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Abstract: A class of generalized (ψ, α, β)− weak contraction is introduced and some fixed-point
theorems in a framework of partially ordered metric spaces are proved. The main result of this paper
is applied to a first-order ordinary differential equation to find its solution.
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1. Introduction

The Banach contraction principle is a fundamental result in fixed-point theory Banach contraction
principle [1]. This principle has been generalized in different directions by various researchers because
of its usability and applicability.

In 1973, Geraghty [2] defined a class of functions α as follows:

Definition 1. [2] Define F = {α|α : [0, ∞)→ [0, 1)} which satisfies the condition

α(tn)→ 1 implies tn → 0.

Geraghty [2] investigated the following theorem, which is known as Geraghty contraction.

Theorem 1. [2] Let (X, d) be a complete metric space and let f : X → X be a map. Suppose there exists α ∈ F
such that for each x, y ∈ X

d( f x, f y) ≤ α(d(x, y))d(x, y).

Then f has a unique fixed point z ∈ X.

Definition 2. [3] Let Ψ denote the class of function ψ : [0, ∞)→ [0, ∞) which satisfies the following conditions:

(i) ψ is continuous and non-decreasing,
(ii) ψ(t) = 0 if and only if t = 0.
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In 1997, Alber and Guerre-Delabriere [4] suggested a generalization of Banach contraction
mapping by introducing the concept of φ -weak contraction in Hilbert space. Rhoades [5] showed that
the result of Alber and Guerre-Delabriere [4] is still valid in complete metric spaces.

Definition 3. [5] A self map T is said to be weakly contractive map if there exist a function φ : [0,+∞) →
[0,+∞) such that φ is continuous, non-decreasing and φ(t) = 0 if and only if t = 0 and satisfying

d (Tx, Ty) ≤ d (x, y)− φ(d (x, y))

for all x, y ∈ X.

Theorem 2. [5] Let (X, d) be a complete metric space and T be a weakly contractive self map on X. Then T has
a unique fixed point in X.

Remark 1. Rhoades [5] observed that every contraction map T on X with contractive constant k is a weakly
contractive map with φ(t) = (1− k)t, t > 0. However, its converse is not true.

In 2008, Dutta and Choudhury [6] gave a generalization of weakly contractive mapping by
defining (ψ, φ) -weak contraction in complete metric spaces.

Definition 4. [6] Self map T is said to be (ψ, φ) weak contraction, if for each x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)),

where ψ, φ : [0, ∞) → [0, ∞) are both continuous and monotone non-decreasing functions with ψ(t) = 0 =

φ(t) if and only if t = 0.

Theorem 3. [6] Let (X, d) be a complete metric spaces and self map T be a (ψ, φ) weak contraction. Then T
has a unique fixed point.

Zhang and Song [7] defined and introduced a proper extension of φ− weak contraction namely,
generalized φ− weak contraction.

Definition 5. [7] Self maps T and R are said to be generalized φ− weakly contractive maps if there exist a
function φ : [0,+∞)→ [0,+∞) such that φ is continuous, non-decreasing and φ(t) = 0 if and only if t = 0
and satisfying

d (Tx, Ry) ≤ M (x, y)− φ(M (x, y)),

where,

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ry),
[d(y, Tx) + d(x, Ry)]

2

}
for all x, y ∈ X.

Theorem 4. [7] Let (X, d) be a complete metric space and T and R are generalized φ− weakly contractive self
maps on X. Then T and R have a unique common fixed point in X.

Doric [8] extended the result of Zhang and Song [7] by defining generalized (ψ, φ)− weak
contraction and proved some fixed-point theorems.

Definition 6. [8] Self maps T and R are said to be generalized (ψ, φ)− weakly contractive maps if it satisfies

ψ(d (Tx, Ry)) ≤ ψ(M (x, y))− φ(M (x, y)),
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for all x, y ∈ X, where ψ : [0,+∞)→ [0,+∞) such that ψ is continuous, non-decreasing and ψ(t) = 0 if and
only if t = 0, φ : [0,+∞)→ [0,+∞) such that φ lower semi-continuous function and φ(t) = 0 if and only if
t = 0 and

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ry),
[d(y, Tx) + d(x, Ry)]

2

}
Theorem 5. [8] Let (X, d) be a complete metric space and T and R are generalized (ψ, φ)− weakly contractive
maps on X. Then T and R have a unique common fixed point in X.

The existence of a fixed point for contraction mappings in partially ordered metric spaces was
considered initially by Ran and Reurings [9]. In 2008, Agarwal et al. [10] extended the results of Ran
and Reurings [9] for the case of generalized φ-contractions as follows:

Theorem 6. [10] Let (X,�) be a partially ordered set, and suppose that there exists a metric d ∈ X such
that (X, d) is a complete metric space. Let T : X → X be an increasing operator such that the following three
assertions hold:

(i) there exists an increasing mapping φ : R+ → R+ with limn→∞ φn(t) = 0 for each t > 0, such that for
each x, y ∈ X with x � y we have

d(Tx, Ty) ≤ φ

(
max

{
d(x, y), d(x, Tx), d(y, Ty),

1
2
[d(x, Ty) + d(y, Tx)]

})
,

(ii) there exists x0 ∈ X with x0 � Tx0,
(iii) T is continuous or if an increasing sequence xn ⊂ X converges to x ∈ X, then xn � x for all n ∈ N.

Then T has at least one fixed point in X.

In 2009, Harjani and Sadarangni [11] proved some fixed-point theorems as a version of Rhoades [5]
and Dutta and Choudhury [6] for weakly contractive mappings in ordered metric spaces.

Theorem 7. [11] Let (X,�) be a partially ordered set, and suppose that there exists a metric d ∈ X such that
(X, d) is a complete metric space. Let T : X → X be a continuous and non-decreasing mapping such that

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) f or all x ≥ y,

where φ : [0, ∞) → [0, ∞) is continuous and non-decreasing function such that φ is positive in (0, ∞),
φ(0) = 0 and limt→∞ φ(t) = ∞. If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

Theorem 8. [12] Let (X,�) be a partially ordered set, and suppose that there exists a metric d ∈ X such that
(X, d) is a complete metric space. Let T : X → X be a continuous and non-decreasing mapping such that

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)) f or all x ≥ y,

where ψ and φ are altering distance functions. If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

In 2010, Harandi and Emami [13] proved a version of Geraghty’s result [2] in partially ordered
metric spaces.



Mathematics 2019, 7, 266 4 of 14

Theorem 9. [13] Let (X,�) be a partially ordered set and suppose that there exists a metric d ∈ X such that
(X, d) is a complete metric space. Let T : X → X be an increasing mapping such that there exists x0 ∈ X with
x0 � T(x0). Suppose that there exits α ∈ F such that

d(Tx, Ty) ≤ α(d(x, y))d(x, y) f or all x, y ∈ X with x � y,

and assume that either T is continuous or X is such that if there is an increasing sequence {xn} → x, x ∈ X,
then xn ≤ x for each n ≥ 1. Also, if for all x, y ∈ X, there exists z ∈ X which is comparable to x and y. Then T
has a unique fixed point in X.

In 2010, Altun and Simsek [14] introduced the notion of weakly increasing mappings and
investigated some fixed-point results for non-decreasing and weakly increasing operators in a partially
ordered metric space by using implicit relations. Singh (2015) [15] and He et al. (2017) [16] stated that a
fixed-point theorem for generalized weak contractive map in a metric space is proven by generalizing
some recent findings of Doric [8], Zhang and Song [7] .

Definition 7. [14] Let (X,�) be a partially ordered set. Two mappings T, R : X → X are said to be weakly
increasing if Tx � RTx and Rx � TRx for all x ∈ X.

Remark 2. Please note that two weakly increasing mappings need not be non-decreasing. Some examples are
given in [14].

Definition 8. [17] Let (X, d) be a metric space and T, R : X → X are given self mappings on X. The pair
(T, R) is said to be compatible if limn→∞ d(TRxn, RTxn) = 0, whenever {xn} is a sequence in X such that
limn→∞ Txn = limn→∞ Rxn = t for some t ∈ X.

In the following sections, we introduce and give an example of generalized (ψ, α, β)− weakly
contractive maps and then prove some common fixed-point theorems in the sense of partially ordered
complete metric space. For applicability and usability of our results in diverse areas, we give an
application to find a common solution of Volterra-type integral equations.

2. Main Results

We begin with following definition.

Definition 9. Three self maps T, R, S are said to be a generalized (ψ, α, β)− weak contraction if for each
x, y ∈ X

ψ(d(Tx, Ry)) ≤ α(d(Sx, Sy))β(d(Sx, Sy)), ∀ x ≥ y, (1)

where α ∈ F, ψ ∈ Ψ and β : [0, ∞)→ [0, ∞) is a continuous function with condition

0 < β(t) < ψ(t), ∀ t > 0. (2)

An example of generalized (ψ, α, β)− weak contraction is as follows:

Example 1. Let X = N ∪ {0} . Define a metric

d(x, y) =

{
x + y, i f x 6= y

0, i f x = y.
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Then (X, d) is a complete metric space. Consider three maps T, R, S : X → Q+ defined as

Tx =
x
2

, Rx =
x
3

, Sx = x.

Define maps ψ, β : [0, ∞) → [0, ∞) and α : [0, ∞) → [0, 1) as ψ(t) = 2t, β(t) = t and α(t) = 9
10 .

Then clearly, three maps T, R and S are generalized (ψ, α, β)− weak contraction.

Now we prove our main result.

Theorem 10. Let (X,�) be a partially ordered set and assume that there exists a metric d in X such that
(X, d) is a complete metric space. Let T, R, S : X → X are a generalized (ψ, α, β)− weak contractive mappings
satisfying the following properties:

(i) TX ⊆ SX and RX ⊆ SX,
(ii) T, R and S are continuous,

(iii) the pairs (T, S) and (R, S) are compatible,
(iv) T and R are weakly increasing with respect to S,
(v) Sx and Sy are comparable.

Then T, R and S have a coincidence point z ∈ X.

Proof. Let us assume that x0 ∈ X be any arbitrary point in X. Since TX ⊆ SX and RX ⊆ SX, therefore
there exists x1, x2 ∈ X such that Tx0 = Sx1 and Rx1 = Sx2. Continuing this way, we can construct
sequences {xn} and {yn} in X, defined as

Sx2n+1 = Tx2n = y2n, Sx2n+2 = Rx2n+1 = y2n+1, ∀ n ∈ N. (3)

Since T and R are weakly increasing function with respect to S, therefore

Sx1 = Tx0 � Rx1 = Sx2,

similarly,
Sx2 = Tx1 � Rx2 = Sx3.

Continuing this process, we obtain

Sx1 � Sx2 � Sx3......... � Sx2n+1 � Sx2n+2 � ....

Thus,
y0 � y1 � y2......... � y2n � y2n+1 � ....

First we suppose that if there exists n ∈ N such that y2n−1 = y2n, then from (1)

ψ(d(y2n, y2n+1)) = ψ(d(Tx2n, Rx2n+1))

≤ α(d(Sx2n, Sx2n+1))β(d(Sx2n, Sx2n+1))

= α(d(y2n−1, y2n))β(d(y2n−1, y2n)) = 0,

which implies that y2n+1 = y2n. Consequently, ym = y2n−1 for any m ≥ 2n. Hence for every m ≥ 2n,
we have Sxm = Sx2n. This implies that {Sxn} is a Cauchy sequence.

Secondly, suppose that yn 6= yn+1 for any integer n. Let zn = d(yn, yn+1). Now we show that
zn → 0 as n→ ∞.
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Since Sx2n and Sx2n+1 are comparable, then again from (1) we obtain

ψ(d(y2n+2, y2n+1)) = ψ(d(Sx2n+3, Sx2n+2)) = ψ(d(Tx2n+2, Rx2n+1))

≤ α(d(Sx2n+2, Sx2n+1))β(d(Sx2n+2, Sx2n+1))

= α(d(y2n+1, y2n))β(d(y2n+1, y2n)). (4)

By using (2), property of ψ and the fact that α ∈ F, we get

d(y2n+2, y2n+1) ≤ d(y2n+1, y2n), (5)

similarly, we obtain

d(y2n+1, y2n) ≤ d(y2n, y2n−1). (6)

Combining (5) and (6), we have

d(y2n+2, y2n+1) ≤ d(y2n+1, y2n) ≤ d(y2n, y2n−1). (7)

It follows that the sequence {zn} is monotonically decreasing, therefore there exists r ≥ 0 such that

lim
n→∞

zn = d(yn, yn+1) = r. (8)

Suppose that r > 0, then from (4)

ψ(d(y2n+2, y2n+1)) ≤ α(d(y2n+1, y2n))β(d(y2n+1, y2n))

Taking limit as n → ∞, we get ψ(r) ≤ α(r)β(r). Since α ∈ E therefore by using (2), we have
ψ(r) < β(r) < ψ(r). This is a contradiction. Therefore, r = 0. Hence

lim
n→∞

zn = d(yn, yn+1) = 0. (9)

Next, we prove that {Sxn} is a Cauchy sequence. We prove this by negation. Suppose, on the
contrary, that {Sx2n} is not a Cauchy sequence. Then for any ε > 0, there exist two subsequences of
positive integers mk and nk such that nk > mk > k for all positive integer k,

d(Sx2mk , Sx2nk ) > ε and d(Sx2mk , Sx2nk−2) ≤ ε. (10)

From (10) and by using triangle inequality, we have

ε < d(Sx2mk , Sx2nk )

≤ d(Sx2mk , Sx2nk−2) + d(Sx2nk−2 , Sx2nk−1) + d(Sx2nk−1 , Sx2nk ).

Letting k→ ∞ in above equality and using (9), we get

lim
k→∞

d(Sx2mk , Sx2nk ) = ε. (11)

Again, by using triangle inequality, we have

d(Sx2nk , Sx2mk−1) ≤ d(Sx2nk , Sx2mk ) + d(Sx2mk , Sx2mk−1),
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taking limit as k→ ∞ in above equality and using (9)–(11), we have

lim
k→∞

d(Sx2nk , Sx2mk−1) = ε. (12)

Since,

d(Sx2nk , Sx2mk ) ≤ d(Sx2nk , Sx2nk+1) + d(Sx2nk+1 , Sx2mk )

= d(Sx2nk , Sx2nk+1) + d(Tx2nk , Rx2mk−1).

Using (9)–(12) and letting k→ ∞, we have

ε ≤ lim
k→∞

d(Tx2nk , Rx2mk−1).

However, ψ ∈ Ψ, therefore

ψ(ε) ≤ lim
k→∞

ψ(d(Tx2nk , Rx2mk−1))). (13)

From (1), we have

ψ(d(Tx2nk , Rx2mk−1)) ≤ α(d(Sx2nk , Sx2mk−1))β(d(Sx2nk , Sx2mk−1)).

Taking limit k→ ∞ in above inequality and using the fact that α ∈ F, we get

lim
k→∞

ψ(d(Tx2nk , Rx2mk−1))) < β(ε). (14)

From (13) and (14) and using (2), we get

ψ(ε) ≤ lim
k→∞

ψ(d(Tx2nk , Rx2mk−1))) < β(ε) < ψ(ε). (15)

This is a contradiction. Therefore {Sx2n} is a Cauchy sequence and hence {Sxn} is a Cauchy
sequence for all n. Hence there exist u ∈ X such that

lim
n→∞

Sxn = u. (16)

Next, we claim that u is a coincidence point of T, R, and S.
From (16) and the continuity of S, we get

lim
n→∞

S(Sxn) = Su. (17)

From triangular inequality, we have

d(Su, Tu) ≤ d(Su, S(Sx2n+1)) + d(S(Tx2n), T(Sx2n)) + d(T(Sx2n), Tu), (18)

From (3) and (16), we have

Sx2n → u, Tx2n → u. (19)

Since pair (T, S) is compatible, then

d(S(Tx2n), T(Sx2n))→ 0. (20)
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Using the continuity of T and (19), we have

d(T(Sx2n), Tu)→ 0. (21)

Letting k→ ∞ in (18) and using (17)–(20) together with (21), we get

d(Su, Tu) ≤ 0,

which means that Su = Tu.
Similarly from triangular inequality, we have

d(Su, Ru) ≤ d(Su, S(Sx2n+2)) + d(S(Rx2n+1), R(Sx2n+1)) + d(R(Sx2n+1), Ru), (22)

In similar manner, we get d(Su, Ru) ≤ 0, which means that Su = Ru. Thus, we find that
Su = Tu = Ru, that is, u is a coincidence point of T, R, and S. This proves Theorem 10.

Now we give a sufficient condition for the uniqueness of the common fixed point in Theorem 10.
This condition is as follows:

f or (x, y) ∈ X× X, there exists u ∈ X such that Tx � Tu and Ty � Tu. (23)

Theorem 11. Adding the condition (23) to the hypotheses of Theorem 10, the self maps T, R, and S have a
unique common fixed point .

Proof. First, we prove that T, R, and S have common fixed point. To prove this, we show that if p and
q are coincidence points of T, R, and S, i.e.,

Sp = Tp = Rp and Sq = Tq = Rq

then

Sp = Sq. (24)

From our assumption, there exists u0 ∈ X such that

Tp � Tu0, Tq � Tu0. (25)

Now we follow the proof of Theorem 10, we can define a sequence {Sun} as follows:

Su2n+1 = Tu2n, Su2n+2 = Ru2n+1, ∀ n ∈ N. (26)

Again, we have

Tp = Sp � Sun, Tq = Sq � Sun, ∀ n ∈ N. (27)

Now put x = u2n and y = p in (1), we get

ψ(d(Su2n+1, Sp)) = ψ(d(Tu2n, Rp))

≤ α(d(Su2n, Sp))β(d(Su2n, Sp)).

Since α ∈ F,

ψ(d(Su2n+1, Sp)) ≤ β(d(Su2n, Sp)). (28)
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Similarly, again if we put y = u2n and x = p in (1), we obtain

ψ(d(Su2n+2, Sp)) ≤ β(d(Su2n+1, Sp)). (29)

Combine (28) and (29) for all n ∈ N, we get

ψ(d(Sun+1, Sp)) ≤ β(d(Sun, Sp)),

Consequently, by using property of ψ and β

d(Sun+1, Sp) ≤ d(Sun, Sp),

therefore, there exists r ≥ 0 such that

lim
n→∞

d(Sun, Sp) = r. (30)

Suppose r > 0, then from (1)

ψ(d(Su2n+1, Sp)) ≤ α(d(Su2n, Sp))β(d(Su2n, Sp)),

on taking limit as n→ ∞ and using (2), we get

ψ(r) < β(r) < ψ(r).

This is a contradiction. Thus, r = 0, therefore from (30), we have

lim
n→∞

d(Sun, Sp) = 0. (31)

In same manner, we can show that

lim
n→∞

d(Sun, Sq) = 0. (32)

Now using the fact that limit is unique and by using (24)–(32), we can write

lim
n→∞

Tu2n = Sp = Sq, lim
n→∞

Ru2n+1 = Sp = Sq. (33)

Since the pair {T, S} and {R, S} are compatible, therefore

lim
n→∞

d(S(Tu2n), T(Su2n)) = 0, lim
n→∞

d(S(Ru2n+1), R(Su2n + 1)) = 0. (34)

Let us take,

z = Sp (35)

Consider,

d(Sz, Tz) ≤ d(Sz, S(Tu2n)) + d(S(Tu2n), T(Su2n)) + d(T(Su2n), Tz).

Letting n→ ∞ and using the continuity of T as the above inequality, we get

d(Sz, Tz) ≤ 0,

that is, Sz = Tz and z is the coincidence point of T and S.
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Similarly, proceeding as above, we can write

d(Sz, Rz) ≤ 0,

that is, Sz = Rz and z is the coincidence point of R and S.
Hence, from (24), we have

z = Sp = Sz = Tz = Rz.

This proves that z is a common fixed point of T, R, and S.
Uniqueness: Next we prove that the common fixed point is unique. Assume that the fixed point is not
unique, therefore there exists another fixed point λ ∈ X such that

λ = Sp = Sλ = Tλ = Rλ.

Using (24), we have

Sλ = Sz.

Hence we get,

λ = Sλ = Sz = z,

this is a contradiction to our assumption and hence common fixed point is unique. This completes the
proof of the Theorem 11.

If we take S = I in Definition 9 and Theorem 10, we get the following result.

Definition 10. Two self maps T, R are said to be (ψ, α, β)− weak contraction if for each x, y ∈ X

ψ(d(Tx, Ry)) ≤ α(d(x, y))β(d(x, y)), ∀ x ≥ y, (36)

where α ∈ F, ψ ∈ Ψ and β : [0, ∞)→ [0, ∞) is a continuous function with condition

0 < β(t) < ψ(t), ∀ t > 0. (37)

Theorem 12. Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that
(X, d) is a complete metric space. Let T, R : X → X are (ψ, α, β)− weak contractive mappings satisfying the
following properties:

(i) T and R are continuous,
(ii) T and R are weakly increasing,

(iii) x and y are comparable.

Suppose, if

f or (x, y) ∈ X× X, there exists u ∈ X which is comparable to x and y.

Then T and R have unique common fixed point z ∈ X.

An example of (ψ, α, β)− weak contraction is as follows:
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Example 2. Let X = [0, 1] and d(x, y) = max{x, y} for all x, y ∈ X. Let T, R : X → X be defined by

Tx =

{
x
3 , i f x 6= 1
1
6 , i f x = 1.

and

Rx =

{
x
2 , i f x 6= 1
1
4 , i f x = 1.

Then (X, d) is a complete metric space.
Define maps ψ, β : [0, ∞) → [0, ∞) and α : [0, ∞) → [0, 1) as ψ(t) = 2t, β(t) = t and α(t) = 1

10 .
Then, all condition (i), (ii), (iii) are satisfied Theorem 12. Hence T and R have unique common fixed point.

3. Applications

In application, here we give an existence theorem for common solutions of integral equations.
However, the existence and uniqueness conditions obtained here are weaker than those in the
previous studies.

A Common Solution of Integral Equations by Existence Theorem

The purpose of this section is to give an example of integral equations, where we can apply
Theorem 12 to get common solutions. The following example is motivated by [12,14].

We consider the integral operator

∫ L

0
K1(t, s, u(s))ds + λ(t)∫ L

0
K2(t, s, u(s))ds + λ(t) ∀ t ∈ [0, L], (38)

where L > 0. Let us consider the space X = C(I) (I = [0, L]) of the continuous functions defined on I.
Obviously, this space with the metric given by:

d(x, y) = sup
t∈I
|x(t)− y(t)| , ∀ x, y ∈ X,

is a complete metric space. X = C(I) can also be prepared with partial order � given by:

∀ x, y ∈ X, x � y⇔ x(t) ≤ y(t), ∀ t ∈ I.

Theorem 13. Suppose the following hypotheses hold:

(i) K1, K2 : I × I × R→ R and h : R→ R are continuous,
(ii) for all t, s ∈ I, we have

K1(t, s, u(t)) ≤ K2

(
t, s,

∫ L

0
K1(s, z, u(z))dz + h(s)

)
,

K2(t, s, u(t)) ≤ K1

(
t, s,

∫ L

0
K2(s, z, u(z))dz + h(s)

)
,
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(iii) there exists a continuous function G : I × I → R+ such that

|K1(t, s, x)− K2(t, s, y)| ≤ G(t, s)

√
log[(x− y)2 + 1]

(x− y)
,

∀ t, s ∈ I and x, y ∈ R such that y � x,

(iv) supt∈I
∫ L

0 G2(t, s)ds ≤ 1
L .

Then the integral Equation (38) have a solution u∗ ∈ C(I).

Proof. Let us define T, R : C(I)→ C(I) by :

Tx(t) =
∫ L

0
K1(t, s, u(s))ds + h(t)

and

Rx(t) =
∫ L

0
K2(t, s, u(s))ds + h(t), t ∈ I, x ∈ C(I).

Nashine and Samet in [18] showed that T and R are weakly increasing. Now, for all x, y ∈ C(I)
such that y � x, we have:

|Tx(t)− Ry(t)| ≤
∫ L

0
|K1(t, s, x(s))− K2(t, s, y(s))| ds

≤
∫ L

0
G(t, s)

√
log[(x(s)− y(s))2 + 1]

(x(s)− y(s))
ds. (39)

Using Cauchy-Schwarz inequality in the R.H.S. of (39), we get

∫ L

0
G(t, s)

√
log[(x(s)− y(s))2 + 1]

(x(s)− y(s))
ds ≤

( ∫ L

0
G2(t, s)ds

) 1
2
( ∫ L

0

log[(x(s)− y(s))2 + 1]
(x(s)− y(s))

ds
) 1

2
.

Now using hypothesis(IV), we get

∫ L

0
G(t, s)

√
log[(x(s)− y(s))2 + 1]

(x(s)− y(s))
ds ≤

( 1
L

) 1
2
( ∫ L

0

log[(x(s)− y(s))2 + 1]
(x(s)− y(s))

ds
) 1

2

≤
( 1

L

) 1
2
(√ log[d(x, y)2 + 1]

d(x, y)

)√
L

≤
(√ log[d(x, y)2 + 1]

d(x, y)

)
.

Hence from (39),

|Tx(t)− Ry(t)| ≤

√
log[d(x, y)2 + 1]

d(x, y)
. (40)

This implies that

d(Tx, Ry) ≤

√
log[d(x, y)2 + 1]

d(x, y)
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d(Tx, Ry)2 ≤ log[d(x, y)2 + 1]
d(x, y)

≤
√

log[d(x, y)2 + 1]
d(x, y)

.
√

log[d(x, y)2 + 1]. (41)

Let us choose a function α as,

α(t) =
√

log[t2 + 1]
t

,

it is clear that with this choice, α ∈ S. Also assume that ψ(t) = t2 and β(t) =
√

log[t2 + 1].
Therefore from (41), we have

ψ(d(Tx, Ry)) ≤ α(d(x, y))β(d(x, y)).

Since all the hypotheses of Theorem 12 are satisfied. Therefore, there exists u∗ ∈ C(I), a common fixed
point of T and R, that is, u∗ is a solution to (38).
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