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Abstract: A preferential arrangement on [[n]] = {1, 2, . . . , n} is a ranking of the elements of [[n]] where
ties are allowed. The number of preferential arrangements on [[n]] is denoted by rn. The Delannoy
number D(m, n) is the number of lattice paths from (0, 0) to (m, n) in which only east (1, 0), north
(0, 1), and northeast (1, 1) steps are allowed. We establish a symmetric identity among the numbers
rn and D(p, q) by means of algebraic and combinatorial methods.
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1. Introduction

A preferential arrangement on [[n]] = {1, 2, . . . , n} is a ranking of the elements of [[n]] where ties
are allowed. We denote PA(n) as the set of all preferential arrangements on [[n]]. For example,

PA(3) =


1 > 2 > 3, 1 > 3 > 2, 2 > 1 > 3, 2 > 3 > 1, 3 > 1 > 2,
3 > 2 > 1, 1 = 2 > 3, 3 > 1 = 2, 1 = 3 > 2, 2 > 1 = 3,
2 = 3 > 1, 1 > 2 = 3, 1 = 2 = 3

 .

The number of PA(n) is denoted by rn. These numbers rn are also called the Fubini numbers [1],
the ordered Bell numbers [2] (Section 5.2), or surjection number [3] (p. 109). They count the number
of weak orderings on a set of n elements. The term “preferential arrangement” was first introduced
by Gross [4]. The explicit expression of rn is usually given by [5] (Equation (13))

rn =
n

∑
k=0

{
n
k

}
k!, (1)

where {n
k} is the Stirling numbers of the second kind. The recursive relation and the generating function

rn = δn +
n−1

∑
k=0

(
n
k

)
rk, r(z) =

1
2− ez

were first given by Cayley [6] in 1859. As a preferential arrangement is nothing else than a sequence of
non-empty sets, this directly gives the generating function SEQ(SET≥1(Z))= 1/(2− exp(z)), and this
also explains the recurrence and the link with Stirling numbers (see e.g., [3] (p. 109)). Accordingly,
this number rn has been given various interpretations and has also been connected to a number of
well-known combinatorial sequences [5,7–9].
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The Delannoy number D(m, n) is defined for nonnegative integers m and n by [1] (p. 81):

D(m, n) =

{
1, if m · n = 0,
D(m− 1, n) + D(m− 1, n− 1) + D(m, n− 1), if m · n 6= 0.

The explicit expression of D(m, n) and the generating function [1] are given by:

D(m, n) =
m

∑
k=0

(
m
k

)(
m + n− k

m

)
, ∑

m,n≥0
D(m, n)xmyn =

1
1− x− y− xy

.

The significances of these numbers are explained in [10,11]. Recently, Sun [12] and Liu, Li,
& Wang [13] investigated some congruences relations on them. Qi, Čerňanová, Shi, & Guo [14]
established several explicit expressions, including determinantal expressions. Moreover, Delannoy
numbers are related to some adic dynamical systems [15].

Based on some algebraic identities in Hoffman’s harmonic algebra, we obtained an interesting
identity which connects the numbers rn and D(m, n):

Main Theorem. For a pair of nonnegative integers n and m, we have:

m

∑
p=0

{
m
p

}
p!D(p, n) =

n

∑
q=0

[
n
q

]
(−1)n−q

n!
rm+q, (2)

where [nq] and {m
p} are the Stirling numbers of the first kind and the second kind, respectively.

Our paper is organized as follows. In Section 2, we present some algebraic preliminaries on
Hoffman’s harmonic algebras and provide the basic identity which we will use. In Section 3, we prove
the Main Theorem and also establish some more formulas. We introduce combinatorial viewpoints to
approach the Main Theorem in the last section.

2. Some Preliminaries on Harmonic Algebras

We summarize the algebraic setup introduced by Hoffman [16,17] as follows. Let us consider the
coding of multi-indices α = (α1, . . . , αr), where αi are positive integers and αr > 1, by words (that is,
by monomials in non-commutative variables) over the alphabet X = {x, y} by the rule

α 7→ xα = xyα1−1xyα2−1 · · · xyαr−1.

The weight (or the degree) |xα| := |α| coincides with the total degree of the monomial xα, whereas
the length (or the depth) l(xα) := l(α) is the degree with respect to the variable x.

Let Q〈X〉 = Q〈x, y〉 be the Q-algebra of polynomials in two non-commutative variables, which is
graded by the degree (where each of the variables x and y is assumed to be of degree 1); we identify
the algebra Q〈X〉 with the graded Q-vector space H spanned by the monomials in the variables x and
y ([16]).

We also introduce the graded Q-vector spaces H1 = Q1
⊕

xH and H0 = Q1
⊕

xHy, where 1
denotes the unit (the empty word of weight 0 and length 0) of the algebra Q〈X〉. Then, the space H1

can be regarded as the subalgebra of Q〈X〉 generated by the words zj = xyj−1.
Let us define a bilinear product ∗ (the stuffle product or harmonic product) on H1 by the rules

1 ∗ w = w ∗ 1 = w, (3)

for any word w, and
zju ∗ zkv = zj(u ∗ zkv) + zk(zju ∗ v) + zj+k(u ∗ v), (4)
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for any words u, v, any letters xi = x or y (i = 1, 2), and any generators zj, zk of the subalgebra H1,
and then extend the above rules to the whole subalgebra H1 by linearity. It is known that each of the
above products is commutative and associative. We denote the algebra (H1,+, ∗) by H1

∗, and we call it
a harmonic algebra (or Hoffman’s harmonic algebra). For our convenience, we let

zn · · · zn︸ ︷︷ ︸
k

= zk
n, zn ∗ zn ∗ · · · ∗ zn︸ ︷︷ ︸

k

= zk
∗n, and

(
k

α1, α2, . . . , αr

)
=

k!
α1!α2! · · · αr!

.

Lemma 1. Let n, k be positive integers. Then:

zk
∗n =

k

∑
r=1

∑
|α|=k

(
k

α1, α2, . . . , αr

)
znα1 znα2 · · · znαr , (5)

where α = (α1, α2, . . . , αr) is a r-tuple of positive integers.

Proof. We use an induction on k to prove Equation (5).

zk
∗n = zk−1

∗n ∗ zn

=
k−1

∑
r=1

∑
|α|=k−1

(
k− 1

α1, α2, . . . , αr

)
znα1 znα2 · · · znαr ∗ zn.

The above identity follows from the induction hypothesis. Since

znα1 · · · znαr ∗ zn

= znznα1 · · · znαr + znα1 znznα2 · · · znαr + · · ·+ znα1 · · · znαr zn

+zn(α1+1)znα2 · · · znαr + znα1 zn(α2+1)znα3 · · · znαr + · · ·+ znα1 · · · znαr−1 zn(αr+1),

we have:

zk
∗n =

k−1

∑
r=1

∑
|α|=k−1

(
k− 1

α1, α2, . . . , αr

)
(znznα1 · · · znαr + · · ·+ znα1 · · · znαr zn

+
(

zn(α1+1)znα2 · · · znαr + · · ·+ znα1 · · · znαr−1 zn(αr+1)

))
.

The former summand has r + 1 instances of zi and the latter summand has r instances of zi in
each summation. We rewrite the summation such that each summand has the same instances of zi.

zk
∗n = znk +

k−2

∑
r=1

 ∑
|α|=k−1

(
k− 1

α1, . . . , αr

)
(znznα1 · · · znαr + · · ·+ znα1 · · · znαr zn)

+ ∑
|α|=k−1

(
k− 1

α1, . . . , αr+1

)
(zn(α1+1) · · · znαr+1 + · · ·+ znα1 · · · zn(αr+1+1))

+ k! zk
n.
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We simplify the summation in the above identity as follows.

k−2

∑
r=1

 ∑
|α|=k

(
r+1

∑
i=1

(k− 1)!
α1! · · · αi−1!(αi − 1)!αi+1! · · · αr+1!

)
znα1 · · · znαr+1


=

k−2

∑
r=1

 ∑
|α|=k

(
k− 1

α1, . . . , αr+1

)
(α1 + · · ·+ αr+1)znα1 · · · znαr+1


=

k−2

∑
r=1

 ∑
|α|=k

(
k

α1, . . . , αr+1

)
znα1 · · · znαr+1

 .

Combining the first term znk and the last term k!zk
n, we get our conclusion.

We define a rational linear map: ζ : H0
∗ → R by ζ(1) = 1 and

ζ(zα1 zα2 · · · zαr ) = ζ(α1, α2, . . . , αr) := ∑
1≤k1<k2<···<kr

k−α1
1 k−α2

2 · · · k−αr
r ,

where ζ(α1, α2, . . . , αr) is the multiple zeta value (MZV) [18–20]. Since zα1 zα2 · · · zαr ∈ H0
∗,

we haveαr ≥ 2. Thus, this guarantees that ζ(α1, . . . , αr) is well-defined. Then, this map is an algebra
homomorphism [21]: ζ(w1 ∗w2) = ζ(w1)ζ(w2). If we apply this map to the result of the above lemma,
then we have the following identity:

ζ(n)k =
k

∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζ(nα1, . . . , nαr),

where n, k are positive integers and n ≥ 2. This result was recently proved in [22] (Theorem 1.3)
by another method. In fact, this result can be also obtained from [21] (Proposition 3) and [23]
(Proposition 4), and it is also true for n = 1, provided one uses stuffle-regularized MZVs.

It is worth noting that H1
∗ is isomorphic to the algebra QSym of quasi-symmetric functions, and

QSym has the algebra Sym of symmetric functions as a subalgebra [24]. The well-known identity

mk
1 = ∑

λ`k

(
k
λ

)
mλ

of symmetric functions (which follows from the multinomial theorem), where mλ is the monomial
symmetric function corresponding to the partition λ. We define a monomorphism Sym→ H1

∗ sending
m1 to zn. We could use this map to send the above identity to Equation (5).

We use the result in Lemma 1 to get some relations between Delannoy numbers and preferential
arrangements in the next section.

3. Preferential Arrangements and Delannoy Numbers

The definition of the stuffle product ∗ indicates that the stuffle product of two multiple zeta values
of depth m and n will produce D(m, n) numbers of multiple zeta values ([25]). We will give another
proof using a combinatorial approach in the next section.

The Delannoy number D(m, n) can be viewed as the number of lattice paths from (0, 0) to (m, n)
in which only east (1, 0), north (0, 1), and northeast (1, 1) steps are allowed. The lattice paths described
here are called Delannoy paths which give an alternative characterization of the stuffle product.

By counting the number of multiple zeta values in Equation (5) produced from the stuffle product,
we obtain the following interesting identity which connects rn and D(m, n).
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Proposition 1. For a pair of nonnegative integers n and k, we have

rn+k =
k

∑
p=0

n

∑
q=0

{
k
p

}{
n
q

}
p!q!D(p, q). (6)

where {m
p} are the Stirling numbers of the second kind.

Proof. There are
k

∑
r=1

∑
|α|=k
αi≥1

(
k

α1, α2, . . . , αr

)

terms in the right-hand side of Equation (5). Since ∑ |α|=k
αi≥0

( k
α1,...,αr

) = rk, we have

∑
|α|=k
αi≥1

(
k
α

)
= ∑
|α|=k
αi≥1

(
k

α1, α2, . . . , αr

)
=

r

∑
j=1

(−1)r−j
(

r
j

)
jk

by the inclusion–exclusion principle. By [26] (Equation (6.19)),

r

∑
j=1

(−1)r−j
(

r
j

)
jk = r!

{
k
r

}
,

we can write the above number as

∑
|α|=k
αi≥1

(
k
α

)
= r!

{
k
r

}
. (7)

For 1 ≤ ` < k,

k

∑
r=1

∑
|α|=k

(
k
α

)
znα1 znα2 · · · znαr

= zk
∗n = z`∗n ∗ zk−`

∗n

=
`

∑
p=1

∑
|β|=`

(
`

β

)
znβ1 znβ2 · · · znβp ∗

k−`
∑
q=1

∑
|λ|=k−`

(
k− `

λ

)
znλ1 znλ2 · · · znλq

=
`

∑
p=1

∑
|β|=`

k−`
∑
q=1

∑
|λ|=k−`

(
`

β

)(
k− `

λ

)
znβ1 znβ2 · · · znβp ∗ znλ1 znλ2 · · · znλq .

Since the stuffle product of two MZVs of depth p and q produces D(p, q) numbers of MZVs,
we count the numbers of MZVs in the above identity, and then we have:

k

∑
r=1

∑
|α|=k
αi≥1

(
k
α

)
=

`

∑
p=1

∑
|β|=`
βi≥1

k−`
∑
q=1

∑
|λ|=k−`

λi≥1

(
`

β

)(
k− `

λ

)
D(p, q).

Combining Equations (1) and (7) and the special values of the Stirling numbers of the second
kind at zeros, i.e., {n

0} = 0 whenever n > 0, we conclude the following result:

rn+k =
k

∑
p=0

n

∑
q=0

{
k
p

}{
n
q

}
p!q!D(p, q).

This completes our proof.



Mathematics 2019, 7, 238 6 of 9

Our Main Theorem is just the Stirling inversion applied to Equation (6).

Main Theorem. For a pair of nonnegative integers n and m, we have:

m

∑
p=0

{
m
p

}
p!D(p, n) =

n

∑
q=0

[
n
q

]
(−1)n−q

n!
rm+q,

where [nq] and {m
p} are the Stirling numbers of the first kind and the second kind, respectively.

Proof. For any pair of sequences, fn and gn, if they are related by

gn =
n

∑
k=0

{
n
k

}
fk,

then, they have an inversion formula given by [26]

fn =
n

∑
k=0

[
n
k

]
(−1)n−kgk. (8)

We apply this inversion formula to Equation (6) with gq = rm+q, fq = ∑m
p=0 {

m
p}p!q!D(p, q). Then,

we have:
m

∑
p=0

{
m
p

}
p!D(p, n) =

n

∑
q=0

[
n
q

]
(−1)n−q

n!
rm+q.

This completes our proof.

Applying the inversion formula Equation (8) again to the above identity, we have

(−1)n+mn!m!D(n, m) =
n

∑
p=0

m

∑
q=0

[
n
p

][
m
q

]
(−1)p+qrp+q. (9)

If we set k = 0 in Equation (6), we get the original formula, Equation (1). Moreover, if we set
k = 1 in Equation (6) and use the fact D(1, n) = 2n + 1, then we have the following identity (see [5]
(Equation (29))):

rn+1 =
n

∑
q=0

{
n
q

}
q!(2q + 1) =

n

∑
q=0

{
n
q

}
q!(2(q + 1)− 1) = 2sn − rn,

where the number sn is defined by:

sn =
n

∑
q=0

{
n
q

}
(q + 1)!

called "barred preferential arrangements of n elements", introduced by Pippenger [5]. sn is the number
of ways of ranking [[n]], with ties allowed, and with a "bar" that may be placed above all the elements
of [[n]], between two equivalence classes of tied members, or below all the members. Some relations
between sn and rn were derived in [5] [Equations (24), (28), and (29)].

4. Combinatorial Approach

In this section, we give a combinatorial approach to prove Proposition 1. First, we connect
monomials zk1 zk2 · · · zk` in H1

∗ to a preferential arrangement.

Proposition 2. For positive integers n1, . . . , nk, the product zn1 ∗ zn2 ∗ · · · ∗ znk is a sum of rk monomials,
including {k

p}p! monomials of length p for 1 ≤ p ≤ k.
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Proof. We associate any monomials zk1 zk2 · · · zk` in the product zn1 ∗ zn2 ∗ · · · ∗ znk to a preferential
arrangement on [[k]] as follows. If the factor zni appears before the factor znj in a monomial, then it
means that i > j. If the factor zni+nj appears in a monomial, then it means that i = j. For example,
the monomial zn2 zn1+n4 zn3 means that the preferential arrangement is 2 > 1 = 4 > 3.

From the stuffle product rule in Equation (4) we know that if u, v are any possible words,

znj u ∗ zn`v = znj(u ∗ zn`v) + zn`(znj u ∗ v) + znj+n`(u ∗ v).

The corresponding result gives us all situations of Candidate j and Candidate ` if we rank j and
`: the term znj(u ∗ zn`v) means j > `, the term zn`(znj u ∗ v) means ` > j, and the term znj+n`(u ∗ v)
means j = `. By mathematical induction, one can assert the following result: The product of zn1 ∗ zn2 ∗
· · · ∗ znk produces a sum of monomials, with each monomial corresponding to a possible preferential
arrangement in [[k]]. That is to say, we can regard zn1 ∗ zn2 ∗ · · · ∗ znk as ranking the elements 1, 2, . . . , k
where ties are allowed.

Therefore, the product zn1 ∗ zn2 ∗ · · · ∗ znk is a sum of rk monomials, including {k
p}p! monomials

of length p for 1 ≤ p ≤ k (see Equation (1)).

Secondly, we connect a monomial in a stuffle product to a Delannoy path.

Proposition 3. If u, v are monomials in H1 of lengths n and m respectively, then u ∗ v is a sum of
D(n, m) monomials.

Proof. We write the monomials u and v in H1 as:

u = za1 za2 · · · zan , v = zb1 zb2 · · · zbm .

We associate any monomial zk1 zk2 · · · zk` in the product u ∗ v to a Delannoy path from (0, 0) to
(n, m) as follows. If zki

= zaj , then we move from the standing point to the next point by the direction
(1, 0). If zki

= zbj
, then we move from the standing point to the next point by the direction (0, 1).

If zki
= zaj+b` , then we move from the standing point to the next point by the direction (1, 1). The path

begins at the point (0, 0), then it follows the directions corresponding to zk1 , zk2 , . . ., zk` .
From the stuffle product rule in Equation (4), we know that

za1 za2 · · · zan ∗ zb1 zb2 · · · zbm = za1(za2 · · · zan ∗ zb1 zb2 · · · zbm)

+zb1(za1 za2 · · · zan ∗ zb2 · · · zbm) + za1+b1(za2 · · · zan ∗ zb2 · · · zbm).

This indicates that there are three possible directions beginning from the point (0, 0) to the
next point. The first term begins with za1 , i.e., we move to the next point (1, 0); the second term begins
with zb1 , i.e., we move to the next point (0, 1); or the third term begins with za1+b1 , i.e., we move to the
next point (1, 1). Since the number of the remaining points are less than (n + 1)(m + 1), we use the
induction hypothesis to conclude the following result.

The product of za1 za2 · · · zan ∗ zb1 zb2 · · · zbm produces a sum of monomials, where each monomial
corresponds to a possible Delannoy path from (0, 0) to (n, m). Hence, the number of the monomials
is D(n, m).

Now we give another proof of the Proposition 1. Consider the following product

za1 ∗ za2 ∗ · · · ∗ zan ∗ zb1 ∗ zb2 ∗ · · · ∗ zbk
.

By Proposition 2 there are rn+k monomials in this product. Also, the factor za1 ∗ za2 ∗ · · · ∗ zan has
{n

p}p! monomials of length p for 1 ≤ p ≤ n, and the factor zb1 ∗ zb2 ∗ · · · ∗ zbk
has {k

q}q! monomials of
length q for 1 ≤ q ≤ k.
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By Proposition 3 the product u ∗ v is a sum of D(p, q) monomials, where the monomial u is from
the product za1 ∗ za2 ∗ · · · ∗ zan with length p, and the monomial v is from the product zb1 ∗ zb2 ∗ · · · ∗ zbk

with length q. Thus, we have
k

∑
p=0

n

∑
q=0

{
k
p

}{
n
q

}
p!q!D(p, q)

monomials. By combining these two results, we have the desired identity.
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