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Abstract: The semigroup properties of the Riemann-Liouville fractional integral have played a key
role in dealing with the existence of solutions to differential equations of fractional order. Based on
some results of some experts’, we know that the Riemann-Liouville variable order fractional integral
does not have semigroup property, thus the transform between the variable order fractional integral
and derivative is not clear. These judgments bring us extreme difficulties in considering the existence
of solutions of variable order fractional differential equations. In this work, we will introduce the
concept of approximate solution to an initial value problem for differential equations of variable order
involving the derivative argument on half-axis. Then, by our discussion and analysis, we investigate
the unique existence of approximate solution to this initial value problem for differential equation of
variable order involving the derivative argument on half-axis. Finally, we give examples to illustrate
our results.

Keywords: variable order fractional derivative; initial value problem; fractional differential equations;
piecewise constant functions; approximate solution

1. Introduction

In this paper, we will observe and study the unique existence of approximate solution to the
following initial value problem of variable order

{Dgit)x(t) = f(t,x, Dg$>x),0 <t < oo, @

x(0) =0,

where 0 < q(t) < p(t) <1, f(t,x, Dgg:)x) are given real functions, and Dgy, gs:) denote derivatives
of variable order p(t) and ¢(t) defined by

(t— P(f
Dp "y == / s) Ta= p(e) x(s)ds,t > 0. (2)
10y f —s)710
D, dt (s)ds, t>0,
fo )x(s)ds is integral of variable order 1 — p(t) for function x(t), for details,

please refer to [1]
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The operators of variable order, which fall into a more complex category, are the derivatives
and integrals whose orders are the functions of certain variables. There are several definitions of
variable order fractional integrals and derivatives. The following are several definitions of variable
order fractional integrals and derivatives, which can be found in [2]. Let —oc0 < a < b < o0.

Definition 1. Let p : [a,b] — (0, +00), the left Riemann—Liouville fractional integral of order a(t) for function
x(t) are defined as the following two types

_ o\a(H)-1

I;‘it)x(t) = /at (tr(lsx)(t))x(s)ds, t>a, 3)
Fo(f_ o)als)—1

Iggf)x(t) :/a Ul,(j)(s))x(s)ds, t>a. 4)

Definition 2. Let « : [a,b] — (n — 1,n] (n is a natural number), the left Riemann—Liouville fractional
derivative of order a(t) for function x(t) are defined as the following two types

mot(p_ gyn—a(t)-1
DZ_(:)x(t) - <[jt> /a <tI“(n)_[x(t))x(s)ds’ t > ll, (5)
n _ q\n—a(s)—1
D Vx(t) = (i) /af (tr(rls)_a(s))x(s)ds, t>a. (6)

Definition 3. Let « : [a,b] — (n — 1,n|(n is a natural number), the left Caputo fractional derivative of order
a(t) for function x(t) are defined as the following two types

bt g\n—a(t)—1
CDZ‘J(:)x(t) :/ (tr(:)_“(t))x(")(s)ds, t>a, (7)

a

F(t_ q\n—a(s)—1
CDZS:)x(t) :/H (tr(:)_a(s))x(”)(s)ds, t>a. (8)

The problems denoted by the operator of variable order are apparently more complicated than
the ones denoted by the operator of constant order. Recently, some authors have considered the
applications of derivatives of variable order in various sciences such as anomalous diffusion modeling,
mechanical applications, multi-fractional Gaussian noises. Among these, there have been many works
dealing with numerical methods for some class of variable order fractional differential equations,
for instance, [1-20].

We notice that, if the order p(t) is a constant function g, then the Riemann-Liouville variable
order fractional derivatives and integrals are the Riemann-Liouville fractional derivative and integral,
respectively [21]. We know there are some important properties as following. Let —co < b < co.

Lemma 1. [21] The Riemann—Liouville fractional integral defined for function x(t) € L(0,b) exists almost
everywhere.

Lemma 2. [21] The equality 1], IS, x(t) = I$, 1], x(t) = Ig:’sx(t), 0 <+v<1,0< 6 < 1 holds for
x € L(0,b).

Lemma 2 is semigroup property for the Riemann-Liouville fractional integral, which is very
crucial in obtaining the following Lemmas 3-5. In other words, without Lemma 2, one could not have
Lemmas 3-5, for details, please refer to [21].

Lemma 3. [21] The equality D, I], x(t) = x(t), 0 < 7y < 1 holds for x € L(0,b).
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Lemma 4. [21] Let 0 < a < 1, then the differential equation
Dy, x=0,t>0

has solution
x(t) =ct* LceR.

Lemma 5. [21] Let0 < a < 1,x € L(0,b), D§, x € L(0,b). Then the following equality holds
I§,Dg x(t) = x(t) + ct* 1, c € R.

These properties play a very important role in considering the existence of the solutions of
differential equations for the Riemann-Liouville fractional derivative, for details, please refer to [22-26].
However, from [15-18], for general functions h(t), g(t), we notice that the semigroup property does
not hold, i.e., I L(_t) IfJ(:) #* IZ_(:Hg ®, Thus, it brings us extreme difficulties, that we cannot get these
properties like Lemmas 3-5 for the variable order fractional operators (integral and derivative). Without
these properties for variable order fractional derivative and integral, we can hardly consider the
existence of solutions of differential equations for variable order derivative by means of nonlinear
functional analysis (for instance, some fixed point theorems).

In [18], by means of Banach contraction principle, we considered the uniqueness result of solutions
to initial value problems of differential equations of variable order
DIVx(t) = f(t,x),0 <t <T, o

x(0) =0,

where 0 < T < +o00, Dgﬁ) denotes derivative of variable order defined by (2), and q : [0, T] — (0, 1]
is a piecewise constant function with partition P = {[0, T1], (T}, T2}, (T2, T3], - - - , (Tn+—1, T]} (N* is a

given natural number) of the finite interval [0, T], i.e.,

N*
q(t) = Y qle(t),t €0, T),
k=1

where 0 < g, < 1,k = 1,2,--- ,N* are constants, and I; is the indicator of the interval [T;_q, Ty,
k=1,2,---,N*(here Ty =0, Ty+ = T), thatis I, = 1 for t € [T_q, Ty], Iy = 0 for elsewhere.

In this paper, we will consider the existence of solutions to the problem (1) for variable orders
p(t),q(t) are not piecewise constants. Based on some analysis, we will introduce the concept of
approximate solution to the problem (1). Then, according to our discussion and analysis, we explore
the unique existence of the approximate solution of the problem (1).

This paper is organized as follows. In Section 2, we provide some facts to the variable order
integral and derivative through several examples. Also, we state some results which will play
a very important role in obtaining our main results. In Section 3, we set forth our main result.
Finally, two examples are given.

2. Some Preliminaries on Approximate Solution

In this section, we give some preliminaries on approximate solutions to the initial value problem (1).
First of all, we use an example to illustrate the claim: for general function p(t), q(t), the Riemann-Liouville
variable order fractional integral does not have the semigroup property.

Example 1. Let p(t) = £ + % qt) =4+ %, f(t) =1,0 <t < 3. Now, we calculate Igf) Igﬁ)f(t)h:l and
OO £(4)|,_y which are defined in (3).
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For1 < t < 3, we have

ty 1 s 1
PO (1) £y F(t—s)stal rs(s—)ital
Ioy " Ip: f(t) = /0 /0 : ) dtds

/1 (t—s)6—3st+i ; +/t (t—s)6—3stti ;

= S S.
0 T(§+3)T(G+3) 1 T(g+ 35 +3)

We set M1 = maxj<;<3 |m| and My = maxj<s<3 |%| For1 <t < 3, it holds

t (t—s)63siti br 2 t—s.t 2 siti
[ oo dsl = [ 3 )
J1 T(g+3)0(z +3) 1 I(g+3)I(z+3)
t _
< MM, [ 3330 3aas

IN

t
Mle/ 3%(f — s)_%3ds
1

= 2x3IMMy(t—1)2,

hence, we have

(§
So, we get
1 o _1 l_l’_i
Igfr)l"( fB)]e 1—/ a I 3) 52 4S4ds~1063
o T()I(z+3)
and
1—s)P+
B (o) = [ (W(i) ds= [Cds=1.
Therefore,

BOEO )iy # OO (1)),

Without the semigroup property of the Riemann-Liouville variable order fractional integral,
we can assure that the variable order fractional integration operator of non-constant continuous
functions p(t) for x(t) does not have the properties like Lemmas 3-5. Consequently, we cannot
transform differential equations of variable order into an integral equation.

Let L[x(t);s], L[Igf)x(t);s], L[Dgg:)x(t);s] denote the Laplace transforms of functions x(t),
Igf)x(t) and Dg_(:)x(t). We have not found out the explicit connection between L[x(t);s] and

L[IgJ(:) x(t);s], as a result, we have not found out the explicit connection between L[x(t);s] and
t
LIDYx(t);s].

Example 2. Let p(t) = 7 +1,1% > 0. We consider the Laplace transforms of functions t(t > 0) and I ( )t t(t >

0) defined in (3). We can know that

L[t;s] :/ e Stdt = Slz (10)
0
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H

1 — )t 21
L[Iéfl) “ts] = / _St/ (t=7) ~—————7dtdt
L((t+1)~2

t+l —1
_ / *Sf/ U= 7 e
t+1 )"2)

(o) 00 (T+r+1) 7—1
. / e—s(T+) / r _rdrdr
0 0 T((t+r+1)72)

N\»-a ~—

1
2-1

) 0 F(THr+1)
= / e*STT/ e ¥ —drdT. (11)
0 " T (e

,_\

By (10) or (11), we do not get the explicit connection between L|[t;s] and L[I,’ (D 2, s].

In view of this example, the definition of variable order fractional derlvatlve and the connection
between the Laplace transforms of function x(t) and its derivative x’(t), we cannot obtain the Laplace
transform formula for variable order fractional derivatives (2). Based on these facts, we cannot get the
explicit expression of the solutions for the problem (1).

Throughout this paper, we assume that

(A1) Let p : [0,4+00) — (0,1) and g : [0, +00) — (0,1) be continuous functions, q(t) < p(t) for all
t € [0, +00), and that p(t), q(t) satisfy

Jm p(t) = p1, lim q(t) = 2,0 <p1,02 < 1. (12)

The following result is necessary in our next analysis of main result.

Lemma 6. Let condition (A1) hold. Then there exist positive constant T, natural number n* and intervals
0, T1],(Th, T],- -+, (Tyx—1, T] (T, +00)(n* € N) and functions « : [0, +00) — (0,1) and B : [0, +o0) —
(0,1) defined by

Z peli(t) + p1Ir(t), t € [0, +o0), (13)

Z Akl (t) + p2Ir(t), t € [0, +00), (14)
where py, qi € (0,1), It (t) is the indicator of the interval [Ty_1, Ty] (k =1,2,--- ,n*, here Ty = 0, Ty» = T),
ie, I(t) =1fort € [Ty_q, Ti], I(t) = O for t lying in elsewhere; It (t) is the indicator of interval (T, +o0),
ie,Ir(t) =1fort € (T,+o0), Ir(t) = O for t lying in elsewhere, such that for arbitrary small € > 0,

Ip(t) —a(t)] <e|q(t) —B(t)] <e 0<t< oo (15)

Proof. By (12), for V € > 0, there exist T1, T, > 0, such that

Ip(t) — 1] < et > Ty;|p(t) — pa| <&t > To.

Let T = max{Ty, T, }, then, for V ¢ > 0, we have that

p(t) —p1l <& p(t) —p2f <et>T. (16)

We know that p : [0,T] — (0,1), g : [0, T] — (0,1) are continuous functions. Since p(t) is right
continuous at point 0, then, for arbitrary small e > 0, there is yp; > 0 such that

Ip(t) — p(0)] <e for 0 <t < dp.
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Since g(t) is right continuous at point 0, then, for arbitrary small ¢ > 0, there is éyp; > 0 such that
lg(t) —q(0)] <¢, for 0 <t < dpp.
Then for arbitrary small ¢ > 0, takeing 6y = min{do1, do2 }, it holds
Ip(t) —p0)] <& lq(t) —q(0)] < for 0 <t <ép. (17)

We take point §g = Ty (if T} < T, we consider continuities of p(t),q(t) at point Tj, otherwise,
we end this procedure). Since p(t) is right continuous at point Tj, so, for arbitrary small ¢ > 0, there is
611 > 0 such that

[p(t) —p(Th)| <e, for Ty <t < T +dn,

Since ¢(t) is right continuous at point Ty, then, for arbitrary small & > 0, there is 41 > 0 such that
lg(t) —q(T1)| <e for Ty <t < T+ .
Hence, for arbitrary small ¢ > 0, taking d; = min{dy1, 412}, it holds
Ip(t) —p(Ty)| <e |q(t) —q(Th)| <e, for Ty <t <Ty+d. (18)

We take point Ty + 01 = T, (if T, < T, we consider continuities of p(t),q(t) at point T, otherwise,
we end this procedure). Since p(t) is right continuous at point Ty, so, for arbitrary small ¢ > 0, there is
071 > 0 such that

p(t) —p(T2)| <e for T, <t < Tr+dy.

Since g(t) is right continuous at point Ty, so, for arbitrary small e > 0, there is d» > 0 such that
() —q(T2)| <e, for T, <t < Tp+dn.
Thus, for arbitrary small e > 0, taking d, = min{dy1, I}, it holds
lp(t) —p(T2)| <e¢ |q(t) —q(T)| <e, for T, <t <T,+d. (19)

We take point T, + &, = T3 (if T3 < T, we consider continuities of p(t), g(t) at point T3, otherwise,
we end this procedure). Since p(t) is right continuous at point T3, so, for arbitrary small ¢ > 0, there is
031 > 0 such that

[p(t) = p(T3)| <e, for Ty <t < T3+ 53,

Since q(t) is right continuous at point T3, so, for arbitrary small e > 0, there is d3, > 0 such that
lq(t) —q(T3)| <e, for Tz <t < T3+ 3.
Therefore, for arbitrary small ¢ > 0, taking d3 = min{ds1, d3, }, it holds
p(t) = p(T3)| <& |q(t) —q(T3)| <e for T3 <t < T3+ ds. (20)
Since [0, T] is a finite interval, then, continuing this analysis procedure, we could obtain that
there exist y«—p > 0,8,+—1 > 0(n* € N)suchthat Ty« p+ 60 = Tyr 1 < T, Tpp 1+ 6p»1 > T,

such that for arbitrary small € > 0, it holds

|p(t) — p(Tn*_1)| <e§, |q(t) — E](Tn*_l)| < ¢ for Tn*—l S t S T, (21)
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From (16)—(21), we could let
p(0) = p1,p(T1) = p2, p(T2) = p3,p(T3) = pa, -+, P(Tu—1) = P,

700) = q1,9(T1) = q2,9(T2) = q3,9(T3) = qa,- - -, 4(Tpr—1) = G~

Thus, we define functions «, B : [0, +c0) — (0,1) as following

P1, te [0/ Tl]/ q1, te [0/ Tl]/

PZI te (Tl/ TZ]/ Q2/ te (Tlr TZ];
a(t) =2 B(t) =4

Pn*, te (Tn*—er]/ In*, te (Tn*—l/ T]/

p1, te€ (T, +00), p2, te (T, +0).

Hence, from the previous arguments, for arbitrary small e > 0, we have

lp(t) —p1l <& lq(t) —q| <e for t €[0,T],

lp(t) — p2| <& lq(t) —qa| <e, for t € (T1, T2,
: (22)
lp(t) — pur| <& 1q(t) —que| <e, for t € (Ty1,T],

lp(t) —p1]l <& lq(t) —p2| <e for t € (T,+o0).
Thus, we complete this proof. O

The following example illustrates that the semigroup property of the variable order fractional
integral does not holds for the piecewise constant functions p(t) and q(t) defined in the same partition
of finite interval [a, b].

Example 3. Let p(t) =

<t < <t<
4 0<t<1, (t):{3f°—t—1' and f(f) = 1,0 < t < 4. We'll

3, 1<t<4, 2, 1<t<4,

verify Ig_(:)lg_(:)f(f)h:g, # Igf)ﬂ(t)f(t)h:g, here, the variable order fractional integral is defined in (3).
For1 <t <4, we have

0

B N L e
_ /O / drds+/1 /0 o dds

F(p(t ) 0 F(3) F(p(t)) (2)
B 1 (t — s)P(t)—lsa = S)p(t)_ls2
= wpmr ) T

thus, we have

13— 3)253d /3 (3 —15)%s? 245
1

p(t) 1q(t) _ B=s)s WO=S)s 4y 220
Lo Toy f(B)]i=3 = /O or3) T zr(z)r(s)ds 144"
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(Ota(t) B (3_5)77 -1 B 33+2 81
1Y E ()]s —/O T(p(3) + ( )) ds = T(1+3+2) 40°

Therefore, we obtain
BB £z # BT £(1)] s,

which implies that the semigroup property of the variable order fractional integral does not hold for the piecewise
constant functions p(t) and q(t) defined in the same partition [0,1], (1,4] of finite interval [0, 4].

Lemma 7. [10] Suppose p > 0, a(t) is a nonnegative nondecreasing function locally integrableon 0 < t < L
(some L < +o0) and g(t) is a nonnegative nondecreasing continuous function defined on 0 < t < L, g(t) < M
(constant), and suppose u(t) is nonnegative and locally integrable on 0 < t < L with

u(t) < a(t) + g(t) /Ot(t — §)BLu(s)ds

on this interval. Then
u(t) < a(Eg(g(OT(BF),0 < t < L,

k

where Eg is the Mittag—Leffler function defined by Eg(z) = Y32, m

3. Existence of Approximate Solution

According to the previous arguments, we do not transform the problem (1) into an integral
equation. Here, we consider the unique existence of approximate solution of the problem (1). In this
section, we present our main results.

Now we make the following assumptions:

(A3) f:]0,4+00) x R> — R be a continuous function, and there exist positive constants A > {p1, 02},

c1,¢2 > 0 satisfying
C1 Co

+ <1,
[(1+p1) T(1+4p1—p2)

such that

£ ), (L #y1) = F(8 (L ), (L4 #)y2)| S erlxn —xal +calyr — 2l (23)
where p1, pp are the constants in (A1).
(A3) f(£,0,0)(t € (0, +00)) satisfies

lim 1
t—+oo 1+ tA

/ (t — s)1=P2=1| £(s,0,0)|ds = 0.
Let B; denote the Banach spaces defined as
B; = {x|x € C[0, T;]}
with the norm

i3, = max [x(£)], (24)

where T; is the constant obtained in Lemma 6,i = 1,--- ,n*(T,;» = T). Let

£ {x

|x(t)]
X € C[0,+w),i121£) 1 < 00
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with the norm

[x(t)]
X||g = su , (25)
Il = sup £
where A > {p1,p2}. Then, by the same arguments as in Lemma 2.2 of [22], we know that (E, | - ||g) is
a Banach space, here we omit this proof.
Now, we consider the following initial value problem

t t
{Dgﬁ)x(t) — £(t, %, Dfx),0 < t < +oo, 26

x(0) =0,

where a(t), B(t) are defined in (13) and (14).

In order to obtain our main results, we start off by carrying on essential analysis to the equation
of (26).

By (13) and (14), we get

/t Mx(s)ds — ni: I(b) /t Mx(S)ds + Ir(t) /t g_t(_s)_p;x(s)d&

o I'(1—a(t)) = o T(1—pk) o T(1—p
E(t— S)fﬁ(t> —5) 4K t(t—s) P2 B
/ NERTIG Z Lt /O e x(s)ds +Ir(t) | Ty X(5)s = (1),

So, the equation of (26) can be written by

d = (t—s) Pk E(t—s)=M B d
o ; /O Wx(s)ds+b(t)/o Ty ¥()4) = f(b. % g a(£)), 0< 1< oo, (27)

Then, Equation (27) in the interval (0, T;| can be written by

— 1
dt/ tljpl (s)ds = D' x() = f(t,x, DI x),0 < t < Ty. 28)

The Equation (27) in the interval (T, T»] can be written by

/t_s " (s)ds /t_s E (s)ds), Ty < t<T (29)
dat 1*]92 dt 1*Q2 ! =2

The Equation (27) in the interval (T3, T3] can be written by

d [t(t—s)r _ d (t(t—s)™
E/o r(17_}93)945)513 —f(t,x,a/o WX(S)QTS), T, <t<Ts. (30)

The Equation (27) in the interval (T;_1, T;],i = 4,5, - - ,n* (T,» = T) can be written by

t—s i t—s i
: < T..
dt./ T(1-p) x(s)ds dt/ 1—qZ (s)ds), Tig <t<T, (1)

The Equation (27) in the interval (T, +00) can be written by

/t_s " (s)ds = /t_s ® ¥(s)ds), T <t < +oo (32)
dt 1—p1 N "dt 1—p2 '

Now, we present the definition of a solution to the problem (26), which is crucial in our work.
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Definition 4. We say the problem (26) exists one unique solution, if there are unique functions u;(t),
i=1,2,---,n* such that u; € C[0, Ty] satisfying Equation (28) and u1(0) = 0; uy € C|0, To] satisfying
Equation (29) and up(0) = 0; uz € C[0, T3] satisfying Equation (30) and u3(0) = 0; u; € C[0, T;] satisfying
Equation (31) and u;(0) = 0 (i = 4,5,--- ,n*)(Ty» = T); ur € C[0,+o0) satisfying Equation (32) and
MT(O) =0.

The following is the definition of approximate solution of the problem (1).

Definition 5. If there exist T > 0, natural number n* € N and intervals [0, T], (T1, T2, - - -, (Tp+—1, T),
(T, +o00) and functions defined in Equations (13) and (14), such that the problem (26) exists one unique solution,
then, we say this solution of the problem (26) is one unique approximate solution of the problem (1).

Our main result is as follows.

Theorem 1. Let conditions (A1), (Az), (As) hold, then the problem (1) exists one unique approximate solution.

Proof of Theorem 1. From Definitions 4 and 5 and Lemma 6, we only need to consider the unique
existence of solution of the problem (26). According to the above analysis, equation of problem (26)
can be written as the Equation (27). So Equation (26) in the interval (0, T;] can be written as (28).
Applying operator I& to both sides of (28), by Lemma 5, we have

x(t) = et~ + r(lpl) /Ot(t —s)P171f (s, x(s), D\ x(s))ds, 0 <t <Ty.

By x(0) = 0 and the assumption of function f, we get ¢ = 0, that is

% /Of(t — )P 1 f(s,x(s), D' x(s))ds, 0 <t<Ti. (33)

x(t) = I'(p1

Let Dgix(t) = y(t), then, according to x(0) = 0 and Lemma 5, we get that

x(t) = I, y(t),

hence we will consider existence of solution to integral equation as following

V0 = s [ () p(e)ds, 0< < T 69

T(pr—m

Obviously, if y* € By = C[0, T1] is a solution of (34), then, applying operator Igir on both sides
of (34), from Lemma 2, it holds

1Ly () = LI F(E 154y (8, ™ (1) = Iy f (4 I3 y™ (6,97 (1), 0<E< Ty,

let
Iy (t) = x*(1),0 <t <T,

as a result, we have that
X*(t) = I} f (6 x5 (), D, x* (1), 0<t< Ty,

thatis, x* € By = C[0, Ty] is a solution of (33), thus, we know that x* € B; = C|0, T1] is a solution of
Equation (28) with zero initial value condition.
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Define operator F : B — By by

1 t
F]/(t) = m/o (t - S)pl_ql_lf(s, Igiy(S),y(S))dS, 0 S t S Tl. (35)

From the continuity of function f and the standard arguments, we know that the operator
F : By — Bj is well defined. Let M = maxg<;<7 |f(t,0,0)|. Let ()1 be a bounded, convex and closed
subset of By defined by

Oy = {yly € Bi; [y(t)| < KR M0 <t < Ty},

where
o oamT
T rl4+pi—q)’
R; € N satisfying

2d+(1 TPl—fh
R1 > {1’(M)P1lﬁ }’
P1—1q1

a1
here d; = m 1{%1!71) + CZ] (c1, c7 are the constants appearing in condition (Ay)).
By the analogy way as in [23], we could verify that F : ()7 — ) is well defined. In fact, for

y € (), since

1 s _
Iys) < = [ (s—1)" y(r)|dr
T'(q1) Jo
< rgl ) /S(s — )R g
1) Jo
1) Jo
K R25P1—01
= — = g™
I'(1+q1)

Kl Tih R%sm—ﬂ]
I'(1+q1) '

Now, y € ()1, by estimations above and (A;), we get

[Fy(t)]

< g A ) v s

_ F(ml—ch) / (£ )1 f s, 1y (5), 9(s)) — £(5,0,0) + £(5,0,0)ds
: r(fﬁ_mql) * = A ufl?-yii)l re! s
< Dy r(pll_ql) | (= )P0 e L y(s)] + caly(s) )ds
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K 1 t Kie T _
< 1 +7/ (t_s)Pl—ql—l #61{%5”1 7 + oKy eR P g
2 T(pr—m) I(1+q)
Rl 1
< B +K1d1[ / 5)P1=n 1 RIS g
't —1,R3sP1—
[ (E =) 1R g
Ry
K Rl Lo 2.p1—
< 21 +Kld1[ / 1 l P11 R i)pl_ql_ltpl_ql_leR15pl M s
t -1 RZtm (41
+ [ (t=s)pm ds
Ry
K Rl 1 R l
< K —I—Kldl{ / 1 P11 pr—g1—1 R3S g
t —g1—1 R2th1—N
+/(R171)t (t—s)Pr M2 ds
Ry
(R =)t q1—p1 P11
_ Kl —I—K d Rl p1+q1/ Rq tpl_ql_leR%spliqlds#- Klle1 T1 eR%tpl’ql
2 0 P1—1q1
(Ry 1)t q1—p1P1—N
< I;l + Kqdy Rl P1+q1/ M gp—m— 1R g Kldl]} qu SRt M
0 141
1-p1+ - - -
_ Ky Kllel pP1+Tq R{(U“Tl)t)l’l*‘h +K1d1Rzl PlTlpl qleR%t’”l“h
B 2 Ri(pi—q1) P1—q
—1—pq+ — _
< Kl Kllel P eR%tmﬂh +K1d1R‘{l plTlpl n eR%tPr'il
- 2 P1—m P1—n
Kl thﬂl qn Kldl(l‘i‘Tp1 ql) qm—p1 R2tl’1 9
< 2 + v 7 R
1Y
< %eR%tPr’h + %eR%tm*‘h _ KleR%tl’r‘H,

which implies that F : (33 — ()5 is well defined. By the standard arguments, we could know that
F : (O — g is a completely operator. Hence, the Schauder fixed point theorem assures that operator
F has at least one fixed point y;(t) € Q3. Obviously, y;(0) = 0. Now, we will verify the uniqueness
of solution to the integral Equation (34). We notice that: for 0 <s <t < T3,if 0 <t —s < 1, then
(t—s)Pr~1 < (t—s)Pr=n~L;ift —s > 1, then (t —s)P1~ 1~ 1 < (t —s)P1~1, As a result, we take

max{(t —s)P17 L, (t —s)Prmm—1} = ( — )",

where a denotes p; or p; — q1. Now, let u;(t), us(t) zre two solutions of the integral Equation (34),
by expression above and (A7), we get

lup(t) — uz(t)]

I8 (u1(s) — ua(s))] luy(s) — ua(s)|
t—g)r—n-1 0+ 1
I'(p1 —Lh)/o (e 1+t teT g

IN

)ds



Mathematics 2019, 7, 286 13 of 23

S m a9l (n(5) — uals))] + calin(5) — ()i
S om0 (1) = () s

i [ =97 () — a(o)lds
= s o [ s = 0 (1) = (s

e [ =9 i (s) — (o)
= i [0 i — il s [P i s) ~ wa)lds
S [ ) el B [ () ~ o)l

1 2

= )LKU—rw*uuﬂ—uxﬂwn

Iy T -
by Lemma 7, we obtain that u;(t) = uy(t), 0 < t < Ty, this assures the uniqueness of solution of (34).
As a result, by some arguments above, x1 () = I y1(t) is one unique solution of the Equation (28)
with zero initial value condition.

Also, we have obtained that the Equation (27) in the interval (T}, Tp] can be written by (29).
In order to consider the existence result of solutions to (29), we may discuss the following equation
defined on interval (0, T3]

(t —s)"P2x(s) pz B (t—s) 1x(s B P
dt/ 1—P2 ~—————~ds = Dj dt/ 1—Q2 ds)—f(t,x,DOer). (36)

It is clear that if function x € C|0, T,] satisfies the Equation (36), then x(t) must satisfy the
Equation (29). In fact, if x* € C[0, T] with x*(0) = 0 is a solution of the Equation (36) with initial value
condition x(0) = 0, that is

Dgix*(t)
B (t—s) " P2x*(s)
o dt / 1 — PZ Ty
(t—s)"%
—  f(t,x"(1), DR x*(t) = dt/ Sl_ ’; (E=8)7"x08) 4y, 0< t< Ty x*(0) = 0.

Hence, from the equality above, we have that x* € C[0, T,] with x*(0) = 0 satisfies the equation

(t —s) P2x*(s) (t —s) " 12x*(s)
s = ~— T <t<T;
dt/ TA—pa) °7 dt/ 1—q2 ), i <t<Ty

which means the function x* € C[0, T,] with x*(0) = 0 is a solution of the Equation (29).
Based on this fact, we consider the existence of solutions to the Equation (36) with initial value
condition x(0) = 0.
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IPZ

Now, applying operator I, on both sides of (36), by Lemma 5, we have

1
I'(p2)

By initial value condition x(0) = 0, we have ¢ = 0, that is

x(t) = ctP>~ 1 4

/Ot(t —s)P271f(s,x(s), D2 x(s))ds, 0 <t < T,

1) /Ot(t - s)i’z*lf(s,x(s),Dgix(s))ds, 0<t< Ty (37)

x(t) = e

Let D’ x(t) = y(t), then, according to x(0) = 0 and Lemma 5, we get that

x(t) = I3 y(t),

hence we will consider existence of solution to integral equation as following

! )/t(ts)”z 21f(s, 1% y(s), y(s))ds, 0<t < T, (38)

y(t) = T(p2—q2

Obviously, if y* € By = C|0, T] is a solution of (38), then, by (38) and Lemma 2, it holds

Iy (1) = I3 103 (6 133 y™ (0,97 (1) = I3 f (L Iy (8,57 (1), 0<t< Ty,

let
IRy (t) =x"(1),0<t< T,

as a result, we have that
X (t) = I3 (4,2 (), D x* (1), 0<t< Ty,

thatis, x* € B, = C[0, T] is a solution of (37), hence, x* € B, = C|0, T] is a solution of Equation (29)
with zero initial value condition.
Define operator F : B, — B, by

Fyl0) = o [ =9 6 R Y6y, 0 1< T

T'(p2 —q2) Jo
From the continuity of function f and the standard arguments, we know that the operator
F : By — By is well defined. Let (), be a bounded, convex and closed subset of B, defined by

Oy = {yly € By [y(t)| < KpeRo"™* ™0 < t < Ty},

where

2MT)> 7
Kp= 2,
I(1+p2—q2)
Ry € N satisfying

p2—1q2
M) pzlqz }’
P2 —4q2

Ry, > {1,(

a2
1 T,
here d; = T(p2—42) { T(1+q;

arguments above, there exists y, € Q) such that x;(t) = If2,(t) is one unique solution of the
Equation (29) with zero initial value condition.

y+ cz] (c1, c2 are the constants appearing in condition (A;)). By the same
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In a similar way, fori = 3,--- ,n*, we get that the Equation (31) defined on (T;_1, T;] (T, = T)
has one solution x;(t) € ; C B; with x;(0) = 0, where
;= {yly € Bi ly(t)] < K" "0 <t < T,

ZMTipi—‘ii
C(1+pi—q)

i =

R; € N satisfying

2d;(1+ T/ ") 1
R; > {1,(1( i ))m,}
pi—4i
1 C]qu . . age :
here d; = =) [ TGETD) + cz} (c1, c3 are the constants appearing in condition (Ay)),i =3,4,--- ,n*,

T, =T.

Finally, we get that the Equation (27) in the interval (T, +c0) can be written by (32). In order to
consider the existence result of solutions to (32), we may discuss the following equation defined on
interval (0, +o0)

— 01
dt/ u (1 ipl (s)ds = D§L x(t) = f(t,x, D’ x), 0 <t < +oo. (39)

We see that, if function x € CJ0, +o0) satisfies the Equation (39), then x(t) must satisfy the
Equation (32). In fact, if x* € C[0, +0c0) with x*(0) = 0 is a solution of the Equation (39) with initial
value condition x(0) = 0, that is

. (t—s) P1x*(s * «
D= G iy e S0 0D

(t —s) P2x*(s) winy
= dt/ 1_ ) —————2ds), 0<t<4o0; x*(0)=0.

Hence, from the equality above, we have x* € C[0, +o0) with x*(0) = 0 satisfying the equation

(t—s)"P1x(s) / (t—s)~P2x(s)
dt/ T —py) ———————=ds = f(t,x(t dt 1—p2 ——————2ds), T<t< 4o,

which means the function x* € C[0, +0c0) with x*(0) = 0 is a solution of the Equation (32).

Based on this fact, we will consider the existence of solutions to the Equation (39) with initial
value condition x(0) = 0.

Now, applying operator Ig}r on both sides of (39), by Lemma 5, we have that

t
x(t) = et 4 /O (t = s)P1=Lf (s, x(s), D x(s))ds, 0 < t < +c.

I'(p1)

By initial value condition x(0) = 0, we have ¢ = 0, that is

1

)= T

/Ot(t —5)P171f(s,x(s), D% x(s))ds, 0 <t < oo, (40)

Similar to arguments above, we let Dgix(t) = y(t), then, according to x(0) = 0 and Lemma 5,
we get that

x(t) = I y(b),
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hence we will consider existence of solution to integral equation as following

VO = po s ) =P () (o), 0% 1< e @)

I'(p1 —p2) Jo
Obviously, if y* € E is a solution of (41), then, by (41) and Lemma 2, it holds
Iny" (1) = I3 oy P F (6 I3y (), y* (5) = IgLF (8 I3 y™ (5,57 (1)), 0 <t < oo,

Let
182y (t) = x*(£),0 < t < +o0.

As a result, we have that
x*(t) = Iplf(t x*(t ),Dgix*(t)), 0<t < +oo,

that is, x* € E is a solution of (40), hence, x* € E is a solution of Equation (32) with zero initial
value condition.
Defining operator F : E — E as follows

F(t) = o )/@—@Msz@fw<nm»mﬂSt<+w

I'(p1—p2) Jo

To get the operator F : E — E is well defined. First, we verify that Fy € C[0, +o0) for x € E.
In fact, for the case of ty € (0, +00), take t > to, t — ty < 1, then

(to—s)P 1 > (t—s)P171,0 <5 < .
Now, for y € E, it holds

YOl fols = y(@lde

1+ — T(p2)(1+st)
< Jo (s =P 11+ ) [yl dT
B T(p2)(1+s%)
- Jo (s — )P (1 +5") |lyllpdT
B [(p2)(1+5s%)
_ |yl s
I(1+p2)

thus, for y € E, we have

o 02 s
Frls T(Pll—m)/o ((to =) =P~ — (t=s5)1 727 1)(cy 11 KEAH ) 1|y4£ 3)|\)ds
1 : o1, I0Y(5)]
g Jo O e e e
“FM /Oto((to — s)Pl*szl _ (i’ _ s)Plfpzfl)‘f(S/O,O”ds
1

"Tlor—p2) / (t = 57721 (5,0,0)1ds
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< e Pl -t s (apg

— +0 )ds
F(pl — P2 1 +P2) 2)

[l t - _1< s )
+———— [ (t—=s) P2 g + 2 |ds
or—p2) o' "T+p)

max0<t<t0+1 |f t 0 0 | tO
(01

ol ()i lgs

maXo<t<ty+1 |f(t/ 0, 0)| t(t _ S)pl*pz*lds
I'(o1 — p2) to

We will consider the four terms above, respectively. For 0 < # < p; — p2, it is easy to show that

! . L(1+3)L(p1 — pa)t— P2+
t—g)P—P2-1lgngs — .
/0( ) T(1+p1—p2+7)

Hence, for any given € > 0, there exists a §; > 0, such that, when 0 < ¢y < 4y, it holds that

aillylle /to 1 ellylle /to o ¢
ty—s)Pr P2 lgh2gg = _=JIE b gyl < £ )
[(o1 —p2)T(1+p2) Jo ( ) 4 (02 — 02) (to—s) 1 (42)

Moreover, we get

£
/0((t0 —s)P1mP2ml _(p gy l)s02
&1

t
< [Tl s
1
2
= 0 (kg — 87)P17FP2 — (£ — 67)P17P2 4 (t — £y)P17F2)
P1—pP2
e
< L(t — tg)P17F2,
P1—pP2
o —po—1 —pp—1 1 -
/ ((tO — S)Pl 2=l _ (t — S)Pl 02 )ds < (t — tO)Pl P2
1 P1—pP2

hence, we know that there exists d, > 0 such that for 0 < t — ty < J,, we have

allylle 1 —0p—1 €
tg —s)Pr P2~ t—s)P1m P27 )sP2ds < —,
I(p1 —p2)T (1 +p2) Jo (( ) (=) ) 4

callylle /fo pa1 ot :
A LA L. tg—s)P1 P27 — (t —s)P17 P27 1) ds < —,

together with (42), it leads to

fo po— —pa- c1ly|[es2 eyl
ty —g)P1—P2=1 _ (4 _ g)p1—p2—1 1 + ds < e.
/0 ((to ) ( ) )(T(p1 —02)T(1+p2)  T(p2 —PZ))

By the direct calculation, we have

/t(t — s)Pl—P2—15P2ds < (to+ 1)02%
to 01— P2



Mathematics 2019, 7, 286 18 of 23

oot Lo
to S P11 P2

which implies that there exists 3 > 0 such that for 0 < t — ty < d3, we get

f e c1llyles* cllylle
t—g)Pr—p2—1 1 + ds < e.
/to( ) (F(m —p2)T(1+p2)  T(p2 —Pz))

By the same arguments, we get that these estimations still hold for the last two terms above. Hence,
we obtain Fx(t) is continuous on point ty. In view of the arbitrariness of ty, we have Fx € C(0, +c0).
For the case of t) = 0, by (Ap), fory € E, take t < 1, then

B0l = g ) =7 P s (), w(s)as

llylle /t —or1 572
< [ (=512 ) (¢ = + C2)ds
S Tei-e b )<%u+m> ?)
maXp<r<i If t 0 O | Pl —02— 1dS

I'(p

From the previous arguments, we could know that Fy(t) is continuous on point 0. As a result,
we have Fy € C[0,+o0) for x € E.
By the similar arguments, for y € E, by (Az), we have

|fi(?\| < T(or le)(1+t)‘) /Ot(t—s)Pl P21, |I:2+ g)\) e 1|y+( s)/|\)
+T(Pl - pzl)(l + 1) /ot(t — )PP £(5,0,0)|ds
< o —|pyz)|§1 e /O (t— s)p1p21(clr(lsf’;m s
+r(pl _ pzl)(l Iy /Ot(t —5)P1=P271[£(5,0,0)|ds
lylle  cat” o tP1P2

14 tA [F(l +po1) T(1+p1—p2)

1
o —p) 1+ 1Y

/(tfs)Pl ~02-11£(s,0,0)|ds,

according to these estimations and (Aj;), we ge that lim;_, |« llr +(t A) 0. Hence, F : E — E is well defined.

Now, for x,y € E, by a similar way, we get

[Fx(t) — Fy ()]

14t}
1 t [PZ |x( ) y(S)‘ |X(S) —y(5)|
< _ypi—p2-1
N F(Pl—Pz)/o(t ®) T I P e
< HX—]/HE[ c1tf1 CotP1—P2
B 1+t2 T(1+p1) T(A+p1—p2)
¢ c
< : 2=y,

[1"(1 +p1) * T(1+p1—p2)
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which implies that the operator F : E — E is a contraction operator, so the Banach contraction principle
assures that the operator F has a unique fixed point y7(¢) € E. According to some arguments above,
we obtain that x7(t) = Igin(t) is one unique solution of the Equation (32) with zero initial value
condition. Thus, according to Definition 5, we obtain that the problem (1) has one unique approximate
solution. O

Example 4. Now, we consider the initial value problem as following

1 t
1 ; 3 0243
T+t [(3)44 F(Z)D 600(1++ +t)x2
D0+ 200(1+¢ )x(t) _ 12(1+t(22)‘)1}((1+x4) + §)(Dgy 1+4 ,0 <t < Hoo,
12(1+t2)2(1+(D03+ 600(1+t2+f3)x)2) (43)
x(0) =0
We let
=iyt o= it <i< oo
PU= 2 2000+ 2) Y T 3T s00( 24 P) '

IR T
T+2)4(1+x%(t)  12(1+2)2(1 +y2(t))

ftx(t),y(t)) = 12 ,0 < t < —4o00,x(t),y(t) € R.

Obviously, we get limy_, oo p(t) = % and limy_, 10 q(t) = 3, thus, p satisfies (Aq) with p; = 3,

p2 = . That f(t,0,0) = 0. In addition, for all 0 < t < +o0,x(t),y(t) € R, from the differentiation mean
theorem, we get

F(t (L4 2)xy, (L4 2)yr) — f(E (1+ £2)x2, (14 )y2)]

- 1"(%)| xf B x5 |
- 12 14 (1+2)%] 1+ (1+12)%)
+F(%)| MO V3 |
12 1+ (1+2)27 1+ (1+12)%3
INE T Z)
= (32)|x1—x2|+&|y1—]/1|/

3 7
which implies that f satisfies (Ap) with ¢ = @, 0= %, which satisfies

€1 + C2
F(1+p1) T(1+p1—p2)

r3 1 rG 1
3 r1+3) 3 ra+i-1%

<L

WIN

For given arbitrary small & = %, there exists T = 22—2 = 2000, such that

P~ 5l = 55—y < § < 7

P31 = 200012 1 -
90) = 51 = g <
=3 = 00+ 8) 1
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Now, we consider function p(t) restricted on interval [0, T] = [0,2000]. By the right continuity of function
p(t) at point 0, for e = 1, taking 5y = 2, when 0 < t < &y = 2, we have

t ! s 1 11

— = —_— << — _— = — — €.
P®) = PO = 55572y = 200 <200 ~ 700 <700 ~ ¢

t &% 1 11

t — = < — _— = — = E&.
) =0 = Toa e py = 600 <200 ~ 100 <100 ¢

We get t1 = &y = 2. By the right continuity of functions p(t), q(t) at the point t1, for e = 155, taking
01 =2, when 0 < t —t; < 0y, by differential mean value theorem, we have

t 151
t) —p(t])] = -
p(t) = p(ty)] 20001+ 2) 200(1+t§)|
1—¢2
< S | P
= |200(1+§2)2|| 1
1+ ¢2
< 5 4y
S oaraethl
1
< - —
< 200|t t|
200 100 " 100
¢ 2]
£ —a(t])] = -
l9(5) = q(t)] 0+ 2+ P 600(1+t%+t?)‘
1— 2_2 3
< | 1 2 ;732||t_t1|
600(1 + 12 +13)
1+ 9% 421
< | 1 2 U32||t_tl|
600(1 + 12 +13)
3
< - i
< 600“ t1]
5 1 1.1
< L=

200 100 “ 100 ©

where ty < ¢ < t, t1 <y <t Weletty =t + 01 = 4. By the right continuity of function p(t) at point t;,
fore = 110%, taking 6y = 2, when 0 < t — t1 < &y, by the same reasons above, we have

P~ )] = g - R e L
PROOTPRVI= 001+ #) ~20(1+£2) ~200 100 ~ 100
t 1) ) 1 1.1
1) —q(t)| = _ b 1 11
9() = a(t)] 50001+ 21 F)  600(1+ 2+ 5) ~ 200 100 <100 °

Continuing this procession, from t, 1 = 2(n —1) < 2000, t, = t;,_1 + 6,1 = 2(n — 1) +2 = 2000,
we get n = 1000. Thus, let

. 1 ) 1 2
pr=p0) = g p2=p(h) = p2) = 5+ 550 5y
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: N . S _ - _! 1998
p3 = p(tz) = p(4) =5 + 200 % (1 T 16), » P1000 = P(tggg) - P(1998) ) + 200 % (1 + 19982) :

: _1 . I S

—_

. — [ 4 PR
qy*“”)*QMy*3+6mx(r+w+ﬁ®’ '

1 1998
= t = 1 = — .
oo = 9(ts99) = 9(1998) = 3 + e55 =T 0057 1 1998%)

As a result, we get intervals [0,2],(2,4],-- -, (1998,2000], (2000, +c0) and function «(t) defined by

P = %, for t €1]0,2],
= % + 53—, for t € (2,4]
P2 =3+ a0 ey f 4

p3 - %"’ m, for t € (4,6],
a(t) = (44)

T

P1000 = 3 + 05 tsogy for t € (1998,2000)

p1 =13, for te€(2000,+c0).

q1 =3, for t€10,2],

Q=

=1+ m, for t € (2,4],

1 4
q3 = 3 + 600 (1+16164)” fO?’ t e (4,6],

p(t) =
1000 = 3+ goog i ooz TosE) for ¢ € (1998,2000]
p2=13%,  for te (2000, +00).

By Definitions 4 and 5 and the arguments of Theorem 1, the problem (43) has one unique
approximate solution.

Remark 1. From Lemma 6 and Definition 5, we may take arbitrary small e, such that the problem (43) has one
unique approximate solution. This means that the proximity is very high.

Example 5. Finally, we calculate the approximate solution of the following initial value problem for linear equation

1 t

,+7
L (f) = #5,%(0) = 0,0 < £ < +co, )

Doy

According to analysis in Example 4, we get intervals [0,2], (2,4],- - -, (1998,2000], (2000, +c0) and

function «(t) defined in (44). By Definitions 4 and 5, we calculate out the approximate solution of the problem (45)
as following
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r) oo
(1) = ot € C[0,4],
1t 50% (179

4
200x(1+16) ¢ C[O, 6],
r(%+200x(41+16))

() — . -
X1000 = wjt 205 € C[0,2000],
47 200x (1+19982)

5
x2000() = %t% € C[0, +o).

Remark 2. By the characters of variable order derivative, we cannot get accurate solution of the problem (45).
Hence, the approximate solution given by us is significative.

4. Conclusions

In this paper, we have obtained the unique existence result of approximate solution of initial
value problem for fractional differential equation of variable order involving with the variable
order derivative defined on the half-axis. Through discussing the characters of variable order
calculus(integral and derivative), we introduce the concept of approximate solution to the problem.
Based on our discussion and analysis, using the fixed point theorem, we have found the unique
existence results. As applications, two examples are presented to illustrate the main results. The issue
of the existence and qualitative analysis of approximate solution of initial value problems for fractional
differential equation of variable order is interesting. In the future, we will consider the existence and
qualitative analysis of approximate solution of initial value problem for singular fractional differential
equation of variable order.
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