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Abstract: In this paper, the Laplace homotopy perturbation method (LHPM) is applied to obtain the
approximate solution of Black–Scholes partial differential equations for a European put option with
two assets. Different from all other approximation methods, LHPM provides a simple way to get the
explicit solution which is represented in the form of a Mellin–Ross function. The numerical examples
represent that the solution from the proposed method is easy and effective.

Keywords: Black–Scholes equation; European put option; homotopy perturbation method;
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1. Introduction

Over the last half century, financial behavior has become an important thing for humans. The price
crashes, momentum, and bubbles are investigated for understanding the dynamics of the financial
system. Recently, mathematical models are used to describe and predict the financial behavior of the
market in the future [1–12]. The stock has played a major role in the financial market. The options are
the essential key for the derivative which is generally used in the market. A derivative value can be
obtained from many sorts of assets—for instance, interest rate, shares, currency, etc. [13,14].

In the financial market, there are many styles of options such as American, European, Asian,
Canary, etc. An option is a financial contract between buyers and sellers. The option price is a premium
which is obtained from the writer of the option selling options to the buyer. In general, the options can
be divided into two types. These are call options that are paid for conferring the right to buy and put
options that are paid for conferring the right to sell.

In this paper, we focus only on a put option for European options that may be exercised only on the
expiration date of the contract due to a lack of research proposing the analytical solution of this model
with two assets. The dominant benefit of the European option allows holders to buy products from
sellers with an agreement involving the price and date before exercising. This process provides a benefit
to the seller and buyer because an agreement can be considered before making a decision. Moreover,
the criteria of this process can be applied to another process such as the purchasing of products.

To investigate the option pricing in the market, the Black–Scholes model is widely used to forecast
the behavior of a European option on a stock. The Black–Scholes model was proposed by Black,
Scholes, and Merton [15] in 1973. It is set up by a geometric Brownian motion and governed by a
partial differential equation with respect to time and stock price. The Black–Scholes model was studied
and modified for predicting the option price in the actual market [16–19]. The main key components
of the Black–Scholes model are the risk-free rate, the underlying stock price, strike price, volatility, and
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expiration date. Recently, the option price in a market depends on other markets, which results in the
multidimensional Black–Scholes model becoming more productive than the one-dimensional model.
A number of methods are used to find the solution of the multi-dimensional Black–Scholes model—for
example, the finite different method [13,14,20–22], the finite element method [23], the Mellin transform
method [24], and the adaptive wavelet precise integration method [25]. Moreover, the radial basis
function (RBF) based methods that are commonly used to solve the Black–Scholes equations problems;
as references papers below give RBF theory [26] and applications [27,28].

The Homotopy Perturbation method (HPM), proposed by He [29], has been successfully
applied to find analytical solutions for many problems in engineering, physics, biology, finance,
and science [29–36]. The solutions to this method are represented as an infinite series. In particular,
the solution from HPM converges rapidly to the exact solution. HPM has become a powerful tool to
solve mathematical problems [30,37]. Nevertheless, HPM cannot solve some complicated problems.
The Laplace homotopy perturbation method (LHPM) is introduced [38–40]. LHPM is a method
combined with HPM and Laplace transform. For example, the explicit solutions of the Black–Scholes
equation for call options are carried out by LHPM [41,42]. In this work, we study the Black–Scholes
equation with the basket option based on a European put option with two assets. The Laplace
transformation homotopy perturbation method is used to find the explicit approximate solution of
the problem.

The remainder of this paper is organized as follows. In Section 2, we present the mathematical
model that is the Black–Scholes equation with a basket option based on a European put option with
two assets. Then, the concept of Laplace transform homotopy perturbation method is shown in
Section 3. The explicit solution of the Black–Scholes equation for a European put option with two
assets, solved by using LHPM, is presented in Section 4. The numerical simulations are obtained in
Section 5. Finally, we present conclusions in Section 6.

2. The Mathematical Model

We investigated the standard two-dimensional Black–Scholes partial differential equation for
European put options including efficient markets, no dividends and perfect liquidity for all of the
option’s life. The two-dimensional European put option depends on the prices of two underlying
assets A1 and A2. The Black–Scholes model is based on

p the value of put option depending on the stock prices {A1, A2} at time t,
ρ the correlation between the two underlying stock prices A1 and A2,

wi the portions of underlying stock Ai for i = 1, 2,
Ki the strike price of the ith underlying stock for i = 1, 2,

r the risk-free interest rate,
σi the volatility of the ith underlying stock for i = 1, 2,
T the expiration date.

With the assumptions of the Black–Scholes model [15], the two-asset Black–Scholes option price
p(t, A1, A2) is in the form of the partial differential equation

∂p
∂τ

+
1
2

σ2
1 A2

1
∂2 p
∂A2

1
+

1
2

σ2
2 A2

2
∂2 p
∂A2

2
+ ρσ1σ2 A1 A2

∂2 p
∂A1∂A2

+ rA1
∂p

∂A1
+ rA2

∂p
∂A2
− rc = 0, (1)

for A1, A2 ∈ [0, ∞), τ ∈ [0, T], with the terminal condition:

p(A1, A2, T) = max(K− (w1 A1 + w2 A2), 0) , (2)
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in which K = max{K1, K2}, and boundary condition

p(0, A2, τ) = max(Ke−r(T−τ) − w2 A2, 0),

p(A1, 0, τ) = max(Ke−r(T−τ) − w1 A1, 0),

p(A1, A2, τ) = max(Ke−r(T−τ) − (w1 A1 + w2 A2), 0) as A1 → ∞ or A2 → ∞.

(3)

To be able to change the problem to the initial boundary value problem, we introduce a forward
time t = T − τ. Thus, Equation (1) can be written as

∂p
∂t
− 1

2
σ2

1 A2
1

∂2 p
∂A2

1
− 1

2
σ2

2 A2
2

∂2 p
∂A2

2
− ρσ1σ2 A1 A2

∂2c
∂A1∂A2

− rA1
∂p

∂A1
− rA2

∂p
∂A2

+ rp = 0.

Without loss of generality, we can consider A1 as x, and A2 as y. Hence, this above
equation becomes

∂p
∂t

=
1
2

σ2
1 x2 ∂2 p

∂x2 +
1
2

σ2
2 y2 ∂2 p

∂y2 + ρσ1σ2xy
∂2 p

∂x∂y
+ rx

∂p
∂x

+ ry
∂p
∂y
− rp. (4)

The terminal condition becomes the initial condition as follows:

p(x, y, 0) = max(K− (w1 A1 + w2 A2), 0).

3. The Basic Ideas of Homotopy Perturbation Method with Laplace Transform

In general, the basic ideas of LHPM for the time-dependent differential equation are given
as follows:

D(u(x, y, t))− f (x, y, t) = 0, (5)

where D denotes a differential operator, u(x, y, t) denotes an unknown function and f (x, y, t) denotes
a known analytic function. D can be determined as

D(u(x, y, t)) =
∂

∂t
u(x, y, t) + N(u(x, y, t)) for (x, y, t) ∈ R×R× [0, T],

where N is the remaining part of D.
The general equation on the domain Ω = R×R× [0, T] can be written as the following equation:

∂

∂t
u(x, y, t) + N(u(x, y, t)) = f (x, y, t), (x, y, t) ∈ Ω, (6)

with the initial condition

u(x, y, 0) = h(x, y) for any (x, y) ∈ R×R,

and the boundary condition:

B
(

u,
∂u
∂x

,
∂u
∂y

,
∂u
∂t

)
= 0,

where B denotes the boundary operator.
Firstly, applying the Laplace transform with respect to t on both sides of Equation (6) yields

L
{ ∂

∂t
u(x, y, t)

}
+L

{
N(u(x, y, t))

}
= L

{
f (x, y, t)

}
.
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By the property of the Laplace transform for differentiation, we obtain

L
{

u(x, y, t)
}
= s−1h(x, y)− s−1L

{
N(u(x, y, t))

}
+ s−1L

{
f (x, y, t)

}
. (7)

Next, we take the inverse Laplace transform to the Equation (7), so that it becomes

u(x, y, t) = G(x, y, t)−L −1
{

s−1L
{

N(u(x, y, t))
}}

,

where the function G(x, y, t) represents the term resulting from the source term and the determined
initial conditions and boundary conditions.

Applying the homotopy perturbation method (HPM) [31,32], the function v can be constructed

v(x, y, t; q) : Ω× [0, 1]→ R.

We define

H(v(x, y, t; q), q) = (1− p)[v(x, y, t; q)− ṽ0(x, y, t)] + q
[
v(x, y, t; q)− G(x, y, t)

+L −1
{

s−1L
{

N(v(x, y, t; q))
}}]

= 0,
(8)

where q ∈ [0, 1] is a homotopy parameter and ṽ0(x, y, t) is an initial approximation of the Equation (8).
Equation (8) is called the homotopy equation, and it can be written as the following equation:

v(x, y, t; q) = ṽ0(x, y, t)− q
[
ṽ0(x, y, t)− G(x, y, t)

+L −1
{

s−1L
{

N(v(x, y, t; q))
}}]

.
(9)

From Equations (8) and (9), it easy to obtain that

q = 0 → H(v(x, y, t; 0), 0) = v(x, y, t; 0)− ṽ0(x, y, t) = 0,

q = 1 → H(v(x, y, t; 1), 1) = v(x, y, t; 1)− G(x, y, t)

+L −1
{

s−1L
{

N(v(x, y, t; 1))
}}

= 0.

By the technique of the homotopy perturbation method, the solution v(x, y, t; q) in the Equation (9)
can be expressed by the form

v(x, y, t; q) =
∞

∑
i=0

qivi(x, y, t). (10)

By substituting Equation (10) into Equation (9) and using HPM, it can be expressed as follows:

∞

∑
i=0

qivi(x, y, t) = ṽ0(x, y, t)− q
[
ṽ0(x, y, t)− G(x, y, t)

+L −1
{

s−1L
{

N(
∞

∑
i=0

qivi(x, y, t; p))
}}]

.

By comparing the coefficients of the corresponding term of power q on both sides of the above
equation, the approximate solution vi can be written as the following recurrence relations:
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v0(x, y, t) = ṽ0(x, y, t)

v1(x, y, t) = G(x, y, t)− ṽ0(x, y, t)

−L −1
{

s−1L
{

N(ṽ0(x, y, t))
}}

vm(x, y, t) = −L −1
{

s−1L
{

N(vm−1(x, y, t))
}}

when m ≥ 2.

According to the solution of Equation (10), we obtain

v(x, y, t; q) = v0(x, y, t) + qv1(x, y, t) + q2v2(x, y, t) + q3v3(x, y, t) + . . . .

By letting q converge to 1, the approximate solution in this problem (5) can be expressed as follows:

u(x, y, t) = v(x, y, t; 1) = v0(x, y, t) + v1(x, y, t) + v2(x, y, t) + v3(x, y, t) + . . . . (11)

Particularly, the series (11) approaches the explicit solution when an infinite series converges.

4. An Analytical Solution of the Black–Scholes Model for European Put Options with Two Assets
by Using LHPM

In this section, the Black–Scholes model with two assets in Equation (4) is investigated

∂p
∂t

=
1
2

σ2
1 x2 ∂2 p

∂x2 +
1
2

σ2
2 y2 ∂2 p

∂y2 + ρσ1σ2xy
∂2 p

∂x∂y
+ rx

∂p
∂x

+ ry
∂p
∂y
− rp (12)

with the initial condition

p(x, y, 0) = max(K− (w1x + w2y), 0).

By taking the Laplace transform with respect to t to the Equation (12), we obtain

L

{
∂p
∂t

}
= L

{
1
2

σ2
1 x2 ∂2 p

∂x2 +
1
2

σ2
2 y2 ∂2 p

∂y2 + ρσ1σ2xy
∂2 p

∂x∂y
+ r

(
x

∂p
∂x

+ y
∂p
∂y

)
− rp

}
, (13)

setting

N(p(x, y, t)) =
1
2

σ2
1 x2 ∂2 p

∂x2 +
1
2

σ2
2 y2 ∂2 p

∂y2 + ρσ1σ2xy
∂2 p

∂x∂y
+ r

(
x

∂p
∂x

+ y
∂p
∂y

)
− rp.

Equation (13) becomes

L
{

p(x, y, t)
}

=
1
s

p(x, y, 0) +
1
s
L
{

N(p(x, y, t))
}

,

L
{

p(x, y, t)
}

=
1
s

max(K− w1x− w2y, 0) +
1
s
L
{

N(p(x, y, t))
}

.

Then, taking the inverse Laplace transform to the previous equation, we get

p(x, y, t) = max(K− w1x− w2y, 0) +L −1
{

1
s
L
{

N(p(x, y, t))
}}

.

Applying the Homotopy Perturbation Method, we can construct the following equation:

(1− q)(p(x, y, t; q)− p̃0(x, y, t)) + q
[

p(x, y, t; q)

−max(K− w1x− w2y, 0)−L −1
{1

s
L
{

N(p(x, y, t; q))
}]

= 0
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or we can write

p(x, y, t; q) = p̃0(x, y, t)− qp̃0(x, y, t) + qmax(K− w1x− w2y, 0)

+qL −1
{

1
s
L
{

N(p(x, y, t; q))
}}

, (14)

where p̃0(x, y, t) is an initial approximation of Equation (14) that can be freely chosen.
For this model, we choose p̃0(x, y, t) in the form

p̃0(x, y, t) = max(K− w1x− w2y, 0) + ρ(x2 + y2)t.

By substituting p̃0(x, y, t) to Equation (14), we have

p(x, y, t; q) = max(K− w1x− w2y, 0) + ρ(x2 + y2)t + q
[
− (x2 + y2)t

+L −1
{1

s
L
{

N(p(x, y, t; q))
}}]

. (15)

By the HPM technique, we assume the solution of problem (15) to be written in the form

p(x, y, t; q) =
∞

∑
n=0

qn pn(x, y, t). (16)

Substituting Equation (16) into Equation (15), we get

∞

∑
n=0

qn pn(x, y, t) = max(K− w1x− w2y, 0) + ρ(x2 + y2)t

+q

(
−(x2 + y2)t +L −1

{1
s
L
{1

2
σ2

1 x2
∞

∑
n=0

qn ∂2 pn

∂x2

+
1
2

σ2
2 y2

∞

∑
n=0

qn ∂2 pn

∂y2 + ρσ1σ2xy
∞

∑
n=0

qn ∂2 pn

∂x∂y

+r
(

x
∞

∑
n=0

qn ∂pn

∂x
+ y

∞

∑
n=0

qn ∂pn

∂y

)
−r

∞

∑
n=0

qn pn

}})
.

Equating the corresponding power of p on both sides, we obtain the following:

q0; p0(x, y, t) = max(K− w1x− w2y, 0) + ρ(x2 + y2)t,

q1; p1(x, y, t) =
t2ρ

2

[
(σ2

1 + r)x2 + (σ2
2 + r)y2

]
− t
[
(σ2

1 + r)0x2 + (σ2
2 + r)0y2

−r(max(w1, 0)x + max(w2, 0)y) + rmax(K− w1x− w2y, 0)
]

,

q2; p2(x, y, t) =
t3ρ

6

[
(σ2

1 + r)2x2 + (σ2
2 + r)2y2

]
− t2

2

[
(σ2

1 + r)1x2 + (σ2
2 + r)1y2

+r2(max(w1, 0)x + max(w2, 0)y)− r2max(K− w1x− w2y, 0)
]

,

q3; p3(x, y, t) =
t4ρ

24

[
(σ2

1 + r)3x2 + (σ2
2 + r)3y2

]
− t3

6

[
(σ2

1 + r)2x2 + (σ2
2 + r)2y2

−r3(max(w1, 0)x + max(w2, 0)y) + r3max(K− w1x− w2y, 0)
]

,

and so on.
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Proceeding in the same process, we obtain

q0; p0(x, y, t) = max(K− w1x− w2y, 0) + ρ(x2 + y2)t,

qn; pn(x, y, t) =
tn+1ρ

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

]
− tn

Γ(n + 1)

[
(σ2

1 + r)n−1x2

+(σ2
2 + r)n−1y2 + (−1)nrn(max(w1, 0)x + max(w2, 0)y)

−(−1)nrnmax(K− w1x− w2y, 0)
]

when n ≥ 1.

Thus, the solution p(x, y, t; p) of problem (15) is given by

p(x, y, t; q) =
∞

∑
n=0

qn pn(x, y, t)

= p0(x, y, t) +
∞

∑
n=1

qn

{
tn+1ρ

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

]
− tn

Γ(n + 1)

[
(σ2

1 + r)n−1x2 + (σ2
2 + r)n−1y2

+(−1)nrn(max(−w1, 0)x + max(−w2, 0)y)

−(−1)nrnmax(K− w1x− w2y, 0)
]}

= p0(x, y, t) +
∞

∑
n=0

qn+1

{
tn+2ρ

Γ(n + 3)

[
(σ2

1 + r)n+1x2 + (σ2
2 + r)n+1y2

]

− tn+1

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

+(−1)n+1rn+1(max(−w1, 0)x + max(−w2, 0)y)

−(−1)n+1rn+1max(K− w1x− w2y, 0)
]}

.

By setting q converges to 1, we obtain

p(x, y, t) = p0(x, y, t) +
∞

∑
n=0

{
tn+2ρ

Γ(n + 3)

[
(σ2

1 + r)n+1x2 + (σ2
2 + r)n+1y2

]

− tn+1

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

+(−1)n+1rn+1(max(−w1, 0)x + max(−w2, 0)y)

−(−1)n+1rn+1 max(K− w1x− w2y, 0)
]}

.

Therefore, we obtain the explicit solution of problem (12) as follows:

p(x, y, t) =max(K− w1x− w2y, 0) + x2
(

ρ(σ2
1 + r)E2,σ2

1+r(t)− E1,σ2
1+r(t) + ρt

)
+ y2

(
ρ(σ2

2 + r)E2,σ2
2+r(t)− E1,σ2

2+r(t) + ρt
)

− r
(

max(−w1, 0)x + max(−w2, 0)y
)

E1,−r(t)

+ rmax(K− w1x− w2y, 0)E1,−r(t),

(17)
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where Ea,b(t) = ta
∞

∑
k=0

(bt)k

Γ(a + k + 1)
is the Mellin–Ross function [43], which a and b being constants.

5. Solution Example

In this section, the explicit solution of the problem (12) as shown in Equation (17) is computed to
obtain the value of European put option with the condition as in Equation (2) and w1 = 2, w2 = 1,

p(A1, A2, T) = max(K− (2A1 + A2), 0),

with strike price K = 75. The risk-free interest rate is 5% per year, (r = 0.05), the volatilities of the
underlying assets A1 and A2 are σ1 = 5% and σ2 = 10%, respectively. The expiration time is T = 1
measured in years.

The solution surface plot of a European put option with the correlation, ρ = 0.8 at the maturity
time is showed in Figure 1. The stock prices are considered over the range 0 ≤ A1 ≤ 200 and
0 ≤ A2 ≤ 200 which surround the strike price. The result shows that the option price linearly
decreases when the stock prices, A1 and A2, increase. After that, the option price reaches zero when
the stock prices increase.

At a day before an expiration date, the value of put option price with the influence of stock
price A1 and fixed stock price A2 is presented in Figure 2. The result indicated that the option price
linearly dropped until the value of stock price A1 was around 60; and the option price p reaches zero.
In addition, the value of put option price with the influence of stock price A2 and fixed stock price A1

is also represented in Figure 3. The solution p is decreased linearly when the stock price is lower than
40 and the option price reaches zero when the stock price is greater than 40.

The different values of European put options for non-positive correlation case ρ1 = −0.8 and
ρ2 = 0 and non-negative correlation case ρ2 = 0 and ρ3 = 0.8 are plotted over a range of stock prices
0 ≤ A1 ≤ 200 and 0 ≤ A2 ≤ 200 at the maturity time, as shown in Figure 4. The results show that the
correlation has an effect on the European put option. Furthermore, when stock prices both increase,
this leads to an increase in the difference between the value of the European put options.
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Figure 1. The explicit solution surface plot of the European put option price obtained from the
Black–Scholes model with two stock prices, A1, A2 and correlation ρ = 0.8.
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Figure 3. The solution plots of the European put option obtained from Black–Scholes model with two
stock prices for A1 = 8.
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Figure 4. The different values of the European put option: (a) pρ2 − pρ1 and (b) pρ3 − pρ2 at the maturity
T with stock prices A1, A2 and correlations ρ1 = −0.8, ρ2 = 0 and ρ3 = 0.8.

6. Conclusions

The Black–Scholes model is the most famous and useful mathematical model for describing the
behavior of the financial market. In this work, the Black–Scholes model for a European put option
with two assets is investigated. The LHPM is applied to find the explicit solution of the Black–Scholes
model in the form of the infinite series, which is a special function, called the Mellin–Ross function.
The advantage of the explicit solution of the Black–Scholes model is easy to implement for simulating
the option price that depends on two asset prices. Moreover, the results can be easy to apply in real
world problems for the financial system.
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