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Abstract: The aim of this paper is to solve a class of non-linear fractional variational problems
(NLFVPs) using the Ritz method and to perform a comparative study on the choice of different
polynomials in the method. The Ritz method has allowed many researchers to solve different
forms of fractional variational problems in recent years. The NLFVP is solved by applying the
Ritz method using different orthogonal polynomials. Further, the approximate solution is obtained
by solving a system of nonlinear algebraic equations. Error and convergence analysis of the discussed
method is also provided. Numerical simulations are performed on illustrative examples to test the
accuracy and applicability of the method. For comparison purposes, different polynomials such
as 1) Shifted Legendre polynomials, 2) Shifted Chebyshev polynomials of the first kind, 3) Shifted
Chebyshev polynomials of the third kind, 4) Shifted Chebyshev polynomials of the fourth kind,
and 5) Gegenbauer polynomials are considered to perform the numerical investigations in the test
examples. Further, the obtained results are presented in the form of tables and figures. The numerical
results are also compared with some known methods from the literature.

Keywords: non-linear fractional variational problems; orthogonal polynomials; Rayleigh-Ritz
method; error analysis; convergence analysis

1. Introduction

It is necessary to determine the maxima and minima of certain functionals in study problems
in analysis, mechanics, and geometry. These problems are known as variational problems in
calculus of variations. Variational problems have many applications in various fields like physics [1],
engineering [2], and areas in which energy principles are applicable [3–5].

Nowadays, fractional calculus is a very interesting branch of mathematics. Fractional calculus
has many real applications in science and engineering, such as fluid dynamics [6], biology [7],
chemistry [8], viscoelasticity [9,10], signal processing [11], bioengineering [12], control theory [13],
and physics [14]. Due to the importance of the fractional derivatives established through real-life
applications, several authors have considered problems in calculus of variations by replacing the
integer-order derivative with fractional orders in objective functionals, and this is thus known as
fractional calculus of variations. Some of these studies are of a fractionally damped system [15],
energy control for a fractional linear control system [16], a fractional model of a vibrating string [17],
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and an optimal control problem [18]. In this paper, our aim is to minimize non-linear fractional
variational problems (NLFVPs) [19] of the following form:

J(y) =
∫ 1

0

(
g(x)Dαy(x) + g′(x)I1−αy(x) + h′(x)

)2
dx (1)

under the constraints
y(0) = a, I1−αy(1) = ε, (2)

where g and h are two functions of class C1 with g(x) 6= 0 on [0, 1], α and ε are real numbers with
α ∈ (0, 1), and a is a constant.

The pioneer approach for solving the fractional variational problems originates in reference [20]
where Agrawal derived the formulation of the Euler-Langrage equation for fractional variational
problems. Further, in reference [4], he gave a general formulation for fractional variational problems.
In reference [5], the authors used an analytical algorithm based on the Adomian decomposition method
(ADM) for solving problems in calculus of variations. In [21,22], Legendre orthonormal polynomials
and Jacobi orthonormal polynomials, respectively, were used to obtain an approximate numerical
solution of fractional optimum control problems. In [23], the Haar wavelet method was used to obtain
numerical solution of these problems. Some other numerical methods for the approximate solution
of fractional variational problems are given in [24–34]. Recently, in [19], the authors gave a new class
of fractional variational problems and solved this using a decomposition formula based on Jacobi
polynomials. The operational matrix methods (see [35–41]) have been found to be useful for solving
problems in fractional calculus.

In present paper, we extend the Rayleigh-Ritz method together with operational matrices
of different orthogonal polynomials such as Shifted Legendre polynomials, Shifted Chebyshev
polynomials of the first kind, Shifted Chebyshev polynomials of the third kind, Shifted Chebyshev
polynomials of the fourth kind, and Gegenbauer polynomials to solve a special class of NLFVPs.
The Rayleigh-Ritz methods have been discussed by many researchers in the literature for different
kinds of variational problems, i.e., fractional optimal control problems [18,21,22,32,33]; here we cite only
few, and many more can be found in the literature. In this method, first we take a finite-dimensional
approximation of the unknown function. Further, using an operational matrix of integration and the
Rayleigh-Ritz method in the variational problem, we obtain a system of non-linear algebraic equations
whose solution gives an approximate solution for the non-linear variational problem. Error analysis
of the method for different orthogonal polynomials is given, and convergence of the approximate
numerical solution to the exact solution is shown. A comparative study using absolute error and
root-mean-square error tables for all five kinds of polynomials is analyzed. Numerical results are
discussed in terms of the different values of fractional order involved in the problem and are shown
through tables and figures.

2. Basic Preliminaries

The definition of fractional order integration in the Riemann-Liouville sense is defined as follows.

Definition 1. The Riemann-Liouville fractional order integral operator is given by

Iα f (x) =

 1
Γ(α)

x∫
0
(x− t)α−1 f (t)dt, α > 0, x > 0,

f (x), α = 0.
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The analytical form of the shifted Jacobi polynomial of degree i on [0, 1] is given as

Ψi(x) =
i

∑
k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
Γ(k + b + 1)Γ(i + a + b + 1)(i− k)!k!

xk (3)

where a and b are certain constants. Jacobi polynomials are orthogonal in the interval [0, 1] with respect
to the weight function w(a,b)(x) = (1− x)axb and have the orthogonality property

∫ 1

0
Ψn(x)Ψm(x)w(a,b)(x)dx = va,b

n δmn (4)

where δmn is the Kronecker delta function and

va,b
n =

Γ(n + a + 1)Γ(n + b + 1)
(2n + a + b + 1)n!Γ(n + a + b + 1)

. (5)

For certain values of the constants a and b, the Jacobi polynomials take the form of some
well-known polynomials, defined as follows.
Case 1: Legendre polynomials (S1) For a = 0, b = 0 in Equation (3), we get Legendre polynomials.

Ψi(x) =
i

∑
k=0

(−1)i−k Γ(i + 1)Γ(i + k + 1)
Γ(k + 1)Γ(i + 1)(i− k)!k!

xk (6)

Case 2: Chebyshev polynomials of the first kind (S2) For a = 1
2 , b = 1

2 in Equation (3), we get
Chebyshev polynomials of the first kind.

Ψi(x) =
i

∑
k=0

(−1)i−k Γ
(
i + 3

2
)
Γ(i + k + 2)

Γ
(
k + 3

2
)
Γ(i + 2)(i− k)!k!

xk (7)

Case 3: Chebyshev polynomials of the third kind (S3) For a = 1
2 , b = − 1

2 in Equation (3), we get
Chebyshev polynomials of the third kind.

Ψi(x) =
i

∑
k=0

(−1)i−k
Γ
(

i + 1
2

)
Γ(i + k + 1)

Γ
(

k + 1
2

)
Γ(i + 1)(i− k)!k!

xk (8)

Case 4: Chebyshev polynomials of the fourth kind (S4) For a = − 1
2 , b = 1

2 in Equation (3), we get
Chebyshev polynomials of the fourth kind.

Ψi(x) =
i

∑
k=0

(−1)i−k Γ
(
i + 3

2
)
Γ(i + k + 1)

Γ
(
k + 3

2
)
Γ(i + 1)(i− k)!k!

xk (9)

Case 5: Gegenbauer polynomials (S5) For a = b = a− 1
2 in Equation (3), we get Gegenbauer polynomials.

Ψi(x) =
i

∑
k=0

(−1)i−k
Γ
(

i + a + 1
2

)
Γ(i + k + 2a)

Γ
(

k + a + 1
2

)
Γ(i + 2a)(i− k)!k!

xk (10)

A function f ∈ L2[0, 1] with | f ′′ (t)| ≤ K can be expanded as

f (t) = lim
n→∞

n

∑
i=0

ciΨi(t), (11)

where ci = 〈 f (t), Ψi(t)〉 and 〈−,−〉 is the usual inner product space.
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Equation (11) for finite-dimensional approximation is written as

f ∼=
m

∑
i=0

ciΨi(t) = CTφm(t), (12)

where C and φm(t) are (m + 1) × 1 matrices given by C = [c0, c1, . . . , cm]
T and φm(t) =

[Ψ0, Ψ1, . . . , Ψm]
T .

Theorem 1. Let H be a Hilbert space and Z be a closed subspace of H with dim Z < ∞; let {z1, z2, . . . , zN} be
any basis for Z. Suppose that y is an arbitrary element in H and z0 is the unique best approximation to y out
of Z. Then

‖y− z0‖2
2 =

T(y; z1, z2, . . . , zN)

T(z1, z2, . . . , zN)
,

where

T(y; z1, z2, . . . , zN) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈y, y〉 〈y, Z1〉 · · · 〈y, ZN〉
〈Z1, ZN〉 〈Z1, Z1〉 · · · 〈Z1, ZN〉

· ·
... ·

· ·
... ·

· ·
... ·

〈ZN , y〉 〈ZN , Z1〉 · · · 〈ZN , ZN〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof . Please see references [42,43]. �

Theorem 2. Suppose that fN(x) is the Nth approximation of the function f ∈ L2
w(a, b) [0, 1], and suppose

SN( f ) =
∫ 1

0
[ f (x)− fN(x)]2w(a, b)(x)dx;

then we have
lim

N→∞
SN( f ) = 0.

Proof . Please see Appendix A. �

3. Operational Matrices

Theorem 3. Let φn = [Ψ0(x), Ψ1(x), . . . , Ψn(x)]T be a Shifted Jacobi vector and suppose v > 0; then

IvΨi(x) = I(v)φn(x)

where I(v) = (µ(i, j)) is an (n + 1)× (n + 1) operational matrix of the fractional integral of order v and its
(i, j)th entry is given by

µ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ(a+1)Γ(i+b+1)Γ(i+k+a+b+1)Γ(j+l+a+b+1)Γ(v+k+l+a+b+1)(2j+a+b+1)j!

(i−k)!(j−l)!(l)! Γ(k+b+1)Γ(i+a+b+1)Γ(v+k+1)Γ(j+a+1)Γ(l+b+1)Γ(k+l+v+a+b+1) . (13)

Proof . We refer to reference [44] for the proof. �
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Now, in particular cases, the operational matrix of integration for various polynomials is given
as follows.

For Shifted Legendre polynomials (S1), the (i, j)th entry of the operational matrix of integration is
given as

µ(i, j) =
i

∑
k=0

j

∑
l=0

(−1)i+j+k+l (i + k)!(j + l)!

(i− k)!(j− l)!(k)!(l!)2(α + k + l + 1)Γ(α + k + l)
. (14)

For Shifted Chebyshev polynomials of the first kind (S2), the (i, j)th entry of the operational
matrix of integration is given as:

µ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 3

2 )Γ(i+ 3
2 )Γ(i+k+2)Γ(j+l+2)Γ(α+k+l+ 3

2 )(2j+2)j!
(i−k)!(j−l)!(l)! Γ(k+ 3

2 )Γ(i+2)Γ(α+k+1)Γ(j+ 3
2 )Γ(l+ 3

2 )Γ(k+l+α+3)
. (15)

For Shifted Chebyshev polynomials of the third kind (S3), the (i, j)th entry of the operational
matrix of integration is given as

µ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 3

2 )Γ(i+ 1
2 )Γ(i+k+1)Γ(j+l+1)Γ(α+k+l+ 1

2 )(2j+1)j!
(i−k)!(j−l)!(l)! Γ(k+ 1

2 )Γ(i+1)Γ(α+k+1)Γ(j+ 3
2 )Γ(l+ 1

2 )Γ(k+l+α+2)
. (16)

For Shifted Chebyshev polynomials of the fourth kind (S4), the (i, j)th entry of the operational
matrix of integration is given as

µ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 1

2 )Γ(i+ 3
2 )Γ(i+k+1)Γ(j+l+1)Γ(α+k+l+ 3

2 )(2j+1)j!
(i−k)!(j−l)!(l)! Γ(k+ 3

2 )Γ(i+1)Γ(α+k+1)Γ(j+ 1
2 )Γ(l+ 3

2 )Γ(k+l+α+2)
. (17)

For Shifted Gegenbauer polynomials (S5), the (i, j)th entry of the operational matrix of integration
is given as

µ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ(i+a+ 1

2 )Γ(i+k+2a)Γ(j+l+2a)Γ(a+ 1
2 )Γ(α+k+l+a+ 1

2 )(2j+2a)j!
(i−k)!(j−l)!(l)! Γ(k+a+ 1

2 )Γ(i+2a)Γ(α+k+1)Γ(j+a+ 1
2 )Γ(l+a+ 1

2 )Γ(2a+k+l+α+1)
. (18)

4. Method of Solution

Approximating the unknown function in terms of orthogonal polynomials has been practiced in
several papers in recent years [18,21,22,32,33] for different types of problems. Here, for solving the
problem in Equation (1), we approximate

Dαy(x) = CTΦn(x). (19)

We are approximating the derivative first because we want to use the initial condition. Taking the
integral of order α on both sides of Equation (19), we get

y(x) = CT IαΦn(x) + y(0). (20)

Using the operational matrix of integration, Equation (20) can be written as
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y(x) ∼= CT I(α)Φn(x) + ATΦn(x) (21)

where y(0) = a ∼= ATΦn(x) and I(α) is the operational matrix of integration of order α.
Using Equation (19), we can write

I1−αy(x) = IDαy(x) = CT IΦn(x) ∼= CT I(1)Φn(x). (22)

Using Equations (19) and (22) in Equation (1), we obtain

J (c0, c1, . . . , cn) =
∫ 1

0

(
g(x)CTΦn(x) + g′(x)CT IΦn(x) + h′(x)

)2
dx. (23)

Equation (23) can then be written as

J (c0, c1, . . . , cn) =
∫ 1

0

(
CT g(x)Φn(x) + CT I(1)g′(x)Φn(x) + h′(x)

)2
dx. (24)

We further take the following approximations:

g(x)Φi(x) ∼= Ei,T
1 Φn(x) (25)

g′(x)Φi(x) ∼= Ei,T
2 Φn(x) (26)

h′(x) ∼= ET
3 Φn(x) (27)

where Ei,T
1 = [ei

1,0, ei
1,1, . . . , ei

1,n], Ei,T
2 = [ei

2,0, ei
2,1, . . . , ei

2,n], ET
3 = [e3,0, e3,1, . . . , e3,n], and

ei
1,j = 〈g(x)Φi(x), Ψj(x)〉, ei

2,j = 〈g′(x)Φi(x), Ψj(x)〉, e3,j = 〈h′(x), Ψj(x)〉, 0 ≤ i, j ≤ n, and 〈−,−〉 is
the usual inner product space.

Using Equations (25) and (26) we can write

g(x)Φn(x) ∼= ET
1 Φn(x) (28)

g′(x)Φn(x) ∼= ET
2 Φn(x) (29)

where
ET

1 =
(

Ei,T
1

)
0≤i≤n

and ET
2 =

(
Ei,T

2

)
0≤i≤n

. (30)

From Equations (24) and (27)–(29), we get

J (c0, c1, . . . , cn) =
∫ 1

0

(
CTET

1 Φn(x) + CT I(1)ET
2 Φn(x) + ET

3 Φn(x)
)2

dx. (31)

Let
ET = CT

(
ET

1 + I(1)ET
2

)
+ ET

3 . (32)

From Equations (31) and (32), we get

J (c0, c1, . . . , cn) =
∫ 1

0

(
ETΦn(x)

)2dx
=
∫ 1

0 ETΦn(x)Φn(x)TE dx,
= ET PE

(33)

where P is a square matrix given by P =
∫ 1

0 Φn(x)Φn(x)T dx.
Using Equation (22), the boundary condition can be written as

I1−αy(1) ∼= CT I(1)Φn(1) = ε. (34)
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Using the Lagrange multiplier method [18,20–22,32,33], the necessary extremal condition for the
functional in Equation (33) becomes

∂J
∂c0

= 0,
∂J
∂c1

= 0, . . . ,
∂J

∂cn−1
= 0. (35)

From Equations (34) and (35), we get a set of n + 1 equations. Solving these n + 1 equations, we
get unknown parameters c0, c1, . . . , cn. Using these unknown parameters in Equation (21), we get the
unknown function’s extreme values of the non-linear fractional functional.

5. Error Analysis

The upper bound of error for the operational matrix of fractional integration of a Jacobi polynomial
of the ith degree is given as

eα
i = I(α)Ψi(x)− IαΨi(x). (36)

From Equation (36), we can write

‖eα
i ‖2 =

∣∣∣∣∣∣∣∣IαΨi(x)−
n

∑
j=0

µ(i, j)Ψj(x)
∣∣∣∣∣∣∣∣

2
. (37)

Taking the integral operator of order α on both sides of Equation (3), we get

IαΨi(x) =
i

∑
k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
(i− k)! Γ(k + b + 1)Γ(i + a + b + 1)Γ(α + k + 1)

xα+k. (38)

From the construction of the operational matrix we can write

µ(i, j) =
i

∑
k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
(i− k)! Γ(k + b + 1)Γ(i + a + b + 1)Γ(α + k + 1)

cj,k, j = 0, 1, . . . , n. (39)

Using Theorem 1 we can write

∣∣∣∣∣
∣∣∣∣∣xα+k −

n

∑
j=0

cj,kΨj(x)

∣∣∣∣∣
∣∣∣∣∣
2

=

T
(

xα+k; Ψ0(x), Ψ1(x), . . . , Ψn(x)
)

T(Ψ0(x), Ψ1(x), . . . , Ψn(x))

2

. (40)

From Equations (37)–(39), we get

‖eα
i ‖2 =

∣∣∣∣∣
∣∣∣∣∣

i
∑

k=0
(−1)i−k Γ(i+b+1)Γ(i+k+a+b+1)

(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1) xα+k

−
n
∑

j=0

i
∑

k=0
(−1)i−k Γ(i+b+1)Γ(i+k+a+b+1)

(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1) cj,kΨj(x)

∣∣∣∣∣
∣∣∣∣∣
2

≤
i

∑
k=0

∣∣∣ Γ(i+b+1)Γ(i+k+a+b+1)
(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1)

∣∣∣ ∣∣∣∣∣
∣∣∣∣∣xα+k −

n
∑

j=0
cj,kΨj(x)

∣∣∣∣∣
∣∣∣∣∣
2

.

(41)

Using Equation (40) in Equation (41), we obtain the error bound for the operational matrix of
integration of an ith-degree polynomial, which is given as

‖eα
i ‖2

≤
i

∑
k=0

∣∣∣ Γ(i+b+1)Γ(i+k+a+b+1)
(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1)

∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n.

(42)



Mathematics 2019, 7, 224 8 of 24

Now, in particular cases, the error bounds for different orthogonal polynomials are given
as follows.
Case 1: For Legendre polynomials (S1) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣ Γ(i+1)Γ(i+k+1)
(i−k)! Γ(k+1)Γ(i+1)Γ(α+k+1)

∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
, i = 0, 1, 2, . . . , n. (43)

Case 2: For Chebyshev polynomials of the first kind (S2) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣∣ Γ(i+ 3
2 )Γ(i+k+2)

(i−k)! Γ(k+ 3
2 )Γ(i+2)Γ(α+k+1)

∣∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (44)

Case 3: For Chebyshev polynomials of the third kind (S3) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣∣ Γ(i+ 1
2 )Γ(i+k+1)

(i−k)! Γ(k+ 1
2 )Γ(i+1)Γ(α+k+1)

∣∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (45)

Case 4: For Chebyshev polynomials (S4) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣∣ Γ(i+ 3
2 )Γ(i+k1)

(i−k)! Γ(k+ 3
2 )Γ(i+1)Γ(α+k+1)

∣∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (46)

Case 5: For Gegenbauer polynomials (S5) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣ Γ(i+2)Γ(i+k+3)
(i−k)! Γ(k+2)Γ(i+3)Γ(α+k+1)

∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (47)

Let eα,w
I,n denote the error vector for the operational matrix of integration of order α obtained by

using (n + 1) orthogonal polynomials in L2
w[0, 1]; then

eα,w
I,n = I(α)Φn(x)− IαΦn(x). (48)

From Theorems 1 and 2 and from Equations (43)–(47), it is clear that as n→ ∞ the error vector in
Equation (48) tends to zero.

6. Convergence Analysis

A set of orthogonal polynomials on [0, 1] forms a basis for L2
w[0, 1]. Let Sn be the n-dimensional

subspace of L2
w[0, 1] generated by (Φi)0≤i≤n. Thus, every functional on Sn can be written as a linear

combination of orthogonal polynomials (Φi)0≤i≤n. The scalars in the linear combinations can be
chosen in such a way that the functional minimizes. Let the minimum value of a functional on space
Sn be denoted by mn. From the construction of Sn and mn, it is clear that Sn ⊂ Sn+1 and mn+1 ≥ mn.

Theorem 4. Consider the functional J, then

lim
n→∞

mn = m = in f︸︷︷︸
xεL2

w [0,1]

J[x].

Proof . Using Equation (48) in Equation (23), we have

J (c0, c1, . . . , cn) =
∫ 1

0

(
CT g(x)Φn(x) + CT I(1)g′(x)Φn(x) + CTe1

I,ng′(x) + h′(x)
)2

dx. (49)
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Taking n→ ∞ and using Equations (25)–(27) and (48) in Equation (49), we get

Je (c0, c1, . . . , cn) =
∫ 1

0

(
CT
(

n
∑

i=0
(Ei,T

1 Φn(x) + ew
Ei

1,n
)

)
+CT I(1)

(
n
∑

i=0

(
Ei,T

2 Φn(x) + ew
Ei

2,n

))
+ ET

3 Φn(x) + ew
E3,n

)2
dx

(50)

where
ew

Ei
1,n

= Ei,T
1 Φ(x)− Ei,T

1 Φn(x),

ew
Ei

2,n
= Ei,T

2 Φ(x)− Ei,T
2 Φn(x),

ew
E3,n = ET

3 Φ(x)− ET
3 Φn(x),

and Je is the error term of the functional.
Using Equations (30) and (32) in Equation (50), we get

Je (c0, c1, . . . , cn) =
∫ 1

0

(
ETΦn(x) + ew

n

)2
dx (51)

where

ew
n = CT

n

∑
i=0

ew
Ei

1,n + CT I(1)
n

∑
i=0

ew
Ei

2,n. (52)

Solving Equation (51) similarly to the original functional, Equation (51) reduces to the
following form:

Je (c0, c1, . . . , cn) = ET PE + ew
n (Je). (53)

Using Equation (48) in Equation (34), we get

CT I(1)Φn(1) + CTe1,w
I,n = ε. (54)

Similar to above, by using the Rayleigh-Ritz method on Equation (53) with the boundary condition
in Equation (54) we obtain the extreme value of the functional defined in Equation (53). Let this extreme
value be denoted by m∗n(t).

Now, from Equation (48), it is obvious that ew
Ei

1,n
, ew

Ei
2,n

, ew
E3,n → 0 as n→ ∞, which implies that

ew
n (Je)→ 0 as n→ ∞. So, it is clear that as n→ ∞ , the functional Je in Equation (53) comes close to the

functional J in Equation (23) and the boundary condition in Equation (54) comes close to Equation (34).
So, for large values of n,

m∗n(t)→ mn(t). (55)

From Theorem 4 and Equation (55), we conclude that

lim
n→∞

m∗n(t) = m(t).

Proof completed. �

7. Numerical Results and Discussions

In this section, we investigate the accuracy of the method by testing it on some numerical examples.
We apply the numerical algorithm to two test problems using different orthogonal polynomials as a
basis. The results for the test problems are shown through the figures and tables.
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Example 1. Consider a non-linear fractional variational problem as in Equation (1) with g(x) = h(x) = 1
1+xβ ;

we then have the following non-linear fractional variational problem [19]:

J (y) =
∫ 1

0

(
1

1 + xβ
Dαy(x)−

(
I1−αy(x) + 1

) βxβ−1(
1 + xβ

)2

)2

dx (56)

under the constraints
y(0) = 0, I1−αy(1) = ε.

The exact solution of the above equation is given as

yexact(x) =
(

1
2
(1 + ε)− 1

)(
Γ(β+ 2)

Γ(β+ α+ 1)
xβ+α +

1
Γ(α+ 1)

xα

)
+

Γ(β+ 1)
Γ(α+ β)

xβ+α−1.

We discuss this example for different values of α = 0.5, 0.6, 0.7, 0.8, 0.9, or 1, β = 5, and ε = 1.
In Figures 1–5, it is shown that the solutions for the two different values of α = 0.8 and α = 1

coincide with the exact solutions for different orthogonal polynomials at n = 5.
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In Figures 6–10, it is shown that the solution varies continuously for Shifted Legendre polynomials,
Shifted Chebyshev polynomials of the second kind, Shifted Chebyshev polynomials of the third
kind, Shifted Chebyshev polynomials of the fourth kind, and Gegenbauer polynomials, respectively,
with different values of fractional order.
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In Table 1, we have listed the maximum absolute errors (MAE) and root-mean-square errors
(RMSE) for Example 1 for the two different n values of 2 and 6.

Table 1. Result comparison of Example 1 for different orthogonal polynomials at different values of n.

Polynomials Maximum Absolute Errors Root-Mean-Square Errors

n = 2 n = 6 n = 2 n = 6

S1 1.4584 × 10−1 1.8326 × 10−7 1.3923 × 10−2 2.4900 × 10−8

S2 1.6154 × 10−1 4.2127 × 10−7 2.0960 × 10−2 7.1127 × 10−8

S3 2.2296 × 10−1 3.6897 × 10−7 1.3179 × 10−2 3.3726 × 10−8

S4 4.1764 × 10−1 1.0973 × 10−6 3.2039 × 10−2 1.7307 × 10−7

S5 1.9055 × 10−1 3.1593 × 10−7 2.2138 × 10−2 4.2368 × 10−8

In Table 1, we have compared results for different polynomials, and it is observed that the results
for Shifted Legendre polynomials and Gegenbauer polynomials are better than those for the other
polynomials. It is also observed that the MAE and RMSE decrease with increasing n.

Example 2. Consider a non-linear fractional variational problem as in Equation (1) with g(x) = h(x) = e−vx;
we then have the following non-linear fractional variational problem [19]:

J (y) =
∫ 1

0

(
e−vxDαy(x)− v

(
I1−αy(x) + 1

)
e−vx

)2
dx (57)

under the constraints
y(0) = 0, I1−αy(1) = ε.

The exact solution of the above equation is given as

yexact(x) =
(

e−1(1 + ε)− 1
)

v−α

(
∞

∑
k=0

(k + 1)
Γ(k + α + 1)

(vx)k+α

)
+ xα−1E1,α(vx)− xα−1

Γ(α)
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where Ea,b(x) is the Mittag-Leffler function of order a and b and is defined as

Ea,b(x) =
∞

∑
k=0

xk

Γ(ak + b)
.

We discuss Example 2 for different α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1 and ε = 2.
In Figures 11–15, it is shown that the solutions for the two different values of α = 0.8 and α = 1

coincide with the exact solutions for different orthogonal polynomials at n = 5.
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Figures 16–20 reflect that the approximate solution varies continuously for Shifted Legendre
polynomials, Shifted Chebyshev polynomials of the second kind, Shifted Chebyshev polynomials
of the third kind, Shifted Chebyshev polynomials of the fourth kind, and Gegenbauer polynomials,
respectively, with different values of fractional order.
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In Table 2, we have listed the maximum absolute errors (MAE) and root-mean-square errors
(RMSE) for Example 2 for the two n values 2 and 6.
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Table 2. Result comparison of Example 2 for different orthogonal polynomials at different values of n.

Polynomials Maximum Absolute Errors Root-Mean-Square Errors

n = 2 n = 6 n = 2 n = 6

S1 2.0407 × 10−2 1.4819 × 10−7 2.7038 × 10−3 1.5021 × 10−8

S2 2.4295 × 10−2 1.3713 × 10−2 3.1356 × 10−3 1.6490 × 10−3

S3 8.0010 × 10−2 4.8371 × 10−2 1.2590 × 10−2 8.3236 × 10−3

S4 1.1193 × 10−1 5.0558 × 10−2 9.8251 × 10−3 6.8594 × 10−3

S5 2.5349 × 10−2 1.9316 × 10−2 3.2343 × 10−3 2.4746 × 10−3

In Table 2, we have compared results for different polynomials, and it is observed that the results
for the Shifted Legendre polynomial are better than those for the other polynomials. It is also observed
that the MAE and RMSE decrease as n increases.

8. Conclusions

We extended the Ritz method [18,20–22,32,33] for solving a class of NLFVPs using different
orthogonal polynomials such as shifted Legendre polynomials, shifted Chebyshev polynomials of
the first kind, shifted Chebyshev polynomials of the third kind, shifted Chebyshev polynomials of
the fourth kind, and Gegenbauer polynomials. These polynomials were used to approximate the
unknown function in the NLFVP. The advantage of the method is that it converts the given NLFVPs
into a set of non-linear algebraic equations which are then solved numerically. The error bound of
the approximation method for NLFVP was established. It was also shown that the approximate
numerical solution converges to the exact solution as we increase the number of basis functions in
the approximation. At the end, numerical results were provided by applying the method to two
test examples, and it was observed that the results showed good agreement with the exact solution.
Numerical results obtained using different orthogonal polynomials were compared. A comparative
study showed that the shifted Legendre polynomials were more accurate in approximating the
numerical solution.
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Appendix A

Theorem A1. Let f : [0, 1]→ R be a function such that f ∈ C(N+1)[0, 1] and let fN(x) be the Nth
approximation of the function from P(a, b)

N (x) = span {Ψ0(x), Ψ1(x), . . . , ΨN(x)}; then [45]

‖ f (x)− fN(x)‖2
w(a, b) ≤

K
(N + 1)!

√
Γ(1 + a)Γ(3 + 2N + b)

Γ(4 + 2N + a + b)
,

where K = max︸︷︷︸
x∈[0,1]

∣∣∣ f (N+1)(x)
∣∣∣.

Proof . Since f ∈ C(N+1)[0, 1], the Taylor polynomial of f at x = 0, is given as

g1(x) = f (0) + f ′(0)x + · · ·+ f N(0)
xN

N!
.
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The upper bound of the error of the Taylor polynomial is given as

| f (x)− g1(x)| ≤ KxN+1

(N + 1)!
,

where K = max︸︷︷︸
x∈[0,1]

∣∣∣ f (N+1)(x)
∣∣∣.

Since fN(x) and g1(x) ∈ P(a, b)
N (x), we have

‖ f (x)− fN(x)‖2
w(a, b) ≤ ‖ f (x)− g1(x)‖2

w(a, b) ≤
(

K
(N+1)!

)2 ∫ 1
0 x2N+2+b(1− x)adx

=
(

K
(N+1)!

)2 Γ(1+a)Γ(3+2N+b)
Γ(4+2N+a+b) ,

‖ f (x)− fN(x)‖2
w(a, b) ≤ K

(N+1)!

√
Γ(1+a)Γ(3+2N+b)

Γ(4+2N+a+b) ,

which shows that lim
N→∞

‖ f (x)− fN(x)‖2
w(a, b) = 0. �
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