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Abstract: In this paper, the split variational inclusion problem (SVIP) and the system of equilibrium
problems (EP) are considered in Hilbert spaces. Inspired by the works of Byrne et al., López et al.,
Moudafi and Thukur, Sobumt and Plubtieng, Sitthithakerngkiet et al. and Eslamian and Fakhri,
a new self-adaptive step size algorithm is proposed to find a common element of the solution set of
the problems SVIP and EP. Convergence theorems are established under suitable conditions for the
algorithm and application to the common solution of the fixed point problem, and the split convex
optimization problem is considered. Finally, the performances and computational experiments are
presented and a comparison with the related algorithms is provided to illustrate the efficiency and
applicability of our new algorithms.

Keywords: equilibrium problem; split variational inclusion problem; convex minimization problem;
self-adaptive step size
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1. Introduction

Let φ : C× C → R be a bifunction, where C is a nonempty closed convex subset of a real Hilbert
space H and R is the set of real numbers. The equilibrium problem (EP) for φ is as follows:

Find a point x∗ ∈ C such that φ(x∗, y) ≥ 0 for all y ∈ C. (1)

The problem (EP) (1) represents a very suitable and common format for investigation and
solution of various applied problems and involves many other general problems in nonlinear
analysis, such as complementarity, fixed point, and variational inequality problems. A wide range
of problems in finance, physics, network analysis, economics, and optimizations can be reduced
to find the solution of the problem (1) (see, for instance, Blum and Oetti [1], Flam and Antipin [2],
Moudafi [3], and Bnouhachem et al. [4]). Moreover, many authors have studied the methods and
algorithms to approximate a solution of the problem (1), for instance, descent algorithms in Konnov
and Ali [5], Konnov and Pinyagina [6], Charitha [7], and Lorenzo et al. [8]. For more details, refer to
Ceng [9], Yao et al. [10–12], Qin et al. [13,14], Hung and Muu [15], Quoc et al. [16], Santos et al. [17],
Thuy et al. [18], Rockafellar [19], Moudafi [20,21], Muu and Otelli [22], and Dong et al. [23].
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On the other hand, many real-world inverse problems can be cast into the framework of the split
inverse problem (SIP), which is formulated as follows:

Find a point x∗ ∈ X that solves the problem IP1

and such that the point
y∗ = Ax∗ ∈ Y solves the problem IP2,

where IP1 and IP2 are two inverse problems, X and Y are two vector spaces and A : X → Y is a
linear operator.

Realistic problems can be represented by making different choices of the spaces X and Y
(including the case X = Y) and by choosing appropriate inverse problems for the problems IP1
and IP2. In particular, the well-known split convex feasibility problem (SCFP) (Censor and Elfving [24]) is
illustrated as follows:

Find a point x∗ such that x∗ ∈ C and Ax∗ ∈ Q, (2)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces H1 and H2, respectively,
and A is a bounded and linear operator from H1 to H2. The problem SCFP (2) has received important
attention due to its applications in signal processing, image reconstruction, with particular progress in
intensity modulated radiation therapy, compressed sensing, approximating theory, and control theory
(see, for example, [25–32] and the references therein).

Initiated by the problem SCFP, several split type problems have been investigated and studied,
for example, split variational inequality problems, split common fixed point problems, and split null
point problems. Especially, Moudafi [33] introduced the split monotone variational inclusion problem
(SMVIP) for two operators f1 : H1 → H1 and f2 : H2 → H2 and multi-valued maximal monotone
mappings B1,B2 as follows:

Find a point x∗ ∈ H1 such that 0 ∈ f1(x∗) + B1(x∗) (3)

and

y∗ = Ax∗ ∈ H2 such that 0 ∈ f2(y∗) + B2(y∗). (4)

If f1 = f2 = 0 in the problem SMVIPs (3) and (4), the problem SMVIP reduces to the following
split variational inclusion problem (SVIP):

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗) (5)

and

y∗ = Ax∗ ∈ H2 such that 0 ∈ B2(y∗). (6)

The problem SVIPs (5) and (6) constituted a pair of variational inclusion problems which have to
be solved so that the image y∗ = Ax∗ under a given bounded linear operator A of the solution of the
problem SVIP (5) in H1 is the solution of the other SVIP (6) in another Hilbert space H2. Indeed, one can
see that x∗ ∈ B−1

1 (0) and y∗ = Ax∗ ∈ B−1
2 (0). The SVIPs (5) and (6) is at the core of modeling many

inverse problems arising from phase retrieval and other real-world problems, for instance, in sensor
networks in computerized tomography and data compression (see, for example, [34–36]).

In the process of studying equilibrium problems and split inverse problems, not only techniques
and methods for solving the respective problems have been proposed (see, for example, CQ-algorithm
in Byrne [37,38], relaxed CQ-algorithm in Yang [39] and Gibali et al. [40], self-adaptive algorithm
in López et al. [41], Moudafi and Thukur [42], and Gibali [43]), but also the common solution of
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equilibrium problems, split inverse problems, and other problems have been considered in many works
(see, for example, Plubtieng and Sombut [44] considered the common solution of equilibrium problems
and nonspreading mappings; Sobumt and Plubtieng [45] studied a common solution of equilibrium
problems and split feasibility problems in Hilbert spaces; Sitthithakerngkiet et al. [46] investigated
a common solution of split monotone variational inclusion problems and fixed points problem of
nonlinear operators; Eslamian and Fakhri [47] considered split equality monotone variational inclusion
problems and fixed point problem of set-valued operators; Censor and Segal [48], Plubtieng and
Sriprad [49] explored split common fixed point problems for directed operators). In particular,
some applications to mathematical models for studying a common solution of convex optimizations
and compressed sensing whose constraints can be presented as equilibrium problems and split
variational inclusion problems, which stimulated our research on this kind of problem.

Motivated by the above works, we consider the following split variational inclusion problem and
equilibrium problem:

Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear operator. Let B1 : H1 →
2H1 and B2 : H2 → 2H2 be two set-valued mappings with nonempty values and φ : C× C → R be a
bifunction, where C is nonempty closed convex subset of H1.

The split monotone variational inclusion and equilibrium problem (SMVIEP) is as follows:

Find a point x∗ ∈ EP(φ) ∩ B−1
1 (0) (7)

such that

y∗ = Ax∗ ∈ B−1
2 (0), (8)

where EP(φ) denotes the solution set of the problem EP.
Combined with techniques of Byrne et al., López et al., Moudafi and Thukur, Sitthithakerngkiet

et al. as well as of Sobumt and Plubtieng and Eslamian and Fakhri, the purpose of this paper is to
introduce a new iterative method which is called a new self-adaptive step size algorithm for solving the
problem SMVIEPs (7) and (8) in Hilbert spaces.

The outline of the paper is as follows: In Section 2, we collect definitions and results which are
needed for our further analysis. In Section 3, our new self-adaptive step size algorithms are introduced
and analyzed, the weak and strong convergence theorems for the proposed algorithms are obtained,
respectively, under suitable conditions. Moreover, as applications, the existence of a fixed point of a
pseudo contractive mapping and a solution of the split convex optimization problem is considered
in Section 4. Finally, the numerical examples and a comparison with some related algorithms are
presented to illustrate the performances of our new algorithms.

2. Preliminaries

Now, we recall some concepts and results which are needed in the sequel.
Let H be a Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖ and I be the

identity operator on H. Let Fix(T) denote the fixed point set of an operator T if T has fixed point.
The symbols “→ ” and “ ⇀ ” represent the strong and the weak convergence, respectively. For any
sequence {xn} ⊂ H, ww(xn) denotes the weak w-limit set of {xn}, that is,

ww(xn) := {x ∈ H : xnj ⇀ x for some subsequence {nj} of {n}}. (9)

The following properties of the norm in a Hilbert space H are well known:

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2

−αβ‖x− y‖2 − βγ‖y− z‖2 − γα‖x− z‖2 (10)
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for all x, y, z ∈ H and α, β, γ ≥ 0. Moreover, the following inequality holds: for all x, y ∈ H,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 (11)

Let C be a closed convex subset of H. For all x ∈ H, there exists a unique nearest point in C,
denote PCx, such that

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}. (12)

The operator PC is called the metric projection of H onto C. Some properties of the operator PC are
as follows: for all x, y ∈ H,

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (13)

and, for all x ∈ H and y ∈ C,

〈x− PCx, y− PCx〉 ≤ 0. (14)

Definition 1. Let H be a real Hilbert space and D be a subset of H. For all x, y ∈ D, an operator h : D → H
is said to be:

(1) firmly nonexpansive on D if

〈h(x)− h(y), x− y〉 ≥ ‖h(x)− h(y)‖2. (15)

(2) Lipschitz continuous with constant κ > 0 on D if

‖h(x)− h(y)‖ ≤ κ‖x− y‖. (16)

(3) nonexpansive on D if

‖h(x)− h(y)‖ ≤ ‖x− y‖. (17)

(4) hemicontinuous if it is continuous along each line segment in D.
(5) averaged if there exist a nonexpansive operator T : D → H and a number c ∈ (0, 1) such that

h = (1− c)I + cT. (18)

Remark 1. The following can be easily obtained:

(1) An operator h is firmly nonexpansive if and only if I − h is firmly nonexpansive (see [50], Lemma 2.3),
then h is nonexpansive.

(2) If h1 and h2 are averaged, then their composition S = h1 ◦ h2 is averaged (see [50], Lemma 2.2).

Definition 2. Let H be a real Hilbert space and λ > 0. The operator B : H → 2H is said to be:

(1) monotone if, for all u ∈ B(x) and v ∈ B(y),

〈u− v, x− y〉 ≥ 0. (19)

(2) maximal monotone if the graph Graph(B) of B,

Graph(B) := {(x, u) ∈ H × H : u ∈ B(x)}, (20)

is not properly contained in the graph of any other monotone mapping.
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(3) The resolvent of B with parameter λ > 0 is denoted by

JB
λ := (I + λB)−1, (21)

where I is the identity operator.

Remark 2. For any λ > 0, the following hold:

(1) B is maximal monotone if and only if JB
λ is single-valued, firmly nonexpansive, and dom(JB

λ ) = H,
where dom(B) := {x ∈ H : B(x) 6= ∅}.

(2) x∗ ∈ B−1(0) if and only if x∗ = JB
λ x∗.

(3) The solution set Ω of the problem SVIPs (5) and (6) is equivalent to the following:

Find a point x∗ ∈ H1 with x∗ = JB1
λ x∗ such that y∗ = Ax∗ ∈ H2 and y∗ = JB2

λ y∗. (22)

(4) For some more results, refer to [33,36,51].

Assume that an equilibrium bifunction φ : C× C → R satisfies the following conditions:

(A1) φ(x, x) = 0 for all x ∈ C;
(A2) φ(x, y) + φ(y, x) ≤ 0 for all x, y ∈ C;
(A3) For all x, y, z ∈ C, limt→0 φ(tz + (1− t)x, y) ≤ φ(x, y) for all x ∈ C;
(A4) For all x ∈ C, y→ φ(x, y) is convex and lower semi-continuous.

Lemma 1. (see [2]) Let C be a nonempty closed convex subset of a Hilbert space H and suppose that φ :
C× C → R satisfies the conditions (A1)–(A4). For all r > 0 and x ∈ H, define a mapping Tr : H → C by

Tr(x) = {z ∈ C : φ(z, y) +
1
r
〈y− z, z− x〉 ≥ 0}. (23)

Then the following hold:

(1) Tr is nonempty single-valued.
(2) Tr is firmly nonexpansive, that is, for all x, y ∈ C,

〈Trx− Try, x− y〉 ≥ ‖Trx− Try‖2

and, further, Tr is nonexpansive.
(3) EP(φ) = Fix(Tr) is closed and convex.

Lemma 2. (see [26,52]) Assume that {an} is a sequence of nonnegative real numbers such that, for each n ≥ 0,

an+1 ≤ (1− θn)an + δn, (24)

where {θn} is a sequence in (0, 1) and {δn} is a sequence such that

(a) limn→∞ θn = 0 and Σ∞
n=1θn = ∞;

(b) lim supn→∞
δn
θn
≤ 0 or Σ∞

n=1|δn| < ∞.

Then the limit of the sequence {an} exists and limn→∞ an = 0.

Lemma 3. (see [53]) Assume that {an} and {δn} are the sequences of nonnegative numbers such that, for each
n ≥ 0,

an+1 ≤ an + δn. (25)

If lim supn→∞ δn ≤ ∞ and {an} has a subsequence converging to zero, then limn→∞ an = 0.
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Lemma 4. (see [52]) Let {Γn} be a sequence of real numbers that does not decrease at infinity, in the sense
that there exists a subsequence {Γnj} of {Γn} such that Γnj < Γnj+1 for each j ≥ 0. Also, consider the sequence
{σ(n)}n≥n0 of integers defined by

σ(n) = max{k ≤ n : Γk ≤ Γk+1}. (26)

Then {σ(n)}n≥n0 is a nondecreasing sequence satisfying limn→∞ σ(n) = ∞ and, for each n ≥ n0,

max{Γσ(n), Γn} ≤ Γσ(n)+1. (27)

Lemma 5. (see [54]) Let C be a nonempty closed convex subset of a real Hilbert space H. If T : C → C is
nonexpansive and Fix(T) 6= ∅, then the mapping I − T is demiclosed at 0, that is, if {xn} is a sequence in C
converges weakly to x∗ and ‖xn − Txn‖ → 0, then x∗ = Tx∗.

3. The Main Results

In this section, we introduce our algorithms and state our main results.
Throughout this paper, we always assume that H1 and H2 are Hilbert spaces, C is a nonempty

closed convex subset of H1, the bifunction φ : C × C → R satisfies the conditions (A1)–(A4), A :
H1 → H2 is a bounded linear operator, A∗ denotes the conjugate transpose of A (in finite dimensional
spaces, A∗ = AT). Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two maximal monotone operators.

Now, we define the functions by

f (x) =
1
2
‖(I − JB2

λ )Ax‖2, g(x) =
1
2
‖(I − JB1

λ )x‖2, (28)

and

F(x) = A∗(I − JB2
λ )Ax, G(x) = (I − JB1

λ )x, (29)

where JB
λ = (I + λB)−1 for any λ > 0.

From Aubin [55], one can see that f and g are weakly lower semi-continuous and
convex differentiable. Moreover, it is known that the functions F and G are Lipschitz continuous
according to Beryne et al. [36]. Denote the solution of the problem SVIPs (5) and (6) by

Ω = {x∗ ∈ H1 : 0 ∈ B1(x∗), 0 ∈ B2(Ax∗)}. (30)

3.1. Iterative Algorithms

Now, we introduce the following 3 algorithms for our main results:

Algorithm 1. Choose a positive sequence {ρn} satisfying ε < ρn < 4− ε for some ε > 0 small enough. Select
arbitrary starting point x0, set n = 0 and let r > 0, λ > 0.

Iterative Step: For any iterate xn for each n ≥ 0, compute

φ(zn, y) +
1
r
〈y− zn, zn − xn〉 ≥ 0,

yn = βnxn + (1− βn)zn,

γn =


ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 , ‖F(yn)‖2 + ‖G(yn)‖2 6= 0,

0, otherwise,
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and calculate the next iterate as

xn+1 = αnxn + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ )A)yn, (31)

where {αn} and {βn} are the sequences in (0, 1).
Stop Criterion: If xn+1 = xn = yn, then stop. Otherwise, set n := n + 1 and return to Iterative Step.

Algorithm 2. Choose a positive sequence {ρn} satisfying ε < ρn < 4− ε (for some ε > 0 small enough).
Select arbitrary starting point x0, set n = 0 and let r > 0, λ > 0.

Iterative Step: For any iterate xn for each n ≥ 0, compute

φ(zn, y) +
1
r
〈y− zn, zn − xn〉 ≥ 0,

yn = βnxn + (1− βn)zn,

γn =


ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 , ‖F(yn)‖2 + ‖G(yn)‖2 6= 0,

0, otherwise,

and calculate the next iterate as

xn+1 = αnx0 + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ )A)yn, (32)

where {αn} and {βn} are the sequences in (0, 1).
Stop Criterion: If xn+1 = xn = yn, then stop. Otherwise, set n := n + 1 and return to Iterative Step.

Algorithm 3. Choose a positive sequence {ρn} satisfying ε < ρn < 4− ε (for some ε > 0 small enough).
Select arbitrary starting point x0, set n = 0 and let r > 0, λ > 0.

Iterative Step: For any iterate xn for each n ≥ 0, compute

φ(zn, y) +
1
r
〈y− zn, zn − xn〉 ≥ 0,

yn = βnxn + (1− βn)zn,

γn =


ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 , ‖F(yn)‖2 + ‖G(yn)‖2 6= 0,

0, otherwise,

and calculate the next iterate as

xn+1 = (1− αn − τn)xn + αn JB1
λ (I − γn A∗(I − JB2

λ )A)yn, (33)

where {αn}, {βn} and τn are the sequences in (0, 1) with αn + τn ≤ 1.
Stop Criterion: If xn+1 = xn = yn, then stop. Otherwise, set n := n + 1 and return to Iterative Step.

3.2. Weak Convergence Analysis for Algorithm 1

First, we give one lemma for our main result.

Lemma 6. Suppose that EP(φ) ∩Ω 6= ∅. If xn+1 = yn = xn in Algorithm 1, then xn ∈ EP(φ) ∩Ω.

Proof. Denote Tr(xn) = {zn ∈ C, φ(zn, y) + 1
r 〈y− zn, zn − xn〉 ≥ 0}. Then we can see zn = Trxn.
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If xn = yn, then it follows from the construction of yn that xn = zn and hence xn ∈ Fix(Tr), that is,
xn ∈ EP(φ) from Lemma 1.

On the other hand, the operator JB1
λ and I − γn A∗(I − JB2

λ )A are averaged from Remark 1.
Since Ω 6= ∅, it follows from Lemma 2.1 of [51], with the averaged operators JB1

λ and I − γn A∗(I −
JB2
λ )A, that

Fix(JB1
λ )

⋂
Fix(I − γn A∗(I − JB2

λ )A) = Fix(JB1
λ (I − γn A∗(I − JB2

λ )A))

= Fix((I − γn A∗(I − JB2
λ )A)JB1

λ ). (34)

If xn+1 = yn = xn, then we can see xn = JB1
λ (I − γn A∗(I − JB2

λ )A)xn from the recursion (31) and
hence xn ∈ Fix(JB1

λ ) and xn ∈ Fix(I − γn A∗(I − JB2
λ )A), that is, xn ∈ B−1

1 (0) and

(I − γn A∗(I − JB2
λ )A)xn = xn =⇒ A∗(I − JB2

λ )Axn = 0. (35)

It can be written as JB2
λ Axn = Axn + w, where A∗w = 0. Without loss generality, if we take z ∈ Ω,

then JB2
λ Az = Az and JB2

λ Axn − JB2
λ Az = Axn + w− Az and so

‖Axn − Az‖2 ≥ ‖JB2
λ (Axn)− JB2

λ (Az)‖2

= ‖Axn + w− Az‖2

= ‖Axn − Az‖2 + 2〈Axn − Az, w〉+ ‖w‖2

= ‖Axn − Az‖2 + 2〈xn − z, A∗w〉+ ‖w‖2

= ‖Axn − Az‖2 + ‖w‖2, (36)

which means that ‖w‖ = 0 and so JB2
λ Axn = Axn, that is, Axn ∈ B−1

2 (0). Hence xn ∈ Ω and,
furthermore, xn ∈ EP(φ)

⋂
Ω. This completes the proof.

Theorem 1. Let H1, H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let φ be a
bifunction satisfying the conditions (A1)–(A4). Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal
monotone mappings with EP(φ)

⋂
Ω 6= ∅. Then the sequence {xn} generated by Algorithm 1 converges weakly

to an element of EP(φ)
⋂

Ω, where the parameters {αn}, {βn} are in (0, 1) and satisfy the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1|βn − βn−1| < ∞, Σ∞

n=1|αn − αn−1| < ∞.

Proof. Denote Tn = I − γn A∗(I − JB2
λ )A. Since JB2

λ is firmly nonexpansive according to Remark 2,
Tn is averaged from (1), (2) of Remark 1 and JB1

λ (I − γn A∗(I − JB2
λ )A) is averaged and nonexpansive.

First, we show that the sequences {xn} and {yn} are bounded. Since EP(φ)
⋂

Ω 6= ∅, we take
z ∈ EP(φ)

⋂
Ω and then z = Tr(z), z = JB1

λ z and Az = JB2
λ Az. At the same time, it follows that

zn = Trxn and Tr is nonexpansive according to Lemma 1 and so

‖yn − z‖ ≤ βn‖xn − z‖+ (1− βn)‖zn − z‖
≤ ‖xn − z‖ (37)

and

‖xn+1 − z‖ = ‖αnxn + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ )A)yn − z‖
≤ αn‖xn − z‖+ (1− αn)‖yn − z‖
≤ ‖xn − z‖, (38)
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which means that the sequence {xn} is bounded and so are {yn}, {zn} and {un}, where zn = Trxn and
un = Tnyn.

Next, we show ‖xn+1 − xn‖ → 0. Since zn = Trxn, we have zn−1 = Trxn−1 and, for all y ∈ C,

φ(zn, y) +
1
r
〈y− zn, zn − xn〉 ≥ 0 (39)

and

φ(zn−1, y) +
1
r
〈y− zn−1, zn−1 − xn−1〉 ≥ 0. (40)

Putting y = zn−1 in (39) and y = zn in (40), we have

φ(zn, zn−1) +
1
r
〈zn−1 − zn, zn − xn〉 ≥ 0 (41)

and

φ(zn−1, zn) +
1
r
〈zn − zn−1, zn−1 − xn−1〉 ≥ 0. (42)

Adding the inequalities (41) and (42), since φ is monotone from (A2), we have

φ(zn, zn−1) + φ(zn−1, zn) ≤ 0⇒ 〈zn − zn−1, zn−1 − xn−1 − (zn − xn)〉 ≥ 0, (43)

which implies that

〈zn − zn−1, zn−1 − zn〉+ 〈zn − zn−1, xn − xn−1〉 ≥ 0, (44)

that is,
〈zn − zn−1, xn − xn−1〉 ≥ ‖zn − zn−1‖2.

Furthermore, we have ‖zn − zn−1‖ ≤ ‖xn − xn−1‖. According to the definition of the iterative
sequence {yn}, we have

‖yn − yn−1‖ = ‖βnxn + (1− βn)zn − βn−1xn−1 + (1− βn−1)zn−1‖
= ‖βn(xn − xn−1) + (1− βn)(zn − zn−1) + (βn − βn−1)(xn−1 − zn−1)‖
≤ βn‖xn − xn−1‖+ (1− βn)‖zn − zn−1‖+ |βn − βn−1|{‖xn−1‖+ ‖zn−1‖}
≤ ‖xn − xn−1‖+ |βn − βn−1|{‖xn−1‖+ ‖zn−1‖} (45)

and, since un = Tnyn, we have

‖un − un−1‖ = ‖yn − γnF(yn)− yn−1 + γn−1F(yn−1)‖
= ‖yn − yn−1‖+ γn‖F(yn)‖+ γn−1‖F(yn−1)‖
≤ ‖xn − xn−1‖+ |βn − βn−1|{‖xn−1‖+ ‖zn−1‖}

+γn‖F(yn)‖+ γn−1‖F(yn−1)‖. (46)

On the other hand, we have

〈F(yn), yn − z〉 = 〈A∗(I − JB2
λ )Ayn, yn − z〉

= 〈(I − JB2
λ )Ayn − (I − JB2

λ )Az, Ayn − Az〉

≥ ‖(I − JB2
λ )Ayn‖2

= 2 f (yn). (47)
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Since JB1
λ is nonexpansive, we have

‖xn+1 − z‖2 = ‖αn(xn − z) + (1− αn)(JB1
λ (I − γn A∗(I − JB2

λ )A)yn − z)‖2

≤ αn‖xn − z‖2 + (1− αn)[‖yn − z‖2 + γ2
n‖F(yn)‖2 − 2γn〈F(yn), yn − z〉]

≤ αn‖xn − z‖2 + (1− αn)[‖yn − z‖2 + γ2
n‖F(yn)‖2 − 4γn f (yn)]

≤ ‖xn − z‖2 − ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) ( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 . (48)

For any ε > 0 small enough, the sequence {xn} is Fejer monotone with respect to EP(φ) ∩Ω,
which ensures the existence of the limit of {‖xn − z‖} and so we can denote l(z) = limn→∞ ‖xn − z‖.
Thus it follows from (48) that

ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) (h(yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 → 0 (49)

since F and G are Lipschitz continuous from Byrne [36] and so F(yn) and G(yn) are bounded.
In addition, it also follows (48) that

Σ∞
n=1

( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 < ∞, (50)

which means that

Σ∞
n=1γn < ∞ (51)

and hence it follows that f (yn)→ 0 and g(yn)→ 0 if and only if f (yn) + g(yn)→ 0 as n→ ∞.
Thus it follows from the above inequalities that

‖xn+1 − xn‖ ≤ αn‖xn − xn−1‖+ (1− αn)‖un − un−1‖+ |αn − αn−1|‖xn−1 − un−1‖
≤ αn‖xn − xn−1‖+ (1− αn)(‖xn − xn−1‖+ θn) + |αn − αn−1|‖xn−1 − un−1‖
≤ ‖xn − xn−1‖+ (1− αn)θn + |αn − αn−1|‖xn−1 − un−1‖, (52)

where θn = |βn− βn−1|{‖xn−1‖+ ‖zn−1‖}+γn‖F(yn)‖+γn−1‖F(yn−1)‖ and Σ∞
n=1θn < ∞. Note that

it follows from the conditions of αn and βn, combining the formula (51), that the limit of ‖xn+1 − xn‖
exists from Lemma 3. Since the limit of ‖xn − z‖ exists, there exists a subsequence {xnk − z} of the
sequence {xn − z} converges to a point and xnk+1 − xnk → 0. Thus it follows that ‖xn+1 − xn‖ → 0
from Lemma 3. Further, ‖zn − xn‖ → 0 because of xn+1 − xn = (1 − αn)(1 − βn)(zn − xn) and
‖xn − yn‖ = (1− βn)‖xn − zn‖ → 0.

Next, we show x∗ ∈ EP(φ)
⋂

Ω, where x∗ is a weak cluster of the sequence {xn}. Note that {xn}
is bounded and so there exists a point x∗ ∈ C such that xn ⇀ x∗ and so yn ⇀ x∗ and zn ⇀ x∗. Also,
since zn = Trxn and ‖zn − xn‖ = ‖Trxn − xn‖ → 0, we can see that x∗ ∈ Fix(Tr) from Lemma 5,
which implies that x∗ ∈ EP(φ) according to Lemma 1.

On the other hand, according to the lower semi-continuity of f and g, it follows from the
formula (48) and the lower semi-continuities of f and g that

0 ≤ f (x∗) ≤ lim
k→∞

inf f (ynk ) = lim
n→∞

f (yn) = 0 (53)

and

0 ≤ g(x∗) ≤ lim
k→∞

inf g(ynl ) = lim
n→∞

g(yn) = 0, (54)
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that is,

f (x∗) =
1
2
‖(I − JB2

λ )Ax∗‖ = 0, g(x∗) =
1
2
‖(I − JB1

λ )x∗‖ = 0 (55)

and so we can have Ax∗ ∈ B−1
2 (0) and x∗ ∈ B−1

1 (0) from Remark 2. Therefore, x∗ ∈ EP(φ)
⋂

Ω.
This completes the proof.

Remark 3. If the operators B1 and B2 are set-valued, odd and maximal monotone mappings, then the operator
JB1
λ (I − γn(I − JB2

λ )A) is asymptotically regular (see Theorem 4.1 in [56] and Theorem 5 in [57]) and odd.
Consequently, the strong convergence of Algorithm 1 is obtained (for the similar proof, see Theorem 1.1 in [58],
Theorem 4.3 in [36]).

Remark 4. If we take γn ≡ γ, where γ ∈
(
0, 2

L
)

is a constant which depends on the norm of the operator A,
then the conclusion of Theorem 1 also holds.

3.3. Strong Convergence Analysis for Algorithms 2 and 3

Theorem 2. Let H1, H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let φ be a
bifunction satisfying the conditions (A1)–(A4). Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal
monotone mappings with EP(φ)

⋂
Ω 6= ∅. If the sequence {αn} in (0, 1) satisfies the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1αn = ∞,

then the sequence {xn} generated by Algorithm 2 converges strongly to a point z = PEP(φ)
⋂

Ωx0.

Proof. First, we show that the sequence {xn} and {yn} are bounded. Denote

un = JB1
λ (I − γn A∗(I − JB2

λ )A)yn

and take p ∈ EP(φ)
⋂

Ω, as in the proof of Theorem 1, we can see ‖yn − p‖ ≤ ‖xn − p‖ and

‖xn+1 − p‖ = ‖αnx0 + (1− αn)un − p‖
≤ αn‖x0 − p‖+ (1− αn)‖xn − p‖
≤ max{‖x0 − p‖, ‖xn − p‖}, (56)

which implies that the sequence {xn} is bounded and so is the sequence {yn}.
Next, we show limn→∞ sup〈x0 − z, xn − z〉 ≤ 0, where z = PEP(φ)∩Ωx0. Indeed, there exists a

subsequence {xnk} of {xn} such that

lim
n→∞

sup〈x0 − z, xn − z〉 = lim
k→∞
〈x0 − z, xnk − z〉. (57)

Since {xnk} converges weakly to x∗ because {xn} is bounded, according to (11), we can see that

lim
n→∞

sup〈x0 − z, xn − z〉 = lim
k→∞
〈x0 − z, xnk − z〉 = 〈x0 − z, x∗ − z〉 ≤ 0. (58)
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Now, we show xn → z. As in the proof of Theorem 1, the operator JB1
λ (I − γn A∗(I − JB2

λ )A) is
averaged and then nonexpansive. Thus it follows from (2) that

‖xn+1 − z‖2 = ‖αn(x0 − z) + (1− αn)(un − z)‖2

≤ (1− αn)
2‖un − z‖2 + 2αn〈x0 − z, xn+1 − z〉

≤ (1− 2αn)‖un − z‖2 + 2αn〈x0 − z, xn+1 − z〉+ α2
n‖un − z‖2

≤ (1− 2αn)‖xn − z‖2 + θn, (59)

where θn = 2αn〈x0 − z, xn+1 − z〉+ α2
n‖un − z‖2. It is easy to see that limn→∞

θn
αn
≤ 0 and hence we

have ‖xn − z‖ → 0 from Lemma 2 and (59), which means that the sequence {xn} converges strongly
to z. This completes the proof.

For the following strong convergence theorem of Algorithm 3, now, we recall the minimum-norm
element of EP(φ)

⋂
Ω, which is a solution of the following problem:

argmin{‖x‖ : x solves the problem EP (1) and the problem SVIPs (5) and (6)} (60)

Theorem 3. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let φ

be a bifunction satisfying the conditions (A1)–(A4). Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2

are maximal monotone mappings with EP(φ)
⋂

Ω 6= ∅. If the sequences {αn}, {βn}, {τn} in (0, 1) with
αn + τn ≤ 1 satisfy the following conditions:

lim
n→∞

τn = 0, inf(1− αn − τn)αn > 0, Σ∞
n=1τn = ∞,

then the sequences {xn} and {yn} generated by Algorithm 3 converge strongly to a point z = PEP(φ)∩Ω(0),
the minimum-norm element of EP(φ)

⋂
Ω.

Proof. We show several steps to prove the result.
Step 1. We show that the sequences {xn} and {yn} are bounded. Since EP(φ)

⋂
Ω is not

empty, take a point p ∈ EP(φ)
⋂

Ω. Since the operator JB1
λ (I − γn A∗(I − JB2

λ )A) is nonexpansive
and ‖yn − p‖ ≤ ‖xn − p‖, we have

‖xn+1 − p‖ = ‖(1− αn − τn)xn + αn JB1
λ (I − γn A∗(I − JB2

λ )A)yn − p‖
≤ (1− αn − τn)‖xn − p‖+ αn‖yn − p‖+ τn‖p‖
≤ (1− τn)‖yn − p‖+ τn‖p‖
≤ (1− τn)‖xn − p‖+ τn‖p‖
≤ max{‖xn − p‖, ‖p‖}, (61)

which implies that {xn} is bounded and so is {yn}.
Step 2. We show that ‖xn+1 − xn‖ → 0 and xn → z, where z = PEP(φ)

⋂
Ω(0), the minimum-norm

element of EP(φ)
⋂

Ω. To this end, we denote

un = JB1
λ (I − γn A∗(I − JB2

λ )A)yn.

For a point z = PEP(φ)∩Ω(0), similarly as in the proof of Theorem 1, we have

‖un − z‖2 ≤ ‖yn − z‖2 − ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) ( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 , (62)
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which means, for any ε > 0 small enough, that

‖un − z‖ ≤ ‖yn − z‖. (63)

Setting vn = (1− αn)xn + αnun, we have xn − vn = αn(xn − un) and so xn+1 = (1− τn)vn −
τnαn(xn − un),

‖vn − z‖ = ‖(1− αn)xn + αnun − z‖
≤ (1− αn)‖xn − z‖+ αn‖un − z‖
≤ ‖xn − z‖ (64)

and

‖xn+1 − xn‖ = ‖(1− αn − τn)xn + αnun − xn‖
= ‖αn(un − xn)− τnxn‖
≤ αn‖un − xn‖+ τn‖xn‖. (65)

Moreover, it follows from (64) that

‖xn+1 − z‖2 = ‖(1− τn)vn − τnαn(xn − un)− z‖2

= ‖(1− τn)(vn − z)− τnαn(xn − un)− τnz‖2

≤ (1− τn)
2‖vn − z‖2 − 2〈τnαn(xn − un) + τnz, xn+1 − z〉

≤ (1− τn)
2‖xn − z‖2 − 2τnαn〈xn − un, xn+1 − z〉+ 2τn〈−z, xn+1 − z〉. (66)

On the other hand, since ‖yn − z‖ ≤ ‖xn − z‖, it follows from (10), (33), and (59) that

‖xn+1 − z‖2

= ‖(1− αn − τn)xn + αnun − z‖2

= ‖(1− αn − τn)(xn − z) + αn(un − z) + τn(−z)‖2

≤ (1− αn − τn)‖xn − z‖2 + αn‖un − z‖2 + τn‖z‖2 − (1− αn − τn)αn‖un − xn‖2

≤ (1− αn − τn)‖xn − z‖2 + αn

[
‖yn − z‖2 − ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) ( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2

]
+τn‖z‖2 − (1− αn − τn)αn‖un − xn‖2

≤ (1− τn)‖xn − z‖2 − ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) αn( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 + τn‖z‖2

−(1− αn − τn)αn‖un − xn‖2

= ‖xn − z‖2 + τn(‖z‖2 − ‖xn − z‖2)− ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) αn( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2

−(1− αn − τn)αn‖un − xn‖2, (67)

which implies that

ρn

( 4 f (yn)

f (yn) + g(yn)
− ρn

) αn( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 + (1− αn − τn)αn‖un − xn‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + τn(‖z‖2 − ‖xn − z‖2). (68)

Now, we consider two possible cases for the convergence of the sequence {‖xn − z‖2)}.
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Case I. Assume that {‖xn − z‖} is not increasing, that is, there exists n0 ≥ 0 such that, for each
n ≥ n0, ‖xn+1 − z‖ ≤ ‖xn − z‖. Therefore, the limit of limn→∞ ‖xn − z‖ exists and

lim
n→∞

(‖xn+1 − z‖ − ‖xn − z‖) = 0.

Since limn→∞ τn = 0, it follows from (68) that

ρn(
4 f (yn)

f (yn) + g(yn)
− ρn)

αn( f (yn) + g(yn))2

‖F(yn)‖2 + ‖G(yn)‖2 → 0, (1− αn − γn)αn‖un − xn‖2 → 0.

Note that
lim inf

n→∞
(1− αn − τn)αn > 0

and F and G are Lipschitz continuous and, for any ε > 0 small enough, we obtain

lim
n→∞

( f (yn) + g(yn))
2 = 0, lim

n→∞
‖un − xn‖2 = 0 (69)

and so f (yn) → 0, g(yn) → 0 and ‖un − xn‖ → 0 as n → ∞. Therefore, it follows from (65) that
‖xn+1 − xn‖ → 0. From (11) and (33), (66), we have

‖xn+1 − z‖2 = ‖(1− αn − τn)xn + αnun − z‖2

= ‖(1− τn)(xn − z) + αn(xn − un)− τnz‖2

≤ (1− τn)
2‖xn − z‖2 + 2τnαn〈xn − un, xn+1 − z〉+ 2τn〈−z, xn+1 − z〉

≤ (1− τn)‖xn − z‖2 + 2τn[αn〈xn − un, xn+1 − z〉+ 〈−z, xn+1 − z〉]. (70)

Since {xn} is bounded, as in the proof of Theorem 1, the sequence {xn} converges weakly to a
point x∗ ∈ EP(φ)

⋂
Ω and the following inequality holds from the property (12):

lim
n→∞

sup〈xn+1 − z,−z〉 = max
x∗∈ww(xn)

〈x∗ − z,−z〉 ≤ 0. (71)

Since τn → 0, Σ∞
n=1τn = ∞ by using Lemma 2 to the formula (70) and so we can deduce that

‖xn − z‖ → 0, that is, the sequence {xn} converges strongly to z. Furthermore, it follows from the
property of the metric projection that, for all p ∈ EP(φ)

⋂
Ω,

〈p− z,−z〉 ≤ 0⇐⇒ ‖z‖2 ≤ ‖z‖‖p‖ =⇒ ‖z‖ ≤ ‖p‖, (72)

which implies that z is the minimum-norm solution of the system of the problem EP (1) and the
problem SVIPs (5) and (6).

Case II. If the sequence {‖xn − z‖2} is increasing, then it is easy to see that ‖un − xn‖ → 0
from (68) because of τn → 0 and so, from (65), we can get ‖xn+1 − xn‖ → 0.

Without loss generality, we assume that there exists a subsequence {‖xnk − z‖} of the sequence
{‖xn − z‖} such that ‖xnk − z‖ ≤ ‖xnk+1 − z‖ for each k ≥ 1. In this case, if we define an indicator

σ(n) = max{m ≤ n : ‖xm − z‖ ≤ ‖xm+1 − z‖}, (73)
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then σ(n)→ ∞ as n→ ∞ and ‖xσ(n) − z‖2 ≤ ‖xσ(n)+1 − z‖2 and so, from (68), it follows that

τσ(n)(‖z‖2 − ‖xσ(n) − z‖2)

≥ ‖xσ(n) − z‖2 − ‖xσ(n)+1 − z‖2 + τσ(n)(‖z‖2 − ‖xσ(n) − z‖2)

≥ ρσ(n)

( 4 f (yσ(n))

f (yσ(n)) + g(yσ(n))
− ρσ(n)

)ασ(n)( f (yσ(n)) + g(yσ(n))))
2

‖F(yσ(n))‖2 + ‖G(yσ(n)‖2

+(1− ασ(n) − τσ(n))ασ(n)‖uσ(n) − yσ(n)‖2. (74)

Since τσ(n) → 0 as n→ ∞, similarly as in the proof in Case I, we get

lim
n→∞

( f (yσ(n)) + g(yσ(n)))
2 = 0,

lim
n→∞

ασ(n)‖uσ(n) − xσ(n)‖2 = 0, (75)

lim
n→∞

sup〈xσ(n)+1 − z,−z〉 = max
z̃∈ww(xσ(n))

〈z̃− z,−z〉 ≤ 0 (76)

and

‖xσ(n)+1 − z‖2 ≤ (1− τσ(n))‖xσ(n) − z‖2

+2τσ(n)[ασ(n)〈xσ(n) − uσ(n), xσ(n)+1 − z〉+ 〈−z, xσ(n)+1 − z〉] (77)

and so

‖xσ(n) − z‖2 ≤ 2ασ(n)〈xσ(n) − uσ(n), xσ(n)+1 − z〉+ 2〈−z, xσ(n)+1 − z〉. (78)

Combining (75) and (76) yields

lim
n→∞

sup ‖xσ(n) − z‖2 = 0 (79)

and hence

lim
n→∞

‖xσ(n) − z‖2 = 0. (80)

From (77), we can see that

lim
n→∞

sup ‖xσ(n)+1 − z‖2 = lim
n→∞

sup ‖xσ(n) − z‖2 = 0. (81)

Thus limn→∞ ‖xσ(n)+1 − z‖2 = 0. Therefore, according to Lemma 4, we have

0 ≤ ‖xn − z‖2 ≤ max{‖xσ(n) − z‖2, ‖xn − z‖2} ≤ ‖xσ(n)+1 − z‖2 → 0, (82)

which implies that the sequence {xn} converges strongly to z, the minimum-norm element of
EP(φ)

⋂
Ω. This completes the proof.

Corollary 1. Let H1, H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let φ be a
bifunction satisfying the conditions (A1)–(A4). Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal
monotone mappings with EP(φ)

⋂
Ω 6= ∅. If the sequence {αn} in (0, 1) satisfies the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1αn = ∞
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and, for any u ∈ H1, the sequence {xn} is generated by the following iterations:
φ(zn, y) + 1

r 〈y− zn, zn − xn〉 ≥ 0,

yn = βnxn + (1− βn)zn,

xn+1 = αnu + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ )A)yn,

where γn is defined as the above algorithms, then the sequence {xn} converges strongly to a point z = PEP(φ)∩Ωu.

Remark 5. If the bifunction φ(x, y) = 〈Bx, y − x〉 ≥ 0, then the problem EP (1) is equivalent to the
following problem:

Find a point x∗ ∈ C such that 〈Bx∗, y− x∗〉 ≥ 0 for all y ∈ C,

where B : C → H is a nonlinear operator. It is a well-known classical variational inequality problem and,
clearly, we can obtain a common solution of the variational inequality problem and the split variational inclusion
problem via the above algorithms.

Remark 6. If the bifunction φ(x, y) = 0, B1 = I − U, B2 = I − T, C and Q are N-dimensional and
M-dimensional Euclidean spaces, respectively, then the proposed problem in this present paper reduces to the
split common fixed point problem of Censor and Segal [48], where U and T are direct operators.

4. Applications to Fixed Points and Split Convex Optimization Problems

In this section, we consider the fixed point problem and the split convex optimization problem.
A mapping T : D(T) → H is called pseudo-contractive if the following inequality holds: for any

x, y ∈ D(T) ⊂ H,

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2. (83)

It is well known that pseudo-contraction mappings includes nonexpansive mappings and
B = I − T is monotone mapping. The following lemma is very useful for obtaining the fixed point of
the pseudo-contractive mapping.

Lemma 7. (see [2]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be a
continuous pseudo-contractive mapping and define a mapping Tr as follows: for any x ∈ H and r ∈ (0, ∞),

Tr(x) =
{

z ∈ C : 〈y− z, Tz〉 − 1
r
〈y− z, (1 + r)z− x〉 ≤ 0, ∀y ∈ C

}
. (84)

Then the following hold:

(1) Tr is a single-valued mapping.
(2) Tr is a nonexpansive mapping.
(3) Fix(Tr) = Fix(T) is closed and convex.

If h and l are two proper, convex and lower semi-continuous functions, define ∂h ⊂ C× C (: the
subdifferential mapping of h) as follows:

∂h(x) = {z ∈ C : h(x) + 〈y− x, z〉 ≤ h(y), ∀y ∈ C}. (85)

From Rockafellar [59], ∂h is a maximal monotone mapping. The split convex optimization problem is
illustrated as follows:

Find a point x∗ ∈ H1 such that 0 ∈ ∂h(x∗) and 0 ∈ ∂l(Ax∗).
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Denote the solution set of the split convex optimization problem by

Ω = {x∗ ∈ H1 : 0 ∈ ∂h(x∗), 0 ∈ ∂l(Ax∗)}.

Now, we show the existence of a common element of the fixed point set of a pseudo-contractive
mapping and the solution set of the split convex minimization problem as follows:

Theorem 4. Let H1, H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let T be
a pseudo-contractive mapping. Assume that h : H1 → R and l : H2 → R are two proper, convex and lower
semi-continuous functions such that ∂h and ∂l are maximal monotone mappings with Fix(T)

⋂
Ω 6= ∅. If the

sequences {αn}, {βn} in (0, 1) satisfy the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1|βn − βn−1| < ∞, Σ∞

n=1|αn − αn−1| < ∞

and, for any λ > 0 and r > 0, the sequence {xn} is generated by the following iterations:
〈y− zn, Tzn〉 − 1

r 〈y− zn, (1 + r)zn − xn〉 ≤ 0,

yn = βnxn + (1− βn)zn,

xn+1 = αnxn + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ )A)yn,

where γn is defined as in Algorithm 1, then the sequence {xn} converges weakly to an element of Fix(T)
⋂

Ω.

Proof. Take φ(x, y) = 〈(I− T)x, y− x〉, then 〈y− zn, Tzn〉− 1
r 〈y− zn, (1+ r)zn− xn〉 ≤ 0 is equivalent

to φ(zn, y) + 1
r 〈y− zn, zn − xn〉 ≥ 0. Thus, according to Theorem 1, the conclusion follows.

Theorem 5. Let H1, H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let T be
a pseudo-contractive mapping. Assume that h : H1 → R and l : H2 → R are two proper, convex and lower
semi-continuous functions such that ∂h and ∂l are maximal monotone mappings with Fix(T)

⋂
Ω 6= ∅. If the

sequence {αn} in (0, 1) satisfies the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1αn = ∞

and, for any x0 ∈ H1, the sequence {xn} is generated by the following iterations:
〈y− zn, Tzn〉 − 1

r 〈y− zn, (1 + r)zn − xn〉 ≤ 0,

yn = βnxn + (1− βn)zn,

xn+1 = αnx0 + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ )A)yn,

where γn is defined as in Algorithm 2, then the sequence {xn} converges strongly to a point z = PFix(T)∩Ωx0.

Theorem 6. Let H1, H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let T be
a pseudo-contractive mapping. Assume that h : H1 → R and l : H2 → R are two proper, convex and lower
semi-continuous functions such that ∂h and ∂l are maximal monotone mappings with Fix(T)

⋂
Ω 6= ∅. If the

sequence {αn} in (0, 1) satisfies the following conditions:

lim
n→∞

τn = 0, inf(1− αn − τn)αn > 0, Σ∞
n=1τn = ∞ (86)



Mathematics 2019, 7, 255 18 of 25

and, for any λ > 0 and r > 0, the sequence {xn} is generated by the following iterations:
〈y− zn, Tzn〉 − 1

r 〈y− zn, (1 + r)zn − xn〉 ≤ 0,

yn = βnxn + (1− βn)zn,

xn+1 = (1− αn − τn)xn + αn JB1
λ (I − γn A∗(I − JB2

λ )A)yn,

where γn is defined as in Algorithm 3, then the sequence {xn} converges strongly to a point z = PFix(T)∩Ω(0).

5. Numerical Examples

In this section, we present some examples to illustrate the applicability, efficiency and stability
of our self-adaptive step size iterative algorithms. We have written all the codes in Matlab R2016b
(MathWorks, Natick, MA, USA) and are preformed on a LG dual core personal computer (LG Display,
Seoul, Korea).

5.1. Numerical Behavior of Algorithm 1

Example 1. Let H1 = H2 = R and define the operators A, B1, and B2 on real line R by Ax = 3x, B1x =

2x, B2x = 4x for all x ∈ R, the bifunction φ by φ(x, y) = −3x2 + xy + 2y2 and set the parameters on
Algorithm 1 by ρn = 3− 1

n+1 , αn = 1
n+1 , βn = 1

(n+1)2 for each n ≥ 1. It is clear that

Σ∞
n=1|αn − αn−1| < ∞, Σ∞

n=1|βn − βn−1| < ∞, EP(φ)
⋂

Ω = {0}.

From the definition of φ, we have

0 ≤ φ(zn, y) +
1
r
〈y− zn, zn − xn〉

= −3z2
n + yzn + 2y2 +

1
r
(y− zn)(zn − xn) (87)

and then

0 ≤ r(−3z2
n + yzn + 2y2) + zny− z2

n − xny + xnzn. (88)

For the quadratic function of y, if it has at most one solution in R, then the discriminant of this function
∆ = (zn + 5znr− xn)2 = 0, that is, zn = xn

1+5r . According to Algorithm 1, if ‖G(yn)‖2 + ‖H(yn)‖2 6= 0,
then we compute the new iteration {xn+1} and the iterative progress is written as

zn = xn
1+5r ,

yn = βnxn + (1− βn)zn,

xn+1 = αnxn + (1− αn)JB1
λ (I − γn A∗(I − JB2

λ A))yn,

In this way, the step size γn is self-adaptive and not given beforehand.
First, we test three cases of λ = 0.01, 0.5, 2 and r = 0.01, 0.5, 2 for initial point x0 = 1, and then test

three initial points x0 randomly generated by Matlab for λ and r. The values of {yn} and {xn} are reported in
Figures 1 and 2 and Table 1. In these figures, x-axes represent for the number of iterations while y-axes represent
the value of xn and yn, the stopping criterion of Figure 1 is ‖xn+1 − yn‖ = 10−6. These figures imply that
the behavior of xn for Algorithm 1 that converges to the same solution, i.e., 0 ∈ EP(φ)

⋂
Ω as a solution of

this example.



Mathematics 2019, 7, 255 19 of 25

1 2 3 4 5 6 7 8 9 10 11

Number of Iterations(n) for =0.01,r=2

0

0.2

0.4

0.6

0.8

1
x

n
,y

n

x
n

y
n

1 2 3 4 5 6 7 8

Number of Iterations(n) for =0.5,r=2

0

0.2

0.4

0.6

0.8

1

x
n
,y

n

x
n

y
n

1 2 3 4 5 6 7 8

Number of Iterations(n) for =2,r=2

0

0.2

0.4

0.6

0.8

1

x
n
,y

n

x
n

y
n

1 2 3 4 5 6 7 8 9

Number of Iterations(n) for =2,r=0.01

0

0.2

0.4

0.6

0.8

1

x
n
,y

n

x
n

y
n

Figure 1. Values of xn and yn for different λ and r.
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Figure 2. Values of ‖xn+1 − yn‖ and xn.

Table 1. The convergence of Algorithm 1.

x0 = −40 x0 = 50

n zn yn xn zn yn xn

0 −11.4286 −18.5714 −40 14.2857 23.2143 50
1 −5.6086 −7.1666 −19.6302 7.0108 8.9582 24.5378
2 −1.7934 −2.0736 −6.2767 2.2417 2.5920 7.8459
3 −0.4200 −0.4620 −1.4700 0.5250 0.5775 1.8374
4 −0.0821 −0.0768 −0.2686 0.0959 0.1026 0.3358
5 −0.0114 −0.0120 −0.0399 0.0142 0.0150 0.0498
6 −0.0015 −0.0014 −0.0049 0.0018 0.0018 0.0062
7 −1.4847× 10−4 −1.5305× 10−4 −5.1964× 10−4 1.8559× 10−4 1.9131× 10−4 6.4955× 10−4

8 −1.3498× 10−5 −1.3836× 10−5 −4.7245× 10−5 1.6873× 10−5 1.7295× 10−5 5.9056× 10−5

9 −1.0716× 10−6 −1.0938× 10−6 −3.7507× 10−6 1.3396× 10−6 1.3672× 10−6 4.6884× 10−6

We can summarize the following observations from these Figures 1 and 2 and Table 1:

(1) The results presented in Figures 1 and 2 and Table 1 imply that Algorithm 1 converges to the
same solution;
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(2) The convergence rate of Algorithm 1 is fast, efficient, stable and simple to implement. The number
of iterations remains almost consistent irrespective of the initial point x0 and parameters λ, r.

(3) The error of ‖xn+1− yn‖ can be obtain approximately equal to 10−15 even smaller in 20 iterations.

5.2. Numerical Behaviours of Algorithms 2 and 3

Example 2. Let H1 = H2 = R3 and define the operators A, B1, and B2 as the following:

A =

 6 3 1
8 7 5
3 6 2

 , B1 =

 6 0 0
0 4 0
0 0 3

 , B2 =

 7 0 0
0 5 0
0 0 2

 ,

the bifunction φ by φ(x, y) = −3x2 + 〈x, y〉+ 2y2. In this example, we set the parameters in Algorithm 2 and
Algorithm 3 by αn = n

n+1 , ρn = 3− 1
n+1 ,τn = 1

(n+1)2 , and βn = 1
(n+1) for each n ≥ 1.

First, we take an initial point x0 = (13,−12, 25), then the test results are reported in Figure 3.
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Figure 3. Values of ‖xn‖, ‖yn‖, ‖zn‖ for Algorithms 2 and 3.

Next, we present the test results for initial point x0 = (1,−1,−2) in Table 2.

Table 2. The convergence of Algorithm 3.

n xn yn ‖xn‖ ‖yn‖
0 (1,−1, 2) (0.6429,−0.6429, 1.2857) 2.4490 1.5747
1 (0.2561,−0.3074, 0.5742) (0.1341,−0.1610, 0.3008) 0.6998 0.3666
2 (0.0582,−0.0866, 0.1509) (0.0270,−0.0402, 0.0701) 0.1835 0.0852
3 (0.0111,−0.0211, 0.0345) (0.0048,−0.0090, 0.0148) 0.0419 0.0180
4 (0.0018,−0.0045, 0.0069) (0.0007,−0.0018, 0.0028) 0.0084 0.0034
5 (0.0002,−0.0008, 0.0012) (9.17× 10−4,−3.274× 10−4, 4.805× 10−4) 0.0015 5.8868× 10−4

6 (1.93× 10−5,−1.443× 10−4, 1.936× 10−4) (7.25× 10−6,−5.413× 10−5, 7.261× 10−5) 2.4229× 10−4 9.0860× 10−5

7 (4.21× 10−6,−1.672× 10−5, 3.119× 10−5) (1.54× 10−6,−6.10× 10−6, 1.139× 10−5) 3.5640× 10−5 1.3011× 10−5

8 (2.98× 10−7,−2.483× 10−6, 4.284× 10−6) (1.07× 10−7,−8.87× 10−7, 1.530× 10−6) 4.9606× 10−6 1.7716× 10−6

9 (−2.33× 10−8,−3.472× 10−7, 5.032× 10−7) (−8.2× 10−9,−1.217× 10−7, 1.764× 10−7) 6.1179× 10−7 2.1458× 10−7

From Table 2 and Figure 3, one can see the convergence rate of Algorithm 3 is faster than
Algorithm 2 and (0, 0, 0) ∈ EP(φ)

⋂
Ω is the minimum-norm solution of the experiment.

5.3. Comparisons with Other Algorithms

In this part, we present several experiments in comparison our Algorithms 1 and 3 with the other
algorithms. Two methods used to compare are the algorithm in Byrne et al. [36] and the algorithm
in Sitthithakerngkiet et al. [46]. The step size γ ≡ 0.001 for the algorithm in Byrne et al. [36] and the
algorithm in Sitthithakerngkiet et al. [46] which depends on the norm of operator A . In addition,
let the mapping Sn : R3 → R3 be an infinite family of nonexpansive mappings Sn(x) = { x

2n }
and a nonnegative real sequence ζn = 1. Then the W-mapping Wn is generated by Sn and ζn and
Wn = 1

2
n(n+1)

2
, the bounded linear operator D = I in Sitthithakerngkiet et al. [46]. We choose the

stopping criterion for our algorithm is ‖xn+1− yn‖ ≤ DOL, for Byrne et al. [36] is ‖xn+1− xn‖ ≤ DOL
and for Sitthithakerngkiet et al. [46] is ‖xn+1 − yn‖ ≤ DOL. For the three algorithms, the operators
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A, B1, B2 are defined as Example 2, the parameters αn = 10−3

n and βn = 0.5− 1
10n+2 , u = (0, 0, 1) in

Sitthithakerngkiet et al. [46], ρn = 3− 1
n+1 , αn = 1

n+1 and βn = 1
10n+2 in our Algorithm 1, ρn = 3− 1

n+1 ,
αn = n

n+1 and βn = 1
10n+2 in our Algorithm 3. We take λ = 1, x0 = (13,−12, 25) for all these algorithms

and compare the iterations and computer times. The experiment results are reported in Table 3.

Table 3. Comparison Algorithms 1 and 3 with other algorithms.

DOL Method Step Size Iteration (n) CPU Time (s) ‖z−xn‖
‖x0−xn+1‖

10−4 Algorithm 1 γn =
ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 9 0.10002 1.1393× 10−4

Algorithm 3 γn =
ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 8 0.0898 1.2675× 10−4

Sitthithakerngkiet et al. [46] γ = 0.001 23 0.086643 5.4438× 10−6

Byrne et al. [36] γ = 0.001 10 0.087847 1.8355× 10−6

10−5 Algorithm 1 γn =
ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 11 0.11003 2.9283× 10−6

Algorithm 3 γn =
ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 10 0.109419 3.2668× 10−6

Sitthithakerngkietet et al. [46] γ = 0.001 218 0.104271 5.2318× 10−7

Byrne et al. [36] γ = 0.001 12 0.092779 1.0173× 10−7

10−6 Algorithm 1 γn =
ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 12 0.116322 4.4459× 10−7

Algorithm 3 γn =
ρn( f (yn)+g(yn))
‖F(yn)‖2+‖G(yn)‖2 11 0.119499 4.4445× 10−7

Sitthithakerngkietet et al. [46] γ = 0.001 2171 0.768808 5.2142× 10−8

Byrne et al. [36] γ = 0.001 13 0.084488 2.3954× 10−8

From all the above figures and tables, one can see the behavior of the sequences {xn} and {yn},
which concludes that {xn} and {yn} converge to a solution and our algorithms are fast, efficient,
and stable and simple to implement (it takes average of 10 iterations to converge). Especially, one can
see that our Algorithms 1 and 3 seem to have a competitive advantage. However, as mentioned in
the previous sections, the main advantage of these our algorithms is that the step size is self-adaptive
without the prior knowledge of operator norms.

5.4. Compressed Sensing

In the last example, we choose a problem from the field of compressed sensing according to the
review comments, that is the recovery of a sparse and noisy signal from a limited number of sampling.
Let x0 ∈ Rn be K-sparse signal, K << n. The sampling matrix A ∈ Rm×n, m < n is stimulated
by standard Gaussian distribution and vector b = Ax + ε, where ε is additive noise. When ε = 0,
it means that there is no noise to the observed data. Our task is to recover the signal x0 from the data b.
For further details, one can consult with Nguyen and Shin [34].

For solving the problem, we recall the LASSO (Least Absolute Shrink Select Operator) problem
Tibshirani [60] as follows:

min
x∈Rn

1
2‖Ax− b‖2

2

s.t. ‖x‖1 ≤ t,

where t > 0 is a given constant. So, in the relation with the problem SVIPs (5) and (6), we consider
B−1

1 (0) = {x|‖x‖1 ≤ t}, B−1
2 (0) = {b} and define

B1(x) =

{
{u| sup‖y‖1≤t〈y− x, u〉 ≤ 0}, x ∈ C,

∅, otherwise.
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and define

B2(y) =

{
H2, y = b,

∅, otherwise.

In this example, we take h(x) = 1
2‖Ax− b‖2, φ(x, y) = h(y)− h(x), then the problem EP (1) is

equivalent to the following problem:

min
x∈Rn

1
2
‖Ax− b‖2

2.

For the experiment setting, we choose the following parameters in our Algorithm 3: αi =
i−1
i+1 ,

γi =
1

i+1 , βi =
2i−1
2i+1 , ρi = 3− 1

i+1 , A ∈ Rm×n is generated randomly with m = 210, n = 212, x0 ∈ Rn

is K-spikes with amplitude ±1 distributed in whole domain randomly. In addition, for simplicity,
we take t = K and the stopping criterion ‖xi+1 − xi‖ ≤ DOL with DOL = 10−6. All the numerical
results are presented in Figures 4 and 5.
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Figure 4. Numerical result for K = 50.
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Figure 5. Numerical result for K = 40.

6. Conclusions

A series of some problems in finance, physics, network analysis, signal processing, image
reconstruction, economics, and optimizations are reduced to find a common solution of the split
inverse and equilibrium problems, which implies numerous possible applications to mathematical
models whose constraints can be presented as the problem EP (1) and the split inverse problem.

This motivated the study of a common solution set of split variational inclusion problems and
equilibrium problems.

The main result of this paper is to introduce a new self-adaptive step size algorithm without
prior knowledge of the operator norms in Hilbert spaces to solve the split variational inclusion and
equilibrium problems. The convergence theorems are obtained under suitable assumptions and
the numerical examples and comparisons are presented to illustrate the efficiency and reliability of
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the algorithms. In one sense, the algorithms and theorems in this paper complement, extend, and unify
some related results in the split variational inclusion and equilibrium problems.
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