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Abstract: In this paper, we consider a two-machine job-shop scheduling problem of minimizing
total completion time subject to n jobs with two operations and equal processing times on each
machine. This problem occurs e.g., as a single-track railway scheduling problem with three stations
and constant travel times between any two adjacent stations. We present a polynomial dynamic
programming algorithm of the complexity O(n5) and a heuristic procedure of the complexity O(n3).
This settles the complexity status of the problem under consideration which was open before and
extends earlier work for the two-station single-track railway scheduling problem. We also present
computational results of the comparison of both algorithms. For the 30,000 instances with up to
30 jobs considered, the average relative error of the heuristic is less than 1%. In our tests, the practical
running time of the dynamic programming algorithm was even bounded by O(n4).

Keywords: scheduling; total completion time; job-shop

1. Introduction

We consider a two-machine job-shop scheduling problem. Each job j ∈ N = {1, 2, . . . , n} consists
of two operations, i.e., we have nj = 2 according to [1]. The operation Oj,a is processed on the machine
Ma and its processing time is equal to a. The operation Oj,b is processed on the machine Mb and its
processing time is equal to b, where a, b ∈ Z+ and a < b. For simplicity of the subsequent consideration,
we use both notations a and Ma, where a is a descriptor in Ma and a is the processing time of any job
on this machine.

Let Nab be the subset of jobs j, for which operation Oj,a precedes operation Oj,b and let Nba be
the subset of jobs j, for which operation Oj,b precedes operation Oj,a. Moreover, denote nab = |Nab|
and nba = |Nba|. Thus, we have n = nab + nba. Please note that the parameter nj is different from
nab and nba. The parameter nj is often used in publications on job-shop scheduling to denote the
number of operations of job j, and we use nab, nba to denote the numbers of jobs with the two possible
technological routes. A schedule Π is uniquely determined by two permutations πMa and πMb

of the operations of the set Nab
⋃

Nba. Let Cj,x(Π) be the completion time of operation Oj,x and
Sj,x(Π) = Cj,x(Π)− x, x ∈ {a, b} be the starting time of the operation in the schedule Π.

For the two-machine job-shop scheduling problem of minimizing total completion time subject
to given processing times, the objective is to find an optimal schedule Π∗ that minimizes the total
completion time, i.e.,

∑
j∈Nab

Cj,b + ∑
j∈Nba

Cj,a. (1)
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We denote this problem by J2|nj = 2, pj1 = a, pj2 = b|∑ Cj according to the traditional three-field
notation α|β|γ for scheduling problems proposed by Graham et al. [2], where α describes the machine
environment, β gives the job characteristics and further constraints, and γ describes the objective
function. Please note that, without loss of generality, we can restrict to the case a < b since the case
a = b can be trivially solved in constant time.

Our motivation to deal with this problem with an open complexity status is as follows:

• it has a theoretical significance as a special case of the classical job-shop scheduling problem with
two machines with another objective function than the makespan considered by Jackson in the
well-known paper from 1956 [3];

• it has also practical significance as a particular sub-problem e.g., arising in railway scheduling.

Namely, the following single-track railway scheduling problem (STRSP) can be reduced to this
problem. In the STRSP, there is a single track between the stations A and C and a middle station B
between stations A and C. Trains go in both directions. Each of the sub-tracks AB and BC can process
only one train at a time. At the station B, a train can pass other trains, and at all stations there are
enough parallel tracks to deposit trains. A single-track network can be seen as a bottleneck portion
for any type of railway network topology. Furthermore, almost all national railway networks have
sections, where there is a single-track between some stations. For some countries (e.g., USA, Australia),
a significant part of the network is single-track. For multi-track networks such a single-track segment
can be considered as a bottleneck, in which the traffic capacity is restricted.

In this paper, we present a new polynomially solvable case for the two-machine job-shop problem
with minimizing total completion time based on dynamic programming [4]. At the same time, this
extends an existing polynomial algorithm for the two-station single-track railway scheduling problem
from [5] to the case of three stations. In addition, we present a fast polynomial heuristic of lower
complexity which is able to construct near-optimal solutions.

The rest of this paper is organized as follows. A brief literature review is given in Section 2.
In Section 3, some properties of the problem are presented which are the base for the dynamic
programming algorithm. Polynomial exact and heuristic solution procedures for this problem are
presented in Section 4. Some results of numerical experiments are presented in Section 5. Finally,
concluding remarks are given in Section 6.

2. Literature Overview

The problem J2|nj = 2, pj1 = a, pj2 = b|Cmax of minimizing the makespan (maximal completion
time) can be solved in constant time by Jackson’s algorithm [3]. In an optimal schedule, on the machine
Ma, first all operations Oi,a, i ∈ Nab, are processed and then all operations Oj,a, j ∈ Nba. On the
machine Mb, first all operations Oj,b, j ∈ Nba, are processed and then all operations Oi,b, i ∈ Nab.
However, the problem J2||Cmax without the restriction to at most two operations per job and arbitrary
processing times is already NP-hard [1].

Moreover, when minimizing total completion time, only very special unit-time problems can be
polynomially solved (see e.g., [1]). Even the two-machine unit-time problems J2|pjk = 1, rj ≥ 0|∑ Cj
with release dates rj, J2|pjk = 1|∑ wjCj with job weights wj or the three-machine problem J3|pjk =

1|∑ Cj are already NP-hard (see [1]). Two-machine job shop scheduling problems with unit processing
times and nj > 2 operations per job, where the even operations are processed on one machine and the
odd operations on the other one are considered in [6,7]. The scheduling problem to minimize total
completion time is considered in [8].

Some results on parallel machine and single machine scheduling problems with unit and equal
processing times of the jobs are presented in [9,10]. Single machine problems are equivalent to the
special case of a two-machine job shop scheduling problem with nj = 2, pj1 = a, pj2 = b, where a
is sufficiently small so that it can be disregarded. These problems without precedence relations are
known to be polynomially solvable, except the problem 1|rj ≥ 0, pj = p|∑ wjTj the complexity status
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of which is open. An additional motivation of our research is the search for an NP-hard job scheduling
problem with equal processing times which is most close to single machine job scheduling problems
with equal processing times without precedence relations and preemptions.

As previously mentioned, the problem under consideration is closely related to a particular
single-track railway scheduling problem. Often such problems are considered in the case of
maintenance of one track of a double-track line. For example, the French railway company SNCF
develops such models to produce a new transport schedule in the event of an incident on one of
the double-track line sections [11]. The work on single-track railway scheduling problems (STRSP)
goes back to the 1970s, with the initial publication [12]. A recent literature review on the single-track
railway scheduling problem can be found, e.g., in [13]. A short survey on the STRSP with several
stations, where trains are able to pass each other, is presented in [14]. In [5], a single-track railway
scheduling problem with two stations and several segments of the track is considered. In [15], train
scheduling problems are modeled as job-shop scheduling problems with blocking constraints. Four
MIP formulations are developed for the problem of minimizing total tardiness, and a computational
study is made on hard instances with up to 20 jobs (trains) and 11 machines (tracks or track sections).
Blocking constraints make the job-shop scheduling problem very hard from a practical point of view.
In [16], a complex neighborhood for the job-shop scheduling problem with blocking and total tardiness
minimization has been developed and tested on benchmark instances from the literature. Further
algorithms for general railway scheduling problems have been given for instance in [17–19] and
for job-shop scheduling problems with blocking in [20,21]. The blocking job-shop with rail-bound
transportation has also been discussed in [22]. Please note that for a small railway network with only a
few stations and enough parallel tracks at each station, the blocking constraint can be skipped as in
our three-station case.

In this paper, we deal with an exact dynamic programming approach. For some further recent
general approaches for the solution of different types of single and multiple criteria scheduling
problems, the interested reader is referred to [23–29] which highlight the importance of developing
advanced scheduling approaches. This concerns both the identification of new polynomially solvable
problems as well as new MILP models and metaheuristic or hybrid algorithms.

3. Properties of the Problem J2|nj = 2, pj1 = a, pj2 = b|∑ Cj

In this section, we present and prove in Lemmas 1–3 some basic properties of the problem. While
Lemma 1 characterizes the structure of partial solutions, Lemmas 2 and 3 are used in the proof of
the subsequent Theorem 1 which is the foundation of the dynamic programming algorithm given
in Section 4.

Without loss of optimality, we can restrict to schedules, where the operations Oj,a are processed in
the same order as the operations Oj,b, j ∈ Nab(Nba). Then we can schedule the jobs from each subset
according to increasing numbers. To distinguish the jobs from the sets Nab and Nba, the jobs from the
set Nba are overlined, i.e., we have Nab = {1, 2, . . . , nab} and Nba = {1, 2, . . . , nba}.

In an active schedule, a job cannot be started earlier without violating the feasibility. Without loss
of optimality, we consider active schedules only.

It is obvious that there is only a single case when an idle time on the machine Mb arises. It can be
immediately before time Ci,a = Si,b, i ∈ Nab, i.e., when for the job i ∈ Nab, the completion time of the
short operation (with processing time a) is equal to the starting time of the long one (with processing
time b). The same holds for an idle time on the machine Ma. An idle time can be immediately before
time Cj,b = Sj,a, j ∈ Nba.

Lemma 1. In any active schedule, the starting times of the operations belong to the set

Θ = {xa + yb|x, y ∈ Z, x, y < nab + nba}. (2)
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Proof. We consider the possible starting time Si,a of operation Oi,a in an active schedule. Let in the
interval [t1, Si,a), x1 operations be processed on the machine Ma without idle time and let there be an
idle time immediately before t1. Then there is a job j1 for which Cj1,b = Sj1,a = t1. Let in the interval
[t2, Cj1,b], y1 operations be processed on the machine Mb without an idle time and let there be an idle
time immediately before t2. Then there is a job i1 for which Ci1,a = Si1,b = t2. For an illustration,
see Figure 1.

1y  operations2y  operations

2x  operations 1x operations

i

Figure 1. Illustration for the proof of Lemma 1.

By continuing this consideration, we have

Si,a = (x1 + x2 + x3 + . . . )a + (y1 + y2 + . . . )b. (3)

Lemma 2. In any optimal schedule, we have S1,a = S1,b = 0, i.e., the starting times of the first operations of
the first job from each subset are equal to 0.

Proof. It is obvious that in each active schedule S1,a = 0 for O1,a ∈ Nab.
Next, we show that the lemma holds for the first job 1 ∈ Nba. Let in a schedule Π, this does not

hold. The operation sequence for machine Ma is (Oi1,a, Oi2,a, π1, O1,a, π2), where in the partial sequence
π1 there are k1 operations and i1, i2 ∈ Nab. The operation sequence for machine Mb is (π3, O1,b, π4),
where in the partial sequence π3 there are k2 ≥ 1 operations (see Figure 2).
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Figure 2. Illustration for the proof of Lemma 2.

Then for the schedule Π′ with the operation sequence (Oi1,a, Oi2,a, O1,b, π1, π2) for machine Ma

and the operation sequence (O1,b, π3, π4) for machine Mb, we increase the completion times for the
operations Oi,b ∈ π3 on the value (b− a), and we decrease the completion time of the operation O1,a
on the value

C1,a(Π)− C1,a(Π
′) = (max{a + (k2 + 1)b, (2 + k1)a}+ a)− 3a ≥ (k2 + 1)b− a. (4)

Let Ci2,a = 2a > b, then the completion times of the operations from π2 and π4 are not increased. Thus,
the total completion time is decreased on a value greater than or equal to

(k2 + 1)b− a− (b− a)k2 ≥ b. (5)

An analogous proof can be presented for the case 2a ≤ b. The lemma is true for the first job from the
set Nba.
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Lemma 3. In any active schedule Π at each time t, where an operation Oi,a, i ∈ Nab, is such that t ≤ Ci,a(Π),
the number of short operations completed is greater than or equal to the number of long operations completed.

Proof. The proof is done by induction. We consider the completion times t of the first, . . . , (k− 1)-th
and k-th operations processed on the machine Mb. The lemma holds for t equal to the completion time
of the first operation processed on the machine Mb, i.e., t = C1,b = b.

Let the lemma hold for t equal to the completion time of the (k− 1)-th operation processed on the
machine Mb. Moreover, there are l, l ≥ k− 1, operations completed on the machine Ma before t. Let
τ, τ ≤ t, be the completion time of the last operation completed on the machine Ma before time t.

Let t′, t′ ≥ t + b, be the completion time of the k-th operation processed on the machine Mb.
Then, in the interval [τ, t′], at least one operation can be processed on the machine Ma and thus, at
time t′, the number of short operations completed is greater than or equal to the number of long
operations completed.

Theorem 1. In any optimal schedule, there is no idle time on the machine Mb before the last operation from the
set Nba, i.e., before the time Snba ,a.

Proof. The proof is done by induction. First, we show that the theorem holds for the first job from the
set Nba and then for the next jobs j ∈ Nba. If for an operation Oj,b, j ∈ Nba, in a schedule Π, there is
an idle time before the time Sj,b(Π) on the machine Mb, then we construct a modified schedule Π′,
where the operations Oj,a and Oj,b are shifted to an earlier time so that the idle time is vanished and
total completion time decreases.

If a ≤ 1
2 b, then in any active schedule, there is no idle time on the machine Mb, since for any

operation Oi,a, i ∈ Nab, i > 1, we have Ci,a < Si,b. Next, we consider the only remaining case a > 1
2 b.

According to Lemma 2, the theorem holds for the first job 1 ∈ Nba. Let the theorem hold for the
job j− 1 ∈ Nba, and we consider the next job j ∈ Nba. Let there exist an idle time before the time Sj,a in
a schedule Π. We prove that this idle time is before the time Sj,b as well. We do this by contradiction.
Let there exist a schedule Π with Cj,b < Ci,a = Si,b and there is an idle time on the machine Mb in
the interval (t, Si,b). We have Cj,b ≤ t and Sj,a ≥ Si,b (see Figure 3). In this case, at time t, the number

(i− 1 + j) of long operations completed is greater than the number (i− 1 + j− 1) of short operations
completed which is a contradiction to Lemma 3. So, assume that we have a schedule Π, where the
operation sequences are:

for machine Ma : (π1, Oj−1,a, Oi,a, Oi+1,a, π2, Oj,a, π3),

for machine Mb : (π4, Oi−1,b, Oi,b, Oi+1,b, π5, Oj,b, π6),

(see Figure 3). In the schedule Π, the last operation completed before the idle time is Oi−1,b ∈ Nab
according to the assumption made above that there is no idle time before operation Oj−1,a. Operation
Oj−1,a is processed immediately before operation Oi,a since Si,a > Si−1,b.

Assume that there are k1 short operations processed between the operations Oi,a and Oj,a in Π
and k2 long operations processed between the times Si,b and Sj,b. It is easy to show that there is no idle
time between the times Si,b and Sj,b.

Denote ∆1 = Si−1,b − Sj−1,a and ∆2 = Ci−1,b − Si,b (see Figure 1). We have 2a = ∆1 + b + ∆2.
Then a > ∆1 + ∆2, otherwise

∆1 + b + ∆2 ≥ a + b,

i.e., 2a ≥ a + b and a ≥ b, which is false. As a consequence, we get

b > a > ∆1 + ∆2.
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Figure 3. Illustration for the proof of Theorem 1.

Let us consider a schedule Π′, where the operation sequences are

for machine Ma : (π1, Oj−1,a, Oi,a, Oj,a, Oi+1,a, π2, π3),

for machine Mb : (π4, Oj,b, Oi−1,b, Oi,b, Oi+1,b, π5, π6),

(see Figure 1).
If in the schedule Π′, there is an idle time ∆3 between the times Ci,b and Si+1,b, then

∆3 = Ci+1,a(Π′)− Ci,b(Π
′)

= (Cj−1,a(Π) + 4a)− (Cj−1,a(Π) + ∆1 + 3b)

= 4a− (∆1 + 3b)

= 2(b + ∆1 + ∆2)− (∆1 + 3b)

= ∆1 + 2∆2 − b < ∆2.

It is easy to show that there is no idle time on the machine Mb between the time Ci+1,b and the first
operation in π5 in the schedule Π′. Then for all operations in the sequences π3 and π6, the completion
times are not increased.
Now, we increase the completion time:

on b for operation Oi−1,b
on b− ∆2 for operation Oi,b
on b− ∆2 + ∆3 for the k2 − 1 operations {Oi+1,b}

⋃
π5

We decrease the completion time of the operation Oj,a on the value

Cj,a(Π)− Cj,a(Π
′) = (Cj−1,a(Π) + 2a + max{k1a, (k2 + 1)b}+ a)− (Cj−1,a(Π) + 3a) ≥ (k2 + 1)b.

Thus, we decreased the total completion time on a value greater than or equal to

(k2 + 1)b− (b + b− ∆2 + (b− ∆2 + ∆3)(k2 − 1)) = k2∆2 − (k2 − 1)∆3 > 0.

So, the theorem holds for job j.

4. Solution Algorithms for the Problems J2|nj = 2, pj1 = a, pj2 = b|∑ Cj

In this section, we first present a fast polynomial heuristic and then a polynomial dynamic
programming algorithm which is based on Theorem 1. The problem under consideration can be solved
approximately by the following polynomial heuristic, which includes 3 major steps.
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Heuristic H:

1. Construct a schedule Π according to Jackson’s algorithm.
2. Consider one by one the operations Oj,a for j = 1, 2, . . . , nba. Shift the operation Oj,a to the earliest

position in the sequence, where the total completion time is not increased in comparison to the
currently best schedule obtained.

3. Consider one by one the operations Oi,b for i = 1, 2, . . . , nab. Shift the operation Oi,b to the earliest
position in the sequence, where the total completion time is not increased in comparison to the
currently best schedule obtained.

Each of the steps 2 and 3 needs O(n3) operations since for each operation, we consider O(n)
positions and O(n) operations are needed to compute the total completion time of the modified
schedule. So, the running rime of the algorithm is O(n3).

Next, we present an idea of an exact dynamic programming algorithm (DP). In the first step of
Algorithm DP, we construct an active schedule that contains only jobs from the set Nab. Then, in each
stage j = 1, 2, . . . , nba, we compute all possible states t = (ia, ib, Cj,b, Cj,a), where

• operation Oj,a, j ∈ Nba, is processed between the operations Oia ,a and Oia+1,a, ia, ia + 1 ∈ Nab and

after all operations Oj′ ,a, j′ < j, j′ ∈ Nba,
• operation Oj,b, j ∈ Nba, is processed between the operations Oib ,b and Oib+1,b, ib, ib + 1 ∈ Nab and

after all operations Oj′ ,b, j′ < j, j′ ∈ Nba.

For each state t, the total completion time TCTt of the operations Oi,b, i ∈ {1, 2, . . . , ib}, and the
operations Oj′ ,a, j′ ∈ {1, 2, . . . , j}, is saved.

If for two states t = (ia, ib, Cj,b, Cj,a) and t̆ = (ia, ib, C̆j,b, C̆j,a), we have

Cj,b ≤ C̆j,b, Cj,a ≤ C̆j,a and TCTt ≤ TCTt̆,

then the state t̆ can be excluded from the further considerations.
According to Theorem 1, we have Cj,b = (ib + j)b. Thus, the state is uniquely defined by the

vector (ia, ib, Cj,a). Please note that only states with ia ≥ ib are considered. The states obtained at stage
j are used to compute the states in the next stage. After the last stage, for each state t = (ia, ib, Cj,a), we
schedule the remaining operations Oi,a, i = ia + 1, . . . , nab, and Oi,b, i = ib + 1, . . . , nab, and add to the
value TCTt the value ∑nab

i=ib+1 Ci,b. Then we choose the best solution.

The value Cj,a and TCTt can be computed in constant time. For that, in the previous stage j− 1,

for a state t̂ = (îa, îb, Ĉj−1,a), we saved the value Ĉîb+1,a. Let us compute the state t = (ia, ib, Cj,a) from
the state t̂. For the state t, the values Cîa+1,a and Cia ,a are computed in constant time. Then the value

∑ib
i=îb+1

Ci,b can be computed in constant time according to the values Ĉj−1,a and Ĉîb+1,a. There can be
only an idle time on the machine Mb before operation Oîb+1,b but such a state can be excluded from
consideration according to Theorem 1. Then, according to Cib ,b, the value Cj,b can be computed in
constant time. Finally, the value Cj,a according to the times Cj,b and Cia ,a and the value Cib+1,a can be
computed in constant time.

Theorem 2. The problem J2|nj = 2, pj1 = a, pj2 = b|∑ Cj can be solved by Algorithm DP in O(n5) time.

Proof. According to Lemma 1, there are no more than O(n2) possible values Cj,a. Then there are no

more than O(n4) possible states t = (ia, ib, Cj,a) at the stage j, and each state is computed in constant

time. Since there are O(n) stages, the running time of Algorithm DP is O(n5).
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5. Computational Results

In this section, we present some results of a numerical experiment, where we investigate the
relative error of the heuristic algorithm H and the number of states considered in Algorithm DP.
We generated the instances as follows. For each n ∈ {5, 10, 15, 20, 25, 30}, we generated 5000 instances
with b ∈ [3, 50], a ∈ [1, b− 1], yielding in total 30000 instances. For each instance, both the exact and
the heuristic algorithms were used.

In Table 1, we present the results for 30 randomly selected instances, namely five for each value
n ∈ {5, 10, 15, 20, 25, 30}, where the main goal is to report the relative error of the heuristic presented
in this paper. In columns 1–4, we present the job numbers nab and nba as well as the processing
times a and b. In column 5, we give the optimal total completion time value TCT-DP obtained by
Algorithm DP. In column 6, we present the maximal number MN of states remaining in the list at a
stage. In column 7, we present the number DIF = nabnba(nab + nba)−MN, which is given to show
that the maximal number of states remaining in the list is less than n3. In column 8, we give the total
completion time value TCT-H obtained by the heuristic. Finally, column 9 displays the percentage
deviation PD of the heuristic from the optimal function value.

Table 1. Detailed results with Algorithm DP and Heuristic H for 30 randomly selected instances.

nab nba a b TCT-DP MN DIF TCT-H PD
1 2 3 4 5 6 7 8 9

instance data DP H
2 3 13 15 264 6 24 275 4.2
2 3 34 48 822 5 25 842 2.4
3 2 9 11 188 11 19 197 4.8
3 2 24 49 783 5 25 783 0.0
1 4 16 25 439 2 18 439 0.0
5 5 10 17 985 16 234 997 1.2
2 8 39 41 2567 11 149 2604 1.4
3 7 12 19 1129 7 203 1139 0.9
8 2 40 44 2624 75 85 2752 4.9
1 9 1 24 1329 2 88 1329 0.0
4 11 17 25 3187 16 644 3214 0.8
9 6 41 43 5499 222 588 5718 4.0
12 3 31 37 4553 155 385 4808 5.6
9 6 14 17 2132 134 676 2212 3.8
13 2 3 5 606 59 331 618 2.0
2 18 6 21 4518 3 717 4518 0.0
18 2 11 16 3383 156 564 3484 3.0
1 19 2 4 878 2 378 878 0.0
12 8 26 28 6140 491 1429 6352 3.5
3 17 10 27 5840 5 1015 5840 0.0
6 19 14 16 5466 138 2712 5526 1.1
21 4 29 40 13,123 490 1610 13,476 2.7
21 4 17 20 6581 597 1503 6848 4.1
18 7 22 25 8302 798 2352 8602 3.6
12 13 39 42 14,157 671 3229 14,553 2.8
5 25 38 47 22,805 59 3691 22,921 0.5
16 14 13 21 9947 219 6501 10,022 0.8
21 9 26 30 14,208 1097 4573 14,624 2.9
4 26 19 21 10,259 82 3038 10,310 0.5
10 20 7 12 5720 59 5941 5738 0.3

In Table 2, we present some results for all 30,000 considered instances. In column 1, we give
the number n of jobs. In columns 2 and 3, we present the average values MN and DIF, respectively,
for Algorithm DP. For Heuristic H, we present in column 4 the average values PD and column 5
displays the percentage of instances PO solved by the heuristic optimally. We also emphasize that the
average relative error over all 30,000 instances is 0.85%.
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Table 2. Average results with Algorithm DP and Heuristic H for the 30,000 instances.

n Average MN Average DIF Average PD PO

1 2 3 4 5

DP H

5 4.33 23.17 1.05 67.3
10 15.43 183.57 1.04 63.44
15 37.61 523.39 0.87 59.66
20 87.52 1158.48 0.85 58.14
25 156.83 2843.17 0.74 56.1
30 202.54 4834.46 0.53 58.12

Aver 84.04 1594.37 0.85 60.46

Moreover, we can state that the maximal relative error of Heuristic H among all 30,000 instances
is 6.9% which has been obtained for an instance with nab = 3, nba = 2, a = 17, b = 23. For this
instance, the optimal objective function value is 384 and the total completion time computed by the
heuristic is 401. Moreover, the maximal number of states saved to the state list in a stage is 32,811
which has been obtained for an instance with nab = 20, nba = 10, a = 47, b = 49. In addition, if a
state t = (ia, ib, Cj,a) has been written to the list and later a state t = (ia, ib, Cj,a) is computed, where
Cj,a ≤ Cj,a and TCTt ≤ TCTt, then the state t is deleted from the list. The maximal number of states in
the list left after considering all states is 1743. So, there is a large difference between the number of
states considered and the number of states remaining in the list.

According to the previous results, we can also present the following conjecture.

Conjecture 1. There are only O(n3) states that have to be considered at each stage.

As a consequence of the above conjecture, the running time of an advanced DP algorithm could
be reduced to O(n4).

6. Concluding Remarks

In this paper, some properties of the scheduling problem J2|nj = 2, pj1 = a, pj2 = b|∑ Cj were
considered which arises for instance in a single-track railway scheduling problem with three stations.
A polynomial time solution algorithm of the complexity O(n5) and a heuristic algorithm of the
complexity O(n3) were presented. In the numerical experiments with the 30000 instances, the running
time of the dynamic programming algorithm was even bounded by the order O(n4). Moreover, in our
tests, the average relative error of the polynomial heuristic was only 0.85%.

The two-machine job-shop problem of minimizing the makespan was considered in the pioneering
work by Jackson. This result is now considered as a classical one in the scheduling theory.
An interesting open question is whether there exists an NP-hard job-shop scheduling problem with
equal processing times on each machine and other objective functions without precedence relations
and preemptions, or whether such problems are also polynomially solvable.
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