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Abstract

:

The study is on the existence of the solution for a coupled system of fractional differential equations with integral boundary conditions. The first result will address the existence and uniqueness of solutions for the proposed problem and it is based on the contraction mapping principle. Secondly, by using Leray–Schauder’s alternative we manage to prove the existence of solutions. Finally, the conclusion is confirmed and supported by examples.
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1. Introduction


Fractional calculus and more specifically coupled fractional differential equations are amongst the strongest tools of modern mathematics as they play a key role in developing differential models for high complexity systems. Examples include the quantum evolution of complex systems [1], dynamical systems of distributed order [2], chuashirku [3], Duffing system [4], Lorentz system [5], anomalous diffusion [6,7], nonlocal thermoelasticity systems [8,9], secure communication and control processing [10], synchronization of coupled chaotic systems of fractional order [11,12,13,14], etc. In terms of developing high complexity models, applications of coupled fractional differential equations can be significantly extended by dealing with various types of integral boundary conditions. Integral boundary conditions are in fact essential for obtaining reliable models in many practical problems, such as regularization of parabolic inverse problems [15] and flow analysis in computational fluid dynamics [16].



Some of the latest studies on integral and nonlocal boundary value problems for coupled fractional differential equations are presented in [17,18,19,20,21,22,23,24,25].



In [26], the following coupled system of fractional differential equations was studied:


Dαxt=ft,xt,ytDγyt,t∈0,T,1<α≤2,0<γ<1,Dβyt=gt,xt,Dδxt,yt,t∈0,T,1<β≤2,0<δ<1,








supplemented with the coupled nonlocal and integral boundary conditions of the form


x0=hy,∫0Tysds=μ1xηy0=ϕx,∫0Txsds=μ2yξ,η,ξ∈0,T








where Di denotes the Caputo fractional derivatives of order i=α,β,γ,δ and f,g:0,T×R×R×R→R,h,ϕ:C0,T,R→R are given continuous functions, and μ1,μ2 are real constants.



In [27], the authors investigated the existence and uniqueness of solutions for the coupled system of nonlinear fractional differential equations with three-point boundary conditions, given below:


Dαut=ft,vt,Dpvt,t∈0,1,Dβvt=gt,ut,Dqut,t∈0,1,u0=0,u1=γuη,v0=0,v1=γvη,.








where 1<α,β<2,p,q,γ>0,0<η<1,α−q≥1,β−p≥1,γηα−1<1,γηβ−1<1, and D is the standard Riemann–Liouville fractional derivative and f,g:0,1×R×R→×R are given continuous functions. It is worth mentioning that the nonlinear terms in the coupled system contain the fractional derivatives of the unknown functions.



Moreover, in a study [28], the following coupled system of nonlinear fractional differential equations, with the given boundary conditions was studied:


Dαut=ft,vt,Dμvt,0<t<1,Dβvt=gt,ut,Dνut,0<t<1,u0=u1=v0=v1=0,








where 1<α,β<2,μ,ν>0,α−ν≥1,β−μ≥1, and f,g:0,1×R×R→R are given functions and D is the standard Riemann–Liouville differentiation.



The present paper is motivated by the above papers and is aimed to study a coupled system of nonlinear fractional differential equations:


Dαxt=ft,xt,yt,Dγy(t),t∈0,T1<α≤2,0<γ<1Dβyt=gt,xt,Dσx(t),yt,t∈0,T1<β≤2,0<σ<1



(1)




supported by integral boundary conditions of the form


∫0Txsds=ρ1yζ1,∫0Tx′sds=ρ2y′ζ2∫0Tysds=μ1xη1,∫0Ty′sds=μ2x′η2η1,η2,ζ1,ζ2∈0,T,,



(2)




where Dk denote the Caputo fractional derivatives of order k, and f,g:0,T×R3→R, are given continuous functions, and ρ1,ρ2,μ1,μ2 are real constants.



The paper is organized as follows. In Section 2, we recall some definitions from fractional calculus, and state and prove an auxiliary lemma, which gives an explicit formula for a solution of nonhomogeneous equation correspond to our problem. The main results for the coupled system of Caputo fractional differential equations with integral boundary conditions, using the Banach fixed point theorem and Leray-Schauder alternative, are presented in Section 3. The paper concludes with concrete examples.




2. Preliminaries


Firstly, we recall definitions of fractional derivative and integral [29,30].

Definition 1.

The Riemann-Liouville fractional integral of order α for a continuous function h is given by


Isαhs=1Γα∫0shts−t1−αdt,α>0








provided that the integral exists on R+.





Definition 2.

The Caputo fractional derivatives of order α for m−1—times absolutely continuous function h:0,∞→R is defined as


Dαhs=1Γm−α∫0ss−tm−α−1hmtdt,m−1<α<m,m=α+1,








where α is the integer part of the real number α.







We use the following notations.


Δ1=T2−μ1ρ1≠0,Δ2=T2−μ2ρ2≠0,










Θ1t:=2Tρ1ζ1μ2ρ2−T4ρ2+2Tρ1μ1η1ρ2−T2μ2ρ1ρ2Δ1Δ2+ρ2TtΔ2.Θ2t:=−2T2ρ1ζ1+T3ρ2−2ρ1μ1η1ρ2+ρ1T3Δ1Δ2−ρ2tΔ2,Θ3:=Tρ1Δ1,Θ4:=−ρ1Δ1.










Ξ1t:=2T2ρ1ζ1μ2−T3ρ2μ2+2ρ1μ1η1ρ2μ2−ρ1μ2T3Δ1Δ2+tμ2ρ2Δ2Ξ2t:=−2Tρ1ζ1μ2+T4−2Tρ1μ1η1+T2ρ1μ2Δ1Δ2−TtΔ2,Ξ3:=ρ1μ1Δ1,Ξ4:=−TΔ1.










Θ^1t:=1Δ1ρ2TTμ1η11Δ2−μ1T221Δ2+μ2ρ2μ1ρ1ζ11Δ2−T321Δ2+1Δ2μ2ρ2t.Θ^2t:=1Δ1−ρ2Tμ1η11Δ2−μ1T221Δ2−Tμ1ρ1ζ11Δ2−T321Δ2−1Δ2Tt,Θ^3:=1Δ1ρ1μ1,Θ^3:=−TΔ1.










Ξ^1t:=1Δ1μ2ρ2Tμ1η11Δ2−μ1T221Δ2+μ2Tμ1ρ1ζ11Δ2−T321Δ2+1Δ2μ2TtΞ^2t:=1Δ1−TTμ1η11Δ2−μ1T221Δ2−μ2μ1ρ1ζ11Δ2−T321Δ2−1Δ2μ2t,Ξ^3:=μ1TΔ1,Ξ^4:=−μ1Δ1.











To show that the problem (1) and (2) is equivalent to the problem of finding solutions to the Volterra integral equation, we need the following auxiliary lemma

Lemma 1.

Let w,z∈C0,T,R. Then the unique solution for the problem


Dαxt=wt,t∈0,T,1<α≤2,Dβyt=zt,t∈0,T,1<β≤2,∫0Txsds=ρ1yζ1,∫0Tx′sds=ρ2y′ζ2∫0Tysds=μ1xη1,∫0Ty′sds=μ2x′η2



(3)




is


xt=Θ1tIβ−1zζ2+Θ2t∫0TIβ−1zsds+Θ3Iβzζ1−Θ4∫0TIβzsds+Ξ1tIα−1wη2+Ξ2t∫0TIα−1wsds+Ξ3Iαwη1−Ξ4∫0TIαwsds+∫0tt−sα−1Γαwsds



(4)




and


yt=Θ^1tIβ−1zζ2+Θ^2t∫0TIβ−1zsds+Θ^3Iβzζ1−Θ^4∫0TIβzsds+Ξ^1tIα−1wη2+Ξ^2t∫0TIα−1wsds+Ξ^3Iαwη1−Ξ^4∫0TIαwsds+∫0tt−sβ−1Γβzsds



(5)









Proof. 

We know that, see [30] Lemma 2.12, the general solutions for the FDE in (3) is defined as


x(t)=c1t+c2+Iαwty(t)=d1t+d2+Iβzt,



(6)




where c1,c2,d1,d2∈R are arbitrary constants. It follows that


x′(t)=c1+Iα−1wt,y′(t)=d1+Iβ−1zt.








Applying the conditions


∫0Tx′sds=ρ2y′ζ2,∫0Ty′sds=μ2x′η2








we get


c1T+∫0TIα−1wsds=ρ2d1+ρ2Iβ−1zζ2,d1T+∫0TIβ−1zsds=μ2c1+μ2Iα−1wη2.








Solving the above equations together for c1 and d1 we get


c1=1Δ2ρ2TIβ−1zζ2−ρ2∫0TIβ−1zsds+μ2ρ2Iα−1wη2−T∫0TIα−1wsds










d1=1Δ2μ2TIα−1wη2−μ2∫0TIα−1wsds+μ2ρ2Iβ−1zζ2−T∫0TIβ−1zsds








Considering the following boundary conditions not involving derivatives


∫0Txsds=ρ1yζ1,∫0Tysds=μ1xη1,








we get


c2T−ρ1d2=ρ1d1ζ1+ρ1Iβzζ1−c1T22−∫0TIαwsds,d2T−μ1c2=μ1c1η1+μ1Iαwη1−d1T22−∫0TIβzsds.








This implies


c2=1Δ1Tρ1d1ζ1+ρ1TIβzζ1−c1T32−T∫0TIαwsds+ρ1μ1c1η1+ρ1μ1Iαwη1−ρ1d1T22−ρ1∫0TIβzsds,










d2=1Δ1Tμ1c1η1+μ1TIαwη1−d1T32−T∫0TIβzsds+μ1ρ1d1ζ1+ρ1μ1Iβzζ1−c1μ1T22−μ1∫0TIαwsds.








Inserting the values of c1 and d1 we get


c2=2Tρ1ζ1μ2ρ2−T4ρ2+2Tρ1μ1η1ρ2−T2μ2ρ1ρ22Δ1Δ2Iβ−1zζ2+−2T2ρ1ζ1+T3ρ2−2ρ1μ1η1ρ2+ρ1T32Δ1Δ2∫0TIβ−1zsds+Tρ1Δ1Iβzζ1−ρ1Δ1∫0TIβzsds+2T2ρ1ζ1μ2−T3ρ2μ2+2ρ1μ1η1ρ2μ2−ρ1μ2T32Δ1Δ2Iα−1wη2+−2Tρ1ζ1μ2+T4−2Tρ1μ1η1+T2ρ1μ22Δ1Δ2∫0TIα−1wsds+ρ1μ1Δ1Iαwη1−TΔ1∫0TIαwsds,










d2=2ρ2T2μ1η1−ρ2μ1T3+2μ2ρ2μ1ρ1ζ1−μ2ρ2T32Δ1Δ2Iβ−1zζ2+−2Tρ2μ1η1+ρ2μ1T2−2Tμ1ρ1ζ1−T42Δ1Δ2∫0TIβ−1zsds+1Δ1ρ1μ1Iβzζ1−1Δ1T∫0TIβzsds+2Tμ2ρ2μ1η1−μ2ρ2μ1T2+2μ2Tμ1ρ1ζ1−μ2T42Δ1Δ2Iα−1wη2+−2T2μ1η1+μ1T3−2μ2ρ2μ1ρ1ζ1+μ2T32Δ1Δ2∫0TIα−1wsds+μ1T1Δ1Iαwη1−μ11Δ1∫0TIαwsds.








Substituting c1,c2,d1,d2 in (6) we get (4) and (5). □





Remark 1.

In (4) and (5) xt and yt depend on ηi,ζi,μi,ρi, i=1,2.








3. Existence Results


Consider the space


Cγ0,T,R=x(t):x(t)∈C0,T,RandDγx(t)∈C0,T,R,








with the norm


xγ=x+Dγx=max0≤t≤Txt+max0≤t≤TDγx(t).








It is clear that Cγ0,T,R,·γ is a Banach space. Consequently, the product space Cσ0,T,R×Cγ0,T,R,·σ×γ is a Banach Space with the norm x,yσ×γ=xσ+yγ for x,y∈Cσ0,T,R×Cγ0,T,R.



Next, using Lemma 1, we define the operator G:Cσ0,T,R×Cγ0,T,R→Cσ0,T,R×Cγ0,T,R as follows


Gx,y(t)=G1x,y(t),G2x,y(t),








where


G1x,y(t)=Θ1tIβ−1g·,x(·),y(·),Dσx(·)ζ2+Θ2t∫0TIβ−1g·,x(·),y(·),Dσx(·)sds+Θ3Iβg·,x(·),y(·),Dσx(·)ζ1−Θ4∫0TIβg·,x(·),y(·),Dσx(·)sds+Ξ1tIα−1f·,x(·),y(·),Dγy(·)η2+Ξ2t∫0TIα−1f·,x(·),y(·),Dγy(·)sds+Ξ3Iαf·,x(·),y(·),Dγy(·)η1−Ξ4∫0TIαf·,x(·),y(·),Dγy(·)sds+∫0tt−sα−1Γαfs,x(s),y(s),Dγy(s)ds,








and


G2x,y(t)=Θ^1tIβ−1g·,x(·),y(·),Dσx(·)ζ2+Θ^2t∫0TIβ−1g·,x(·),y(·),Dσx(·)sds+Θ^3Iβg·,x(·),y(·),Dσx(·)ζ1−Θ^4∫0TIβg·,x(·),y(·),Dσx(·)sds+Ξ^1tIα−1f·,x(·),y(·),Dγy(·)η2+Ξ^2t∫0TIα−1f·,x(·),y(·),Dγy(·)sds+Ξ^3Iαf·,x(·),y(·),Dγy(·)η1−Ξ^4∫0TIαf·,x(·),y(·),Dγy(·)sds+∫0tt−sβ−1Γβgs,x(s),y(s),Dσx(s)ds.








In what follows we use the following notations.


Θ=Θ1ζ2β−1Γβ+Θ2Tβ−1Γβ+Θ3ζ1βΓβ+1+Θ4TβΓβ+1+T1−σΓ2−σΘ1′ζ2β−1Γβ+Θ2′Tβ−1Γβ,Ξ=Ξ1η2α−1Γα+Ξ2Tα−1Γα+Ξ3η1αΓα+1+Ξ4TαΓα+1+TαΓα+1+T1−σΓ2−σΞ1′η2α−1Γα+Ξ2′Tα−1Γα+Tα−1Γα.










Θ^=Θ^1ζ2β−1Γβ+Θ^2Tβ−1Γβ+Θ^3ζ1βΓβ+1+Θ^4TβΓβ+1+T1−γΓ2−γΘ^1′ζ2β−1Γβ+Θ^2′Tβ−1Γβ,Ξ^=Ξ^1η2α−1Γα+Ξ^2Tα−1Γα+Ξ^3η1αΓα+1+Ξ^4TαΓα+1+TβΓβ+1+T1−γΓ2−γΞ^1′η2α−1Γα+Ξ^2′Tα−1Γα+Tβ−1Γβ,








where Θit,Θ^it,Ξit,Ξ^it,i=1,…,4, are defined before Lemma 1.



Now we state and prove our first main result.

Theorem 1.

Let f,g:0,T×R3→R be jointly continuous functions. Assume that

	(i) 

	
there exist constants lf>0,lg>0,∀t∈0,T and xi,yi∈R,i=1,2,3


ft,x1,x2,x3−ft,y1,y2,y3≤lfx1−y1+x2−y2+x3−y3,










gt,x1,x2,x3−gt,y1,y2,y3≤lgx1−y1+x2−y2+x3−y3.












	(ii) 

	


1−2Θlg+Ξlf>0,1−2Θ^lg+Ξ^lf>0.











Then the boundary value problem (1), (2) has a unique solution on 0,T.











Proof. 

Assume that ε>0 is a real number satisfying


ε≥max2Θg0+Ξf01−2Θlg+Ξlf,2Θ^g0+Ξ^f01−2Θ^lg+Ξ^lf,








where


max0≤t≤Tft,0,0,0=f0<∞,max0≤t≤Tgt,0,0,0=g0<∞.








Define


Ωε=x,y∈Cσ0,T,R×Cγ0,T,R:x,yσ×γ≤ε.








Step 1: Show that GΩε⊂Ωε.



By our assumption, for x,y∈Ωε,t∈0,T, we have


ft,xt,yt,Dγy(t)≤ft,xt,yt,Dγy(t)−ft,0,0,0+ft,0,0,0≤lfx(t)+y(t)+Dγy(t)+f0≤lfxσ+yγ+f0≤lfε+f0,



(7)




similarly, we have


gt,xt,Dσx(t),yt≤lgε+g0.



(8)




Using these estimates, we get


G1x,y(t)≤Θ1tIβ−1gζ2+Θ2t∫0TIβ−1gsds+Θ3Iβgζ1+Θ4∫0TIβgsds+Ξ1tIα−1fη2+Ξ2t∫0TIα−1fsds+Ξ3Iαfη1+Ξ4∫0TIαfsds+1Γα∫0tt−sα−1fs,x(s),y(s),Dγy(s)ds.








We use the following type inequalities


Iβ−1gζ2=1Γβ−1∫0ζ2t−sβ−2gsds≤1Γβ−1∫0ζ2t−sβ−2dsg=ζ2β−1Γβg,








to get


G1x,y(t)≤Θ1tIβ−11ζ2+Θ2t∫0TIβ−11sds+Θ3Iβ1ζ1+Θ4∫0TIβ1sdsg+Ξ1tIα−11η2+Ξ2t∫0TIα−11sds+Ξ3Iα1η1+Ξ4∫0TIα1sdsf+1Γα∫0tt−sα−1dsf≤Θ1ζ2β−1Γβ+Θ2Tβ−1Γβ+Θ3ζ1βΓβ+1+Θ4TβΓβ+1g+Ξ1η2α−1Γα+Ξ2Tα−1Γα+Ξ3η1αΓα+1+Ξ4TαΓα+1f+tαΓα+1f.



(9)




Hence, by (7) and (8) we have


G1x,y≤Θlg+Ξlfε+Θg0+Ξf0.








On the other hand,


ddtG1x,y(t)=Θ1′tIβ−1gζ2+Θ2′t∫0TIβ−1gsds+Ξ1′tIα−1fη2+Ξ2′t∫0TIα−1fsds+1Γα−1∫0tt−sα−2fs,x(s),y(s),Dγy(s)ds.








and


ddtG1x,y(t)≤Θ1′ζ2β−1Γβ+Θ2′Tβ−1Γβg+Ξ1′η2α−1Γα+Ξ2′Tα−1Γα+Tα−1Γαf.








It follows that


DσG1x,y(t)≤∫0tt−s−σΓ1−σddsG1x,y(s)ds≤T1−σΓ2−σΘ1′ζ2β−1Γβ+Θ2′Tβ−1Γβg+T1−σΓ2−σΞ1′η2α−1Γα+Ξ2′Tα−1Γα+Tα−1Γαf.



(10)




Thus by (7)–(10) we obtain


G1x,yσ=G1x,y+DσG1x,y≤Θg+Ξf≤Θlg+Ξlfε+Θg0+Ξf0≤ε2.



(11)




In similar way we get


G2x,yγ=G2x,y+DγG2x,y≤Θ^lg+Ξ^lfε+Θ^g0+Ξ^f0≤ε2.



(12)




From (11) and (12) we get


G1x,yσ+G2x,yγ≤ε.








Step 2: Show that G ia a contraction.



Now for x1,x2,y1,y2∈Ωε,∀t∈0,T we have


G1x1,y1−G1x2,y2σ≤Θlg+Ξlfx1−x2+y1−y2+Dγy1−Dγy2,G2x1,y1−G2x2,y2γ≤Θ^lg+Ξ^lfx1−x2+y1−y2+Dσx1−Dσx2.








So we obtain


G1,G2x1,y1−G1,G2x2,y2σ×γ≤Θlg+Ξlf+Θ^lg+Ξ^lfx1,y1−x2,y2σ×γ,








which shows that G is a contraction. So, by the Banach fixed point theorem, the operator G1,G2 has a unique fixed point in Ωε. □







The second result is based on the Leray-Schauder alternative. Now we formulate and prove the second existence result.

Theorem 2.

Let f,g:0,T×R3→R be continuous functions. Assume that

	(i) 

	
there exist a positive real constants θi,λii=0,1,2,3 such that ∀xi∈R,i=1,2,3


ft,x1,x2,x3≤θ0+θ1x1+θ2x2+θ3x3,










gt,x1,x2,x3≤λ0+λ1x1+λ2x2+λ3x3.












	(ii) 

	
maxA,B<1where


A=Θ+Θ^λ1+Ξ+Ξ^maxθ1,θ3,B=Θ+Θ^maxλ2,λ3+Ξ+Ξ^θ2.











Then there exists at least one solution for the problem (1), (2) on 0,T.











Proof. 

The proof will be divided into several steps.



Step1: We show that G:Cσ0,T,R×Cγ0,T,R→Cσ0,T,R×Cγ0,T,R is completely continuous. The continuity of the operator holds true because of continuity of the function f,g.



Let Ω⊂Cσ0,T,R×Cγ0,T,R be bounded. Then there exist kf,kg>0 such that


ft,xt,yt,Dγyt≤kf,gt,xt,Dσxt,yt≤kg,∀x,y∈Ω,








also, from (11) it follows that


G1x,yσ=G1x,y+DσG1x,y≤Θg+Ξf≤Θkg+Ξkf.



(13)




Similarly, we obtain that


G2x,yγ=G2x,y+DγG2x,y≤Θ^g+Ξ^f≤Θ^kg+Ξ^kf.



(14)




So, from (13) and (14) we conclude that our operator G is uniformly bounded.



Now, let us show that G is equicontinuous. Consider t1,t2∈0,T with t1<t2. Then we have:


G1x,y(t2)−G1x,y(t1)≤Θ1t1−Θ1t2Iβ−1gζ2+Θ2t1−Θ2t2∫0TIβ−1gsds+Ξ1t1−Ξ1t2Iα−1fη2+Ξ2t1−Ξ2t1∫0TIα−1fsds+1Γα∫0t1t2−sα−1−t1−sα−1fds++1Γα∫t1t2t2−sα−1fds








and


G1x,y′(t2)−G1x,y′(t1)≤kfΓαt2−t1α−1+t2α−1−t1α−1.








Thus


DγG1x,y(t2)−DγG1x,y(t1)=∫0tt−s−γΓ1−γG1x,y′t2)−G1x,y′(t1)ds≤T1−γΓ2−γkfΓαt2−t1α−1+t2α−1−t1α−1,








which implies that G1x,y(t2)−G1x,y(t1)→0,, independent of x,y as t2→t1. Similarly G2x,y(t2)−G2x,y(t1)→0, independent of x,y as t2→t1.Thus, Gx,y is equicontinuous, so by Arzela-Ascoli theorem Gx,y is completely continuous.



Step 2: Boundedness of R=x,y∈Cσ0,T,R×Cγ0,T,R:x,y=rGx,y,r∈0,1.



Let


x(t)=rG1x,y(t),y(t)=rG2x,y(t),








then


x(t)=rG1x,y(t).








By using our assumption we can easily get


xσ=rG1x,yσ=G1x,y+DσG1x,y≤Θg+Ξf≤Θλ0+λ1x+λ2y+λ3yγ+Ξθ0+θ1x+θ2y+θ3xσ,








and in similar way, we can have


yγ=rG2x,yγ=G2x,y+DγG2x,y≤Θ^g+Ξ^f≤Θ^λ0+λ1x+λ2y+λ3yγ+Ξ^θ0+θ1x+θ2y+θ3xσ.








So


xσ+yγ≤Θ+Θ^λ0+Ξ+Ξ^θ0+maxA,Bx,yσ×γ,








where


x,yσ×γ≤Θ+Θ^λ0+Ξ+Ξ^θ01−maxA,B.








As a result the set R is bounded. So, by Leray-Schauder alternative the operator G has at least one fixed point, which is the solution for the problem (1) with the boundary conditions (2) on 0,T. □








4. Examples


Example 1.

Consider the following coupled system of fractional differential equation:


cD6/5xt=e−3t126400+t4sinxt+cosyt+sinD1/5ytcD6/5yt=1123600+t2cosxt+yt2+yt+D1/3xt4+D1/3xt,t∈0,1.








With the integral boundary conditions:


∫01xsds=3y1/3,∫01x′sds=−2y′1/4,∫01ysds=x1,∫01y′sds=2x′1/2.








It is clear that


ft,x,y,z=e−3t126400+t4sinx+cosy+sinz,gt,x,y,z=1123600+t2cosx+y2+y+z4+z








are jointly continuous and satisfy the Lipschitz condition with lf=1/320,lg=1/240. On the other hand


T=1,ρ1=3,ζ1=1/3,ρ2=−2,ζ2=1/4,μ1=1,η1=1,μ2=2,η2=1/2,γ=1/5,σ=1/3,








and Θ,Ξ,Θ^,Ξ^ can be chosen as follows


Θ=3.4959,Ξ=6.4324,Θ^=5.1602,Ξ^=4.6058.








Then we obtain:


1−2Θlg+Ξlf=1−0.0693=0.9307>0,1−2Θ^lg+Ξ^lf=1−0.0718=0.9282>0.








Obviously, all the condition of Theorem 1 are satisfied so there exists unique solution for this problem.





Example 2.

Consider the following system:


cD6/5xt=140+t3+yt1151+x2t+13100+t2sinD1/5yt+133600+te−3tsinxtcD6/5yt=19+t2sint+1180e−2tsinyt+1150xt+13180+tD1/3xt,t∈0,1,








with the following boundary conditions:


∫01xsds=3y1/3,∫01x′sds=−2y′1/4,∫01ysds=x1,∫01y′sds=2x′1/2,










T=1,ρ1=3,ζ1=1/3,ρ2=−2,ζ2=1/4,μ1=1,η1=1,μ2=2,η2=1/2,γ=1/5,σ=1/3,Θ=3.4959,Ξ=6.4324,Θ^=5.1602,Ξ^=4.6058.











It is clear that:


ft,x1,x2,x3≤140+1180x1+1115x2+1300x3,gt,x1,x2,x3≤13+1150x1+1180x2+1540x3.








Thus


θ0=1/40,θ1=1/180,θ2=1/115,θ3=1/300,λ0=1/3,λ1=1/150,λ2=1/180,λ3=1/540.








We found A and B such that: A=0.1190,B=0.1444 and that maxA,B=0.1444<1. Since the conditions of Theorem 2 is achieved. So, there exists a solution for this problem.






5. Conclusions


We studied the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions. The first result was based on the Banach fixed point theorem. Secondly, by using Leray–Schauder’s alternative, we proved the existence of solutions for Caputo fractional equations with integral boundary conditions. Finally, our results are supported by examples.
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