = Tynll + 1 Tyn — Txull < lyn — Tyall + (24 61) [0 — yull,

we deduce from (28) and (32) that

Step 5. We claim that W : C — C is nonexpansive, Fix(W) = N, Fix(S,) and limy, ;e ||Wx,, —
Xn|| = 0 where Wx := lim, ,0 Wyx for all x € C. Indeed, we observe that for all x,y € C,
limy, 00 [|[Wypx — Wx|| = 0 and im0 || Wy — Wy|| = 0. Since each W, enjoys the nonexpansivity,
we get

[Wx —Wy|| = Tim [[Wyx — Way|| < [lx — .

This means that W is nonexpansive. Also, noticing the boundedness of {x, } and putting D :=

{xy : n > 0}, we obtain from Lemma 11 that lim,, e sup,.p, ||Wux — Wx|| = 0, which immediately
sends to
lim ||Wpx, — Wxy,|| = 0. (34)
n—oo

Thus, combining (30) with (34) we have
1xn — Wxp || < ||xn — Waxu|| + |Wnxn — Wxyu|| = 0 (1 — 00). (35)

In addition, utilizing Lemma 10 we get

Fix(W) = (1) Fix(Sn). (36)
n=0
Step 6. We prove that
limsup(Ax*, x* —w,) <0 and limsup(Aix*, x* —z,) <0, (37)
n—oo n—o0

where {x*} = VI(VI(Q), A1), uA; — f). Indeed, we choose a subsequence {wy, } of {w, } such that

lim sup(x* — wy, Apx™) = lim (x* — wy,, Apx™).
n—00 1—00

Utilizing the boundedness of {w,} C C, we suppose that w,, — % € C. Since lim,_c ||X; —
T"yn|| = 0 (due to (31)) and limy, ;e &, = 0, it follows that

llxn —wnll < lxn = Tyl + [ T"yn — anf(xn) — (I — anppAz) T"ya|

38
< 1Tyt + (| AT )]+ [ F (ra)l]) = 0 (11— o0). (38)

Hence, from Wy, — X, we get Xp; — X.
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Note that G and W are nonexpansive and T is asymptotical. Since (I — G)x, — 0, (I = T)x, — 0
and (I — W)x,; — 0 (due to (28), (33) and (35)), by Lemma 7 we get ¥ € Fix(G) = GSVI(C, By, By),
% € Fix(T) and % € Fix(W) = N5, Fix(Sy). So,

x € Q= () Fix(S,) NGSVI(C, By, By) N Fix(T).
n=0

We show ¥ € VI(Q), Aq). Actually, let y € Q) be fixed arbitrarily. From (4), (6) and -inverse strong
monotonicity of Aj, we get

lyn —yII* < 11(zn — y) — SnAazall* < ||xn — yl|* + 26, (y — zu, Ary) + 05l Arza |,

which implies that, for alln > 0,

0 < g (lxn = yl* = llyn — yl1*) + 2(A1y, y — zn) + 6ul| A1z
< (1w — yll + lyn — w22l 2041y, y — 24) + 80| Agzal
From (28) it is easy to see x,, — X leads to z,; — X. Since lim; . dy = 0 and ||x, — yu|| = 0(dn),

we have

0 < timinf{ (v — Il + lyn —yI) 2252l 4+ 2(A1y,y = z0) + 0ull Arza] )
= liminf2(y — z,,, A1y) < im2(y — z,,, A1y) = 2(y — X, A1y).
1—00

n—o0

It follows that (A1y,y — %) > 0, Yy € Q. So, Lemma 12 and the {-inverse-strong monotonicity
of Aj ensure that (y — X, A1x) > 0, Vy € ), thatis, ¥ € VI(Q), A;). Consequently, from {x*} =
VI(VI(Q, A1), pAy — f), we have

limsup(x* — wy, (pAz — f)x*) = lim (x* — wy,, (LA — f)x*) = (x* — %, (pAy — f)x*) <0.

n—o0 1—00

Also, we pick a subsequence {z,, } C {z,} such that

limsup(x* — z,, Ajx™) = lim (x* — z,,, A1x™).
n—oo k—o0

Since vector sequence {zn} is bounded in C, we suppose that zp, — % € C. From (28) it is clear
that z,, — £ yields x,, — £. By the same arguments as in the proof of ¥ € (), we have £ € Q.
From x* € VI(Q), A1), we get

limsup(x* — z,, A1x*) = lim (x* —z,, A1x™) = (x* — %, A1x™) <0.
n—r00 k—o00

Therefore, the inequalities in (37) hold.
Step 7. We propose x;, — x* as 1 — co. Indeed, putting p = x* in (6) and (16) we obtain that
120 = x*[| < [[xn = x*|| and

lwn = x* 1> < andlxn — x*|* + (1= an ) lyn — x* > + 60(24 02) [lyn — x*||* + 200 ((pA2 — £)x*, x* — wy). (39)
From (4) and the {-inverse-strong monotonicity of A; it follows that

Iy — 1P < Gz — x%) — GuArzall® < llxn — 2|2 + 26, Arx’, x* = 24) + B Arzal. (40)
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Thus, in terms of (4), (39) and (40), we get

201 = 212 < (1= Bu)[Jwn — x*|2 + Bulxn — x*|2

< (1= Bu)[andllxn — 2|17+ (1 = an)llyn — 2%+ 05(2 + 6n) [lyn — x*[| + Bu|xn — x*[2
+ 20 ((pAz — f)x*, x* — wn)]

< Bullxn — 2|2 + (1 = Bu){andlln — x| + (1 — anT) 26 (A2, 6% —z) + [l — x| (47
+ 5l Arzn 1] + 00 (2 + 0n) [l yn — x> + 200 (A2 — f)x*, x* — wn) }

<[l —an(t— )(1_,3n)]||xn_X*||2+“n(T_ )(1_ﬁn){1(7“"7;)25"<x*_2m141x*>

oy 1Al GOl IE 2 (A — £, 6 — wa) )

(T—06)a

Obviously, (37) yields

. (1—anT)268, , , N
limsup —————(x* — z,, A1x") <0
n%oop (7_5)“” < e >
and 2
lim sup (X" —wn, (pA2 — f)x*) <0.
noeo T—0

Actually, from limsup,,_,  (Ajx*, x* — z,) < 0 it follows that for any given ¢ > 0 there exists an
integer ny > 1 such that (A1x*, x* —z,) <, Vn > ng. Then from 6, < a, we get

28, (1 — ayT) . 26, (1 — ayT) 2
_— — < < >
(T — o) (A1x™, x" —zy) < T e ——¢& Vn > ny,
which hence yields
26,(1 — Aqx*, x* — 2
lim sup On(L — anT) (A1, X7 — zn) < €.
n—soo (T—0)ay T—90
Letting e — 0, we get
lim sup 25, (1 — apT)(x* — 2,5, A1x*) <.
n—00 (T—0)an

Since Y5 a0 = 00, liminf, o0 (1 — Br) > 0 and limy e —’Z = 0, we deduce that

i (T—=06)(1—Pn) =00

and R
(1 )26 A
hmsup{w@fllx xX* —zy) +an%

k2
o SN 2 — o, (nAg — f)x*)} <0

We can infer Lemma 3 to the relation (41) and conclude that x, — x* as n — co. This completes
the proof. O

From Theorem 1, we have the following sub-result.

Corollary 1. Assume that yy is a real number in (0,2a), and yy is a real number in (0,2B). Let 6 < T :=
1—+/1—u2y —pux?) € (0,1] for u € (0, ) We suppose {An}o_ is a real sequence in (0, b] for some real
number b in (0,1). We also suppose that {an}, {Bn},{71n} C (O, 1] and {6, } C (0,2¢] such that

(i) Yoo tn = c0and lim, e &y = 0;
(ii) On < ap V1 > 0 and limy, co 22 = 0;
(iii) liminf, . By > 0and limsup,, . Bn < 1;
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() Hminfyco yu > 0, imsup,, o, Yn < 1and limy—oo 7041 — 10| = 0;
(0) Lm0 [T yn — Tyl = 0.

Let {x, };_ be a sequence defined by

Yn = (1 - ')’n)wnyn + YnXn,
Xni1 = Buxn + (1 — Bu)Pclanf (xn) + (I — anppAz) T yn).

Then we have

(a)  {xn}i o is bounded;

(b) hmnﬁm | Xn — ynH = 0, hmnﬁm ||xn — Tan = 0and hmn%oo ||xn — Wan = O/
if li ‘xn*yn

(c) iflimy,_, B

L = 0, then {xn} converges to a common fixed point of the asymptotically nonexpansive
and nonexpansive mappings.

Theorem 2. Assume that pq is a real number in (0,2a), and py is a real number in (0,2B). Let T =
1—/1—u(2y —ux?) € (0,1] for pin (0, %7), and let {A,}_ be a real sequence in (0, b] for some b in
(0,1). Suppose that {an}, {Bn}, {vn} C (0,1] and {6,} C (0,2¢] such that

(i) Yoo = o0and limy, ey = 0;

(i) 0p < ay Vn > 0and limy, e 2—2 =0;

(iii) liminf, o By > 0and limsup,,_,  Bn < 1;

(iv) liminf, o yn > 0, limsup,, o vn < Land im, eo [Yni1 — u| = 0;
() limy_eo || Ty, — Tyy| = 0.

Then the sequence {x,}5°_, generated by Algorithm 3 satisfies the following properties:

(a)  {xn} is bounded;
(b)) limy—eo ||Xn — Y| =0, limy—eo || xn — Gxy|| =0, limy—yeo ||Xn — Txy|| = 0and limy—e0 || x4 —

Wil 20
(c) If =5l =0, x, — x* € VI(Q), Ay).

Proof. Since A; : C — H is x-Lipschitzian and #-strongly monotone, by Lemma 12 we know that the
Problem 2 has the unique solution. We let {x*} = VI(VI(Q), A1), Ay). For each n > 0, we consider
the mapping F,x := G(ynxn + (1 — yn)Wyx), Vx € C. Utilizing the same argument as in the proof of
Theorem 1, we can deduce from Banach'’s contraction principle that for each n > 0 there exists a unique
element z, € C such that z, = G(ynxn + (1 — 1) Wnzy). Thus, the iterative scheme in Algorithm 3
can be rewritten as

Uy = YnXn + (1 - ')/n)wnzn/

zn = Guy,

Yn = PC(Zn - 5nAlZn)/

X1 = Puxn + (1= Bu) Pe(l — pan A2) T"yn.

Here, we divide the rest of the proof into several steps.

Step 1. We prove {x,},{yn}, {zn}, {un}, {vn}, {T"yn} and {A(T"y,)} are bounded vector
sequences, where v, = Pc(uy, — ppBouy) and z, = Pc (v, — p1B1vy) for all n > 0. Indeed, utilizing the
similar argument to that of Step 1 in the proof of Theorem 1, we obtain the desired assertion.

Step 2. We prove ||x,+1 — xu|| = 0 and ||y,+1 — yn|| — 0 as n — oo. Indeed, utilizing the similar
argument to that of Step 2 in the proof of Theorem 1, we obtain the desired assertion.

Step 3. We prove ||x, — Gx,|| — 0 as n — oo. Indeed, utilizing the similar argument to that of
Step 3 in the proof of Theorem 1, we obtain the desired assertion.

Step 4. We prove || Tx, — x| — 0 and ||W,x, — x,|| = 0 as n — oo. Indeed, utilizing the similar
argument to that of Step 4 in the proof of Theorem 1, we obtain the desired assertion.

Step 5. We prove W : C — C enjoys the nonexpansivity, Fix(W) = 5., Fix(S,) and
limy, o0 |[Wx, — x| = 0 where Wx := lim,_,0 Wyx for all x € C. Indeed, utilizing the similar
argument to that of Step 5 in the proof of Theorem 1, we obtain the desired assertion.
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Step 6. We prove limsup,_, . (Ax*,x* —w,) < 0 and limsup, . (Ajx",x* —z,) < 0,
where {x*} = VI(VI(Q), A1), Ay). Indeed, utilizing the similar argument to that of Step 6 in the
proof of Theorem 1, we obtain the desired assertion.

Step 7. We prove x, — x* as n — oo. Indeed, utilizing the similar argument to that of Step 7 in
the proof of Theorem 1, we obtain the desired assertion.

This completes the entire proof. [

Corollary 2. Assume that yy is a real number in (0,2x), and yy is a real number in (0,2p). Let T =
1—/1—u(2y — ux?) € (0,1] for win (0, %7), and let {A, }_ be a real sequence in (0, b] for some b in
(0,1). Suppose that {an}, {Bn}, {¥vn} C (0,1] and {6, } C (0,2(] such that

() Yo otn = c0and limy e &y = 0;
(ii) &n < gV > 0 and limy e 2 = 0;
(iii) liminf, o By > 0and limsup,,_,  Bn < 1;
(iv) liminf, o yn > 0, limsup,, o vn < Land im, eo [Yni1 — u| = 0;
() limy_seo || Ty, — TMyy| = 0.
Let {x,}57 be a sequence defined by

Uy = (1 - 'Yn)wnun + YnXxn,
Xp1 = PnXn + (1 - ,BYI)PC(I - ’XVl.uAZ)Tanl'

Then we have

(a) {xn}5 is bounded;
(b)  limy_eo |[|xn — Uy || =0, limy oo || Xy — Txy|| = 0 and limy, 0 || X, — Waxy|| = 0;
() 1f el — o, {x,}

converges to a common fixed point of the asymptotically nonexpansive and nonexpansive mappings.

4. Concluding Remark

This paper discussed a monotone variational inequality problem with a variational inequality
constraint over the common solution set of a general system of variational inequalities and a common
fixed point of a countable family of nonexpansive mappings and an asymptotically nonexpansive
mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality,
and introduced some Mann-type implicit iteration methods for solving it. Norm convergence of the
proposed methods of the iteration methods is guaranteed under some suitable assumptions.
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