
mathematics

Article

Systems of Variational Inequalities with
Nonlinear Operators

Lu-Chuan Ceng 1 and Qing Yuan 2,∗

1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China; zenglc@hotmail.com
2 School of Mathematics and Statistics, Linyi University, Linyi 276000, China
* Correspondence: yuanqing@lyu.edu.cn

Received: 2 March 2019; Accepted: 3 April 2019; Published: 9 April 2019
����������
�������

Abstract: In this work, we concern ourselves with the problem of solving a general system of
variational inequalities whose solutions also solve a common fixed-point problem of a family of
countably many nonlinear operators via a hybrid viscosity implicit iteration method in 2 uniformly
smooth and uniformly convex Banach spaces. An application to common fixed-point problems of
asymptotically nonexpansive and pseudocontractive mappings and variational inequality problems
for strict pseudocontractive mappings is also given in Banach spaces.
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1. Introduction

Let E be a real Banach space whose topological dual space is denoted by E∗. Recall that the
normalized duality mapping J : E→ 2E∗ is defined by

J(x) = {ϕ ∈ E∗ : ‖ϕ‖ = ‖x‖, 〈x, ϕ〉 = ‖x‖2}, ∀x ∈ E,

where 〈·, ·〉 is the duality pair on E and E∗. J is single-valued in a smooth Banach space. In the sequel,
we shall denote by j the single-valued duality mapping, that is, j(x) ∈ J(x). Let C be a convex closed
set in E. A mapping f : C → C is said to be δ-Lipschitzian on C if δ ∈ (0,+∞) and ‖ f (x)− f (y)‖ ≤
δ‖x− y‖ for all x, y ∈ C. If δ < 1, then f is called a δ-contraction mapping or a contraction mapping
with coefficient δ. Each contraction f : C → C has a unique fixed point from the well known the
Banach contractive principal. A mapping f : C → C is said to be nonexpansive if it is Lipschitzian
with δ = 1. We use Fix( f ) to denote the set of fixed points of f , i.e., Fix( f ) = {x ∈ C : f (x) = x}.
Moreover, a mapping T : C → C is said to be asymptotically nonexpansive [1] if there exists a sequence
{θn} ⊂ [0,+∞) with limn→∞ θn = 0 such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ θn‖x− y‖, ∀x, y ∈ C, ∀n ≥ 0.

If
lim sup

n→∞

(
sup

x,y∈C
(‖Tnx− Tny‖ − ‖x− y‖)

)
≤ 0, (1)

and T enjoys the continuity, then T is called an asymptotically nonexpansive mapping in the
intermediate sense; see [2]. Throughout this paper, we assume

cn := max{0, sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖)}. (2)
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Hence, cn ≥ 0 ∀n ≥ 0, cn → 0 (n→ ∞), and the definition is reduced to

‖Tnx− Tny‖ ≤ ‖x− y‖+ cn, ∀x, y ∈ C, ∀n ≥ 0.

Recall that a mapping T with domain D(T) and range R(T) in E is called pseudocontractive if
the inequality holds

‖x− y‖ ≤ ‖r((I − T)x− (I − T)y) + (x− y)‖, ∀x, y ∈ D(T), ∀r > 0.

From a result of Kato [3], we know that the notion of pseudocontraction is equivalent to the one
that for each x, y ∈ D(T), there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2.

It is well known that the class of pseudocontractive mappings is a crucial generation of
nonexpansive mappings. Moreover, focus on pseudocontractive mappings are also from their relation
with the class of accretive mappings in Banach spaces (monotone in Hilbert spaces). A mapping
A with domain D(A) and range R(A) in E is called accretive if for each x, y ∈ D(T), there exists
j(x− y) ∈ J(x− y) such that

〈Ax− Ay, j(x− y)〉 ≥ 0.

It will be called a monotone mapping if the space is Hilbert. If for each x, y ∈ D(A), there exists
j(x− y) ∈ J(x− y) such that

α‖Ax− Ay‖2 ≤ 〈Ax− Ay, j(x− y)〉 for some α > 0,

then A is called α-inverse-strongly accretive.
Recently, fixed/zero points of pseudocontraction/accretive operators were investigated by many

authors for solving various convex optimization problems; see [4–13] and the references therein.
Let E be a smooth Banach space. Let B1, B2 be two non-self-mappings from C to E. The general

system of variational inequalities (GSVI) is to find (x∗, y∗) ∈ C× C such that{
〈µ1B1y∗ − y∗ + x∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,

〈µ2B2x∗ − x∗ + y∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C,
(3)

where µ1 and µ2 are two positive coefficients.
In particular, if B1 = B2 = B, then problem (3) reduces to the following system of variational

inequalities (SVI) in Banach spaces:
Find (x∗, y∗) ∈ C× C such that{

〈µ1By∗ − y∗ + x∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,

〈µ2Bx∗ − x∗ + y∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C.
(4)

Furthermore, if x∗ = y∗, then we obtain the following variational inequality (VI) in Banach spaces:
Find x∗ ∈ C such that

〈µBx∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C. (5)

Let VI(C, B) denote the set of solutions to problem (5). Whenever E = H a real Hilbert space, it is
easy to see that the GSVI (3) reduces to the following problem of finding (x∗, y∗) ∈ C× C such that{

〈µ1B1y∗ − y∗ + x∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈µ2B2x∗ − x∗ + y∗, x− y∗〉 ≥ 0, ∀x ∈ C,
(6)
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which is called a GSVI in Hilbert spaces. In [11], the GSVI (6) was transformed into a fixed-point
problem by Ceng, Wang and Yao in the following way.

Lemma 1. [14] For chosen x∗, y∗ ∈ C, x∗-y∗ is a solution of GSVI (1.6) if and only if x∗ ∈ GSVI(C, B1, B2),
where GSVI(C, B1, B2) is the fixed-point set of the mapping G := PC(PC(I − ηB2)− ρB1PC(I − ηB2)), and
y∗ = PC(I − ηB2)x∗.

Recently, many authors studied problems (3)–(6) via projection-based methods in Hilbert
or Banach spaces; see [15–22] and the references therein. In this paper, we introduce a hybrid
viscosity implicit iteration method that is based on Korpelevich’s extragradient method, the viscosity
approximation method and the Mann iteration method for finding a common solution of the GSVI (3)
for two inverse-strongly accretive mappings, a common fixed-point problem (CFPP) of a countable
family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive
mapping in the intermediate sense. We prove the strong convergence of the proposed method to a
common solution of the GSVI (3) and the CFPP, which solves a certain variational inequality on their
common solution set in 2-uniformly smooth and uniformly convex Banach spaces. Additionally, we
give an application to solve CFPPs of asymptotically nonexpansive and pseudocontractive mappings,
and variational inequality problems for strict pseudocontractive mappings in Banach spaces.

2. Preliminaries

Throughout this paper we write xn ⇀ x (respectively, xn → x) to indicate that the sequence {xn}
converges weakly (respectively, strongly) to x. Without loss of generality, we assume that E is a real
Banach space and the dual will be presented by E∗ in this paper.

Definition 1. Let {Sn}∞
n=0 be a vector sequence of pseudocontractive continuous self-mappings on C, a convex

closed convex subset of Banach space E. Recall that {Sn}∞
n=0 is said to be a countable family of `-uniformly

Lipschitzian pseudocontractive self-mappings provided that there exists a constant ` > 0 such that each Sn is a
`-Lipschitz continuous mapping.

In a smooth Banach space E, an operator A is said to be strongly positive if there exists a constant
γ̄ > 0 with the property

‖aI − bA‖ = sup
‖x‖≤1

|〈(aI − bA)x, j(x)〉|, 〈Ax, j(x)〉 ≥ γ̄‖x‖2 a ∈ [0, 1], b ∈ [−1, 1],

where I is the identity mapping and j(·) is the single-valued normalized duality mapping.
Recall that a Banach space E is said to be strictly convex if for any x, y ∈ {x ∈ E : ‖x‖ = 1},

x 6= y ⇒ ‖ x + y
2
‖ < 1. It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0

such that for any x, y ∈ {x ∈ E : ‖x‖ = 1}, ‖x− y‖ ≥ ε ⇒ ‖x + y‖ ≤ 2− 2δ. Clearly, if E is uniformly
convex, then it is strictly convex. A Banach space E is said to have a Gâteaux differentiable norm if
the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ {x ∈ E : ‖x‖ = 1} and in this case we call E smooth; E is said to have a uniformly
Gâteaux differentiable norm if for each y ∈ {x ∈ E : ‖x‖ = 1}, the above limit is attained uniformly
for x ∈ {x ∈ E : ‖x‖ = 1}. Moreover, it is said to have a uniformly Fréchet differentiable norm if the
above limit is attained uniformly for x, y ∈ {x ∈ E : ‖x‖ = 1} and in this case we call E uniformly
smooth. The norm of E is said to be the Fréchet differentiable if for each x ∈ {x ∈ E : ‖x‖ = 1}, the
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above limit is attained uniformly for y ∈ {x ∈ E : ‖x‖ = 1}. The modulus of smoothness of E is
defined by

$(τ) = sup{ (‖x + y‖+ ‖x− y‖)− 2
2

: x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ},

where $ : [0, ∞) → [0, ∞) is a function. It is known that E is uniformly smooth if and only if

limτ→0
$(τ)

τ
= 0. Let q be a fixed real number with 1 < q ≤ 2. A Banach space E is said to be

q-uniformly smooth if there exists a constant κ > 0 such that
$(τ)

κ
≤ τq for all τ > 0. From [23], we

know the following relation. Let q be a fixed number with 1 < q ≤ 2 and E be a Banach space. Then E
is q-uniformly smooth if and only if there exists a constant c > 0 such that

‖x‖q + ‖κy‖q ≥ ‖x + y‖q + ‖x− y‖q

2
, ∀x, y ∈ E.

The best constant κ in the above inequality is called the q-uniformly smooth constant of E; see [23]
for more details. In addition, no Banach space is q-uniformly smooth for q > 2; see [24] for more
details. If E be a 2-uniformly smooth Banach space. Then

‖x + y‖2 − ‖x‖2 ≤ 2〈y, j(x)〉+ 2‖κy‖2, ∀x, y ∈ E,

where κ is the 2-uniformly smooth constant of E.
In particular, if E is a Hilbert space, then the duality pairing 〈·, ·〉 reduces to the inner product,

j = I the identity mapping of E, and κ =
√

2/2.
For q > 1, the generalized duality mapping Jq : E→ 2E∗ is defined by

Jq(x) = {ϕ ∈ E∗ : ‖ϕ‖ = ‖x‖q−1, 〈x, ϕ〉 = ‖x‖q}, ∀x ∈ E.

In particular, J = J2 is called the normalized duality mapping. It is known that J(x) =
Jq(x)
‖x‖q−2

for all x ∈ E. If E is a Hilbert space, then J = I (the identity mapping). Recall that the following
statements hold:

(1) if E is smooth, then J is norm-to-weak∗ continuous single-valued on E;
(2) if E is uniformly smooth, then J is norm-to-norm uniformly continuous single-valued on bounded

subsets of E;
(3) if E has a uniformly Gáteaux differentiable norm, then J is norm-to-weak∗ uniformly continuous

single-valued on bounded subsets of E;

Proposition 1. (see [25]). Let C be a convex nonempty closed set in a Banach space E. Let S0, S1, ... be a
sequence of mappings of C into itself. Suppose ∑∞

n=1 sup{‖Snx− Sn−1x‖ : x ∈ C} < ∞. For each y ∈ C,
{Sny} converges in norm to some point of C. Moreover, let S be a mapping defined by Sy = limn→∞ Sny for all
y ∈ C. {‖Sx− Snx‖ : x ∈ C} → 0 as n→ ∞.

Proposition 2. (see [26]). Let C be a convex closed set in a Banach space E and T : C → C be a strong
continuous pseudocontraction mapping. Then, T has a fixed point. Indeed, it is the unique fixed point in C for T.

Let D be a nonempty set in C and let Π be a mapping from C to D. Then Π is said to be a sunny if
Π[(1− t)Π(x) + tx] = Π(x), when (1− t)Π(x) + tx ∈ C for all x ∈ C and t ≥ 0. A mapping Π of C
into itself is called a retraction if Π2 = Π. If a mapping Π of C into itself is a retraction, then Π(z) = z
for each z ∈ R(Π), where R(Π) is the range of Π. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.

In a smooth Banach space E, a duality mapping J is said to be weakly sequentially continuous [27],
if for each {xn} ⊂ E with xn ⇀ x, then {j(xn)} converges weakly∗ to j(x). In [27], Gossez and Lami
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Dozo showed that a space with a weakly continuous duality mapping satisfies Opial’s condition.
Conversely, we know from [28] that if a space satisfies Opial’s condition and has a uniformly Gáteaux
differentiable norm, then it has a weakly continuous duality mapping.

Proposition 3. (see [29]). Let C be a nonempty closed convex subset of a smooth Banach space E, D be a
nonempty subset of C and Π be a retraction of C onto D. Then the following are equivalent:

(i) Π is sunny and nonexpansive;
(ii) 〈x− y, j(Π(x)−Π(y))〉 ≥ ‖Π(x)−Π(y)‖2, ∀x, y ∈ C;

(iii) 〈x−Π(x), j(y−Π(x))〉 ≤ 0, ∀x ∈ C, y ∈ D.

If E is a Hilbert space, then a sunny nonexpansive retraction ΠC of E onto C coincides with the
nearest projection of E onto C and it is well known that if C is a convex closed set in a reflexive Banach
space E with a uniformly Gáteaux differentiable norm and D is a nonexpansive retract of C, then it is a
sunny nonexpansive retract of C; see, e.g., [30,31] and the references therein.

To prove our main results, we need to use some lemmas in the sequel. The following Lemma is

an immediate consequence of the subdifferential inequality of the function
1
2
‖ · ‖2.

Lemma 2. [32] Let E be a real Banach space and J be the normalized duality mapping on E. Then for any
given x, y ∈ E, the following inequality holds:

‖x + y‖2 − ‖x‖2 ≤ 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

If C is a convex closed set in a smooth Banach space E and ΠC a sunny nonexpansive retraction from E
onto C, we have

VI(C, B) = Fix(ΠC(I − λB)).

where B : C → E be an accretive mapping and λ > 0,

Using Proposition 3, we immediately obtain the following lemmas.

Lemma 3. Let C be a nonempty closed convex subset of a smooth Banach space E and B1, B2 : C → E be two
nonlinear mappings. Let ΠC be a sunny nonexpansive retraction from E onto C. For given x∗, y∗ ∈ C, (x∗, y∗)
is a solution of the GSVI (3) if and only if x∗ ∈ GSVI(C, B1, B2) where GSVI(C, B1, B2) is the set of fixed
points of the mapping

G := ΠC(ΠC(I − µ2B2)− µ1B1ΠC(I − µ2B2))

and y∗ = ΠC(I − µ2B2)x∗.

Lemma 4. Let C be a nonempty closed convex subset of a 2-uniformly smooth Banach space E. Let the mapping
A : C → E be α-inverse-strongly accretive. Then, for any given λ ≥ 0,

‖(I − λA)x− (I − λA)y‖2 − ‖x− y‖2 ≤ 2λ(κ2λ− α)‖Ax− Ay‖2.

In particular, if 0 ≤ λκ2 ≤ α, then I − λA is a nonexpansive operator. Let ΠC be a sunny
nonexpansive retraction from E onto C. Let the mappings B1, B2 : C → E be α-inverse-strongly
accretive and β-inverse-strongly accretive, respectively. Let the mapping G : C → C be defined as
G := ΠC(I − µ1B1)ΠC(I − µ2B2). If 0 ≤ µ1κ2 ≤ α and 0 ≤ µ2κ2 ≤ β, then G : C → C is nonexpansive.

Let C be a nonempty closed convex subset of a uniformly convex Banach space E and T : C → C
be an asymptotically nonexpansive mapping in the intermediate sense. Given any bounded subset
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K ⊂ C. For every ε > 0 and every integer n ≥ 2 there exist an integer Nε ≥ 1 and δε > 0, where both
Nε and δε are independent of n, such that if k ≥ Nε, z1, z2, ..., zn ∈ K and if

‖zi − zj‖ − ‖Tkzi − Tkzj‖ ≤ δε

for 1 ≤ i, j ≤ n, then

‖Tk(
n

∑
i=1

λizi)−
n

∑
i=1

λiTkzi‖ < ε

for all λ = (λ1, λ2, ..., λn) such that λi ≥ 0 for i = 1, 2, ..., n and ∑n
i=1 λi = 1; see ([33], Lemma 4)

for details.
From the above results, we know that if {xm}∞

m=0 is a sequence in C converging weakly to x and
if limm→∞ ‖xm − Txm‖ = 0, then Tx = x, where T : C → C is a uniformly continuous self-mapping on
C, which is asymptotically nonexpansive in the intermediate sense.

Lemma 5. (see [34]). Let E be a smooth and uniformly convex Banach space, and let r > 0. Then there exists a
strictly increasing, continuous, and convex function g : [0, 2r]→ R, g(0) = 0 such that

g(‖x− y‖) + 2〈x, j(y)〉 ≤ ‖x‖2 + ‖y‖2, ∀x, y ∈ {x ∈ E : ‖x‖ ≤ r}.

Lemma 6. (see [35]). Let E be a reflexive Banach space, C be a convex nonempty, closed subset of E, and
T : C → E be a nonexpansive mapping. Suppose that E admits a weakly sequentially continuous duality
mapping. Then the mapping I − T is demiclosed on C, where I is the identity mapping.

Lemma 7. (see [36]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ an + sntn + νn − snan, ∀n ≥ 0,

where {sn}, {tn} and {νn} satisfy the conditions:

(i) lim supn→∞ tn ≤ 0;
(ii) {sn} ⊂ [0, 1] and ∑∞

n=0 sn = ∞;
(iii) νn ≥ 0, ∀n ≥ 0, and ∑∞

n=0 νn < ∞.

Then limn→∞ an = 0.

3. Main Results

In this section, we suggest and analyze a hybrid viscosity implicit iteration method for solving the
GSVI (3) with the hierarchical variational inequality (HVI) constraint for countably many uniformly
Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in the
intermediate sense in a 2-uniformly smooth and uniformly convex Banach space.

Theorem 1. Let C be a convex closed set in a 2-uniformly smooth and uniformly convex Banach space E which
admits a weakly sequentially continuous duality mapping. Let ΠC be a sunny nonexpansive retraction from
E onto C. Let the mappings B1, B2 : C → E be α-inverse-strongly accretive and β-inverse-strongly accretive,
respectively. Let f : C → C be a contraction mapping with coefficient γ ∈ [0, 1) and F : E→ E be a strongly
positive linear bounded operator with the coefficient γ̄ such that 0 < γ < γ̄θ and 0 < θ ≤ ‖F‖−1. Let
T : C → C be uniformly continuous and asymptotically nonexpansive mapping in the intermediate sense,
and {Sn}∞

n=0 be a countable family of `-uniformly Lipschitzian pseudocontractive self-mappings on C such
that Ω :=

⋂∞
n=0 Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T) 6= ∅ where GSVI(C, B1, B2) is the fixed-point set of the

mapping G := ΠC(ΠC(I − µ2B2)− µ1B1ΠC(I − µ2B2)) with 0 < µ1κ2 < α and 0 < µ2κ2 < β for κ the
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2-uniformly smooth constant of E. Assume that ∑∞
n=0 cn < ∞, where cn is defined by (2). For arbitrarily given

x0 ∈ C, let {xn} be the sequence generated by

un = βn(xn − Snun) + Snun,

zn = ΠC(un − µ2B2un),

yn = ΠC(zn − µ1B1zn),

xn+1 = ΠC[(Tnyn − αnθFTnyn) + αn f (xn)], ∀n ≥ 0,

(7)

where {αn} and {βn} are the sequences in [0, 1] satisfying the following conditions:

(i) limn→∞ αn = 0, ∑∞
n=1 |αn − αn−1| < ∞ and ∑∞

n=0 αn = ∞,
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and ∑∞

n=1 |βn − βn−1| < ∞.

Assume that ∑∞
n=1 supx∈D ‖Snx− Sn−1x‖ < ∞ for any bounded subset D of C, and let S be a mapping

of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =
⋂∞

n=0 Fix(Sn).
If ∑∞

n=0 ‖Tn+1yn − Tnyn‖ < ∞, then {xn} converges strongly to x∗ ∈ Ω. In this case,

(a) x∗ ∈ Ω solves the VI: 〈 f (x∗)− θF(x∗), j(x− x∗)〉 ≤ 0, ∀x ∈ Ω;
(b) (x∗, y∗) is a solution of GSVI (1.3) with y∗ = ΠC(I − µ2B2)x∗.

Proof. First of all, from αn → 0 (n→ ∞), we may assume, without loss of generality, that αn ≤
‖F‖−1

θ
for all n ≥ 0. Since F is strongly positive linear bounded, it follows that 1− αnγ̄θ ≥ ‖I− αnθF‖. Taking
into account that {βn} is bounded away from 0 and 1, we may assume that {βn} ⊂ [a, b] ⊂ (0, 1) for
some a, b ∈ (0, 1). Please note that the mapping G : C → C is defined as G := ΠC(ΠC(I − µ2B2)−
µ1B1ΠC(I − µ2B2)), where 0 < µ1κ2 ≤ α and 0 < µ2κ2 ≤ β for κ the 2-uniformly smooth constant of
E. Therefore, by Lemma 3, we obtain that G is nonexpansive. It is easy to see that for each n ≥ 0 there
exists a unique element un ∈ C such that

un = βn(xn − Snun) + Snun. (8)

As a matter of fact, consider the mapping

Fnx = βn(xn − Snx) + Snx, ∀x ∈ C.

Since Sn : C → C is a continuous pseudocontraction mapping, we deduce that

(1− βn)‖x− y‖2 ≥ (1− βn)〈Snx− Sny, j(x− y)〉 = 〈Fnx− Fny, j(x− y)〉, ∀x, y ∈ C.

Also, from {βn} ⊂ [a, b] ⊂ (0, 1) we get 0 < 1− βn < 1 for all n ≥ 0. Thus, Fn is a continuous
and strong pseudocontraction mapping of C into itself. By Proposition 2, we know that for each n ≥ 0
there exists a unique element un ∈ C, satisfying (8). Therefore, it can be readily seen that the hybrid
viscosity implicit iterative scheme (7) can be rewritten as{

un = βn(xn − Snun) + Snun,

yn = Gun, xn+1 = ΠC[(Tnyn − αnθFTnyn) + αn f (xn)], ∀n ≥ 0,
(9)

Next, we divide the rest of the proof into several steps.
Step 1. We claim that {xn}, {yn}, {zn}, {un}, { f (xn)}, {Tnyn} and {F(Tnyn)} are bounded vector

sequences. Indeed, take an element p ∈ Ω =
⋂∞

n=0 Fix(Sn)∩GSVI(C, B1, B2)∩ Fix(T) arbitrarily. Then
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we have Sn p = p, Gp = p and Tp = p. Since each Sn : C → C is a pseudocontraction mapping,
it follows that

‖p− un‖2 = 〈βn(p− xn) + (1− βn)(p− Snun), j(p− un)〉

= (1− βn)〈p− Snun, j(p− un)〉+ βn〈p− xn, j(p− un)〉

≤ (1− βn)‖p− un‖2 + βn‖xn − p‖‖p− un‖,

which hence yields
‖p− un‖ ≤ ‖p− xn‖, ∀n ≥ 0. (10)

Then we observe
‖yn − p‖ = ‖Gun − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (11)

Combining (9) and (11), we have

‖xn+1 − p‖ ≤ ‖αn( f (xn)− θF(p)) + (I − αnθF)Tnyn − (I − αnθF)p‖

≤ αnγ‖xn − p‖+ αn‖ f (p)− θF(p)‖+ (1− αnγ̄θ)‖Tnyn − p‖

≤ αnγ‖xn − p‖+ αn‖ f (p)− θF(p)‖+ (1− αnγ̄θ)(‖yn − p‖+ cn)

≤ cn + αn‖ f (p)− θF(p)‖+ αnγ‖xn − p‖+ (1− αnγ̄θ)‖xn − p‖

≤ cn + max{‖xn − p‖, ‖ f (p)− θF(p)‖
γ̄θ − γ

}.

By induction, we get

‖xn − p‖ ≤
∞

∑
n=0

cn + max{‖x0 − p‖, ‖ f (p)− θF(p)‖
γ̄θ − γ

}, ∀n ≥ 0.

It immediately follows that {xn} is bounded, and so are the sequences
{yn}, {un}, { f (xn)}, {Tnyn} and {F(Tnyn)} (due to (10), (11) and the Lipschitz continuity of
f ). Taking into account that {Sn} is `-uniformly Lipschitzian on C, we know that

`‖un − p‖+ ‖p‖ ≥ |Snun − p‖+ ‖p‖ ≥ ‖Snun‖,

which implies that {Snun} is bounded. In addition, from Lemma 3 and p ∈ Ω ⊂ GSVI(C, B1, B2),
it also follows that (p, q) is a solution of GSVI (3) where q = ΠC(p − µ2B2 p). Please note that
zn = ΠC(I − µ2B2)un for all n ≥ 0. Then by Lemma 4 we get

‖zn‖ ≤ ‖ΠC(un − µ2B2un)−ΠC(p− µ2B2 p)‖+ ‖q‖

≤ ‖(un − µ2B2un)− (p− µ2B2 p)‖+ ‖q‖

≤ ‖q‖+ ‖un − p‖.

This shows that {zn} is bounded.
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Step 2. We claim that ‖xn+1− xn‖ → 0 and ‖yn+1− yn‖ → 0 as n→ ∞. Indeed, from (9) we have

‖xn+1 − xn‖

≤ ‖αn f (xn) + (I − αnθF)Tnyn − αn−1 f (xn−1)− (I − αn−1θF)Tn−1yn−1‖

≤ αnγ‖xn − xn−1‖+ |αn − αn−1|‖ f (xn−1)− θFTnyn−1‖+ (1− αnγ̄θ)(‖yn − yn−1‖+ cn)

+ (1− αn−1γ̄θ)‖Tnyn−1 − Tn−1yn−1‖

≤ αnγ‖xn − xn−1‖+ |αn − αn−1|M1 + (1− αnγ̄θ)‖un − un−1‖

+ ‖Tnyn−1 − Tn−1yn−1‖+ cn,

(12)

where
M1 = sup

n≥1
‖θFTnyn−1 − f (xn−1)‖.

Also, simple calculations show that

‖un − un−1‖2

≤ βn‖xn − xn−1‖‖un − un−1‖+ (1− βn)[‖Snun − Sn−1un‖‖un − un−1‖
+ ‖un − un−1‖2] + |βn − βn−1|‖xn−1 − Sn−1un−1‖‖un − un−1‖.

(13)

So, it follows from (13) that

‖un − un−1‖ ≤ βn‖xn − xn−1‖+ (1− βn)[‖Snun − Sn−1un‖
+ ‖un − un−1‖] + |βn − βn−1|‖xn−1 − Sn−1un−1‖,

which immediately leads to

‖un − un−1‖ − ‖xn − xn−1‖ ≤
1− βn

βn
‖Snun − Sn−1un‖+ |βn − βn−1|

‖xn−1 − Sn−1un−1‖
βn

≤ 1
a
‖Snun − Sn−1un‖+ |βn − βn−1|

‖xn−1 − Sn−1un−1‖
a

.
(14)

Putting D = {un : n ≥ 0}, we know that D is a bounded subset of C. Then by the assumption we
get ∑∞

n=1 supx∈D ‖Snx− Sn−1x‖ < ∞. Noticing that

sup
x∈D
‖Snx− Sn−1x‖ ≥ ‖Snun − Sn−1un‖, ∀n ≥ 1,

we have
∞

∑
n=1
‖Snun − Sn−1un‖ < ∞. (15)

Therefore, from (12) and (14) we deduce that

‖xn+1 − xn‖ ≤ αnγ‖xn − xn−1‖+ |αn − αn−1|M1 + (1− αnγ̄θ){‖xn − xn−1‖

+
1
a
‖Snun − Sn−1un‖+ |βn − βn−1|

‖xn−1 − Sn−1un−1‖
a

}
+ cn + ‖Tnyn−1 − Tn−1yn−1‖

≤ |αn − αn−1|M1 +
1
a
‖Snun − Sn−1un‖+ [1− αn(γ̄θ − γ)]‖xn − xn−1‖

+ |βn − βn−1|
‖xn−1 − Sn−1un−1‖

a
+ cn + ‖Tnyn−1 − Tn−1yn−1‖

≤ M2(|αn − αn−1|+ |βn − βn−1|+ [1− αn(γ̄θ − γ)]‖xn − xn−1‖
+ ‖Snun − Sn−1un‖+ cn + ‖Tnyn−1 − Tn−1yn−1‖),

(16)
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where

M2 = sup
n≥1
{1

a
+
‖xn−1 − Sn−1un−1‖

a
+ M1 + 1}.

From (15), the assumption ∑∞
n=0 cn < ∞ and conditions (i) and (ii), it can be readily seen that

∑∞
n=0 αn(γ̄θ − γ) = ∞ and

∞

∑
n=1

M2(‖Snun − Sn−1un‖+ cn + |αn − αn−1|+ |βn − βn−1|+ ‖Tnyn−1 − Tn−1yn−1‖) < ∞.

So, it follows from Lemma 7 and (16) that

lim
n→∞

‖xn+1 − xn‖ = 0. (17)

Again from (9) and (14) we conclude that

a‖yn − yn−1‖ = a‖Gun − Gun−1‖ ≤ a‖un − un−1‖
≤ a‖xn − xn−1‖+ ‖Snun − Sn−1un‖+ |βn − βn−1|‖xn−1 − Sn−1un−1‖ → 0 (n→ ∞).

That is,
lim

n→∞
‖yn+1 − yn‖ = 0. (18)

Step 3. We claim that ‖xn − Gxn‖ → 0 as n → ∞. Indeed, note that q = ΠC(p − µ2B2 p),
zn = ΠC(un − µ2B2un) and yn = ΠC(zn − µ1B1zn). Then yn = Gun. By Lemma 4 we have

‖zn − q‖2 ≤ ‖un − p− µ2(B2un − B2 p)‖2

≤ 2µ2(κ
2µ2 − β)‖B2un − B2 p‖2 + ‖un − p‖2

(19)

and
‖yn − p‖2 ≤ ‖zn − q− µ1(B1zn − B1q)‖2

≤ 2µ1(κ
2µ1 − α)‖B1zn − B1q‖2 + ‖zn − q‖2.

(20)

Substituting (19) for (20), we obtain

‖yn − p‖2 + 2µ2(β− κ2µ2)‖B2un − B2 p‖2 + 2µ1(α− κ2µ1)‖B1zn − B1q‖2 ≤ ‖un − p‖2. (21)

Let vn := (Tnyn − αnθFTnyn) + αn f (xn). Then, from (7) and Lemma 2 we obtain

‖xn+1 − p‖2 ≤ ‖vn − p‖2

≤ 2αn〈 f (xn)− θFTnyn, j(vn − p)〉+ ‖Tnyn − p‖2

≤ 2αn‖ f (xn)− θFTnyn‖‖vn − p‖+ (‖yn − p‖+ cn)2

≤ ‖yn − p‖2 + cn M2 + αn M3,

(22)

where M2 = supn≥0{2‖yn − p‖+ cn} and

M3 = sup
n≥0
{2‖ f (xn)− θFTnyn‖‖vn − p‖}.

Substituting (21) to (22), we deduce from (10) that

‖xn+1 − p‖2 + 2µ2(β− κ2µ2)‖B2un − B2 p‖2 + 2µ1(α− κ2µ1)‖B1zn − B1q‖2

≤ ‖xn − p‖2 + cn M2 + αn M3,
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which immediately yields

2µ2(β− κ2µ2)‖B2un − B2 p‖2 + 2µ1(α− κ2µ1)‖B1zn − B1q‖2

≤ αn M3 − ‖xn+1 − p‖2 + cn M2 + ‖xn − p‖2

≤ cn M2 + αn M3 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖.

Since µ1κ2 ∈ (0, α), µ2κ2 ∈ (0, β), limn→∞ cn = 0 and limn→∞ αn = 0, we obtain from (17) that

lim
n→∞

‖B2un − B2 p‖ = 0 and lim
n→∞

‖B1zn − B1q‖ = 0. (23)

On the other hand, from Proposition 3 and Lemma 5 we have

2‖zn − q‖2 ≤ 2〈un − µ2B2un − (p− µ2B2 p), j(zn − q)〉
≤ [‖un − p‖2 + ‖zn − q‖2 − g1(‖un − zn − (p− q)‖)] + 2µ2‖B2 p− B2un‖‖zn − q‖,

which implies that

‖zn − q‖2 + g1(‖un − zn − (p− q)‖) ≤ ‖un − p‖2 + 2µ2‖B2 p− B2un‖‖zn − q‖. (24)

In the same way, we derive

2‖yn − p‖2 ≤ 2〈zn − µ1B1zn − (q− µ1B1q), j(yn − p)〉
≤ [‖zn − q‖2 + ‖yn − p‖2 − g2(‖zn − yn + (p− q)‖)] + 2µ1‖B1q− B1zn‖‖yn − p‖,

which implies that

‖yn − p‖2 + g2(‖zn − yn + (p− q)‖) ≤ ‖zn − q‖2 + 2µ1‖B1q− B1zn‖‖yn − p‖. (25)

Substituting (24) for (25), we deduce from (10) that

‖yn − p‖2 ≤ ‖un − p‖2 − g1(‖un − zn − (p− q)‖)− g2(‖zn − yn + (p− q)‖)

+ 2µ2‖B2 p− B2un‖‖zn − q‖+ 2µ1‖B1q− B1zn‖‖yn − p‖

≤ ‖xn − p‖2 − g1(‖un − zn − (p− q)‖)− g2(‖zn − yn + (p− q)‖)

+ 2µ1‖B1q− B1zn‖‖yn − p‖+ 2µ2‖B2 p− B2un‖‖zn − q‖.

(26)

Substituting (26) for (22), we have

‖xn+1 − p‖2 + g1(‖un − zn − (p− q)‖) + g2(‖zn − yn + (p− q)‖)

≤ ‖xn − p‖2 + 2µ2‖B2 p− B2un‖‖zn − q‖+ 2µ1‖B1q− B1zn‖‖yn − p‖+ cn M2 + αn M3,

which hence yields

g1(‖un − zn − (p− q)‖) + g2(‖zn − yn + (p− q)‖)

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ 2µ2‖B2 p− B2un‖‖zn − q‖

+ 2µ1‖B1q− B1zn‖‖yn − p‖+ αn M3 + cn M2.

Since limn→∞ cn = 0 and limn→∞ αn = 0, we conclude from (17) and (23) that

lim
n→∞

g1(‖un − zn − (p− q)‖) = 0 and lim
n→∞

g2(‖zn − yn + (p− q)‖) = 0.



Mathematics 2019, 7, 338 12 of 20

Using the properties of g1 and g2, we obtain

lim
n→∞

‖un − zn − (p− q)‖ = 0 and lim
n→∞

‖zn − yn + (p− q)‖ = 0. (27)

It follows that

‖un − yn‖ ≤ ‖un − zn − (p− q)‖+ ‖zn − yn + (p− q)‖ → 0 (n→ ∞).

That is,
lim

n→∞
‖un − Gun‖ = lim

n→∞
‖un − yn‖ = 0. (28)

Also, according to (8) we have

‖un − p‖2 ≤ βn〈xn − p, j(un − p)〉+ (1− βn)‖un − p‖2,

which together with Lemma 5, yields

2‖un − p‖2 ≤ 2〈xn − p, j(un − p)〉

≤ [‖xn − p‖2 + ‖un − p‖2 − g(‖xn − un‖)].

This immediately implies that

‖un − p‖2 + g(‖xn − un‖) ≤ ‖xn − p‖2,

which together with (22), yields

‖xn+1 − p‖2 ≤ ‖un − p‖2 + cn M2 + αn M3

≤ ‖xn − p‖2 − g(‖xn − un‖) + cn M2 + αn M3.

Hence we have

g(‖un − xn‖) ≤ ‖xn − p‖2 + cn M2 − ‖xn+1 − p‖2 + αn M3

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ αn M3 + cn M2.

Since limn→∞ cn = 0 and limn→∞ αn = 0, we obtain from (17) that limn→∞ g(‖xn − un‖) = 0.
Using the properties of g, we have

lim
n→∞

‖xn − un‖ = 0. (29)

Also, observe that
‖xn − un‖+ ‖un − Gun‖ ≥ ‖xn − yn‖,

and
‖xn − yn‖+ ‖un − xn‖ ≥ ‖xn − yn‖+ ‖Gun − Gxn‖ ≥ ‖xn − Gxn‖.

Then from (28) and (29) it follows that

lim
n→∞

‖xn − yn‖ = 0 and lim
n→∞

‖xn − Gxn‖ = 0. (30)

Step 4. We claim that ‖Txn − xn‖ → 0 and ‖Snxn − xn‖ → 0 as n → ∞. Indeed, combining (8)
with (29), we obtain that

‖Snun − un‖ =
βn

1− βn
‖xn − un‖ ≤

b
1− b

‖xn − un‖ → 0 (n→ ∞).
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That is,
lim

n→∞
‖Snun − un‖ = 0. (31)

Since {Sn}∞
n=0 is `-uniformly Lipschitzian on C, we deduce from (29) and (31) that

‖Snxn − xn‖ ≤ ‖Snxn − Snun‖+ ‖Snun − un‖+ ‖un − xn‖

≤ (`+ 1)‖xn − un‖+ ‖Snun − un‖ → 0 (n→ ∞).

That is,
lim

n→∞
‖xn − Snxn‖ = 0. (32)

We note that

‖xn − Tnyn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tnyn‖

=≤ ‖xn − xn+1‖+ αn‖ f (xn)− θFTnyn‖.

Then we have

‖yn − Tnyn‖ ≤ ‖yn − xn‖+ ‖xn − Tnyn‖

≤ ‖yn − xn‖+ ‖xn − xn+1‖+ αn‖ f (xn)− θFTnyn‖.

Consequently, from (17), (30) and limn→∞ αn = 0, it follows that

lim
n→∞

‖yn − Tnyn‖ = 0. (33)

We also note that

‖yn − Tyn‖ ≤ ‖yn − Tnyn‖+ ‖Tnyn − Tn+1yn‖+ ‖Tn+1yn − Tyn‖.

By the assumption ∑∞
n=0 ‖Tn+1yn − Tnyn‖ < ∞, (33) and the condition that T : C → C is

uniformly continuous, we get
lim

n→∞
‖yn − Tyn‖ = 0. (34)

In addition, noticing that

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖Tyn − Txn‖,

we deduce from (30), (34) and the uniform continuity of T that

lim
n→∞

‖xn − Txn‖ = 0. (35)

Step 5. We claim that ‖xn − Sxn‖ → 0 as n→ ∞ where S := (2I − S)−1. Indeed, first, let us show
that S : C → C is pseudocontractive and `-Lipschitzian such that limn→∞ ‖Sxn − xn‖ = 0 where Sx =

limn→∞ Snx ∀x ∈ C. Observe that for all x, y ∈ C, limn→∞ ‖Snx− Sx‖ = 0 and limn→∞ ‖Sny− Sy‖ = 0.
Since Sn is pseudocontractive operator, we get

〈Sx− Sy, j(x− y)〉 ≤ ‖x− y‖2.

This means that S is pseudocontractive. Noting that {Sn}∞
n=0 is `-uniformly Lipschitzian on C,

we have
‖Sx− Sy‖ = lim

n→∞
‖Snx− Sny‖ ≤ `‖x− y‖, ∀x, y ∈ C.
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This means that S is `-Lipschitzian. Taking into account the boundedness of {xn} and putting
D = conv{xn : n ≥ 0} (the closed convex hull of the set {xn : n ≥ 0}), by the assumption we have
∑∞

n=1 supx∈D ‖Sn−1x− Snx‖ < ∞. Hence, by Proposition 1 we get

lim
n→∞

sup
x∈D
‖Snx− Sx‖ = 0,

which immediately yields
lim

n→∞
‖Snxn − Sxn‖ = 0. (36)

Thus, combining (32) with (36) we have

‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖ → 0 (n→ ∞).

That is,
lim

n→∞
‖xn − Sxn‖ = 0. (37)

Now, let us show that if we define S := (2I − S)−1, then S : C → C is nonexpansive,
Fix(S) = Fix(S) =

⋂∞
n=0 Fix(Sn) and limn→∞ ‖xn − Sxn‖ = 0. Indeed, put S := (2I − S)−1, where I

is the identity mapping on E. Then it is known that S is nonexpansive and the fixed-point set
Fix(S) = Fix(S) =

⋂∞
n=0 Fix(Sn). From (37) it follows that

‖xn − Sxn‖ = ‖SS−1xn − Sxn‖

≤ ‖S−1xn − xn‖

= ‖(2I − S)xn − xn‖ = ‖xn − Sxn‖ → 0 (n→ ∞).

That is,
lim

n→∞
‖xn − Sxn‖ = 0. (38)

Step 6. We claim that

lim sup
n→∞

〈 f (x∗)− θF(x∗), j(xn − x∗)〉 ≤ 0, (39)

where x∗ = ΠΩ( f + I − θF)(x∗). Indeed, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈 f (x∗)− θF(x∗), j(xn − x∗)〉 = lim
i→∞
〈 f (x∗)− θF(x∗), j(xni − x∗)〉.

Now we show that ΠΩ( f + I − θF) is a contraction mapping. Since F is bounded linear strongly
positive, for all x, y ∈ C, we have

‖ΠΩ( f + I − θF)(x)−ΠΩ( f + I − θF)(y)‖

≤ ‖ f (x)− f (y)‖+ ‖(I − θF)(x)− (I − θF)(y)‖

≤ [1 + (γ− γ̄θ)]‖x− y‖,

which implies that ΠΩ( f + I − θF) is a contraction mapping. Banach’s contraction mapping principle
guarantees that ΠΩ( f + I− θF) has a unique fixed point. Say x∗ ∈ C, that is, x∗ = ΠΩ( f + I− θF)(x∗).
Since {xn} is a bounded sequence in C, we may assume that xni ⇀ x̄ ∈ C. Please note that G and
S are nonexpansive and that T is asymptotically nonexpansive in the intermediate sense. Since
(I − G)xn → 0 and (I − S)xn → 0 (due to (30) and (37)), by Lemma 6 we have that x̄ ∈ Fix(G) =

GSVI(C, B1, B2) and x̄ ∈ Fix(S) = Fix(S) =
⋂∞

n=0 Fix(Sn). From (35), we have that limi→∞ ‖xni −
Txni‖ = 0 for the subsequence {xni} of {xn}. It follows that x̄ ∈ Fix(T). Then, x̄ ∈ Ω =

⋂∞
n=0 Fix(Sn)∩
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GSVI(C, B1, B2) ∩ Fix(T). Since E admits a weakly sequentially continuous duality mapping j(·) and
xni ⇀ x̄, we obtain

lim sup
n→∞

〈 f (x∗)− θF(x∗), j(xn − x∗)〉 = lim
i→∞
〈 f (x∗)− θF(x∗), j(xni − x∗)〉

= 〈 f (x∗)− θF(x∗), j(x̄− x∗)〉 ≤ 0,

which implies that (39) holds. Noticing that j(·) is also norm-to-norm uniformly continuous on
bounded subsets of E, we obtain from (17) that

lim sup
n→∞

〈 f (x∗)− θF(x∗), j(xn+1 − x∗)〉 ≤ 0. (40)

Step 7. We claim that xn → x∗ as n→ ∞. Indeed, it follows from xn+1 = ΠCvn and Proposition 3
(iii) that

〈ΠCvn − vn, j(ΠCvn − x∗)〉 ≤ 0,

which leads to
〈xn+1 − vn, j(xn+1 − x∗)〉 ≤ 0.

Then, from (11) we have

2‖xn+1 − x∗‖2

≤ 2〈x∗ − vn, j(x∗ − xn+1)〉

≤ 2αnγ‖xn − x∗‖‖xn+1 − x∗‖+ 2(1− αnγ̄θ)(‖yn − x∗‖+ cn)‖xn+1 − x∗‖

+ 2αn〈 f (x∗)− θF(x∗), j(xn+1 − x∗)〉

≤ 2[1− αn(γ̄θ − γ)]‖xn − x∗‖‖xn+1 − x∗‖+ 2cn M4 + 2αn〈 f (x∗)− θF(x∗), j(xn+1 − x∗)〉

≤ ‖xn+1 − x∗‖2 + (1− αn(γ̄θ − γ))‖xn − x∗‖2 + 2cn M4 + 2αn〈 f (x∗)− θF(x∗), j(xn+1 − x∗)〉,

where M4 = supn≥0 ‖xn+1 − x∗‖. This immediately implies that

‖xn+1 − x∗‖2 ≤ [1− αn(γ̄θ − γ)]‖xn − x∗‖2 + αn(γ̄θ − γ)
2〈 f (x∗)− θF(x∗), j(xn+1 − x∗)〉

γ̄θ − γ
+ 2cn M4. (41)

Applying Lemma 7 to (41), we infer that xn → x∗ as n→ ∞. The proof is completed.

It is remarkable that according to the proof of Theorem 1, we know that {yn} is bounded. We now
give two examples to illustrate partial conditions of Theorem 1 to be satisfied.

Example 1. Let T : C → C be a contraction mapping with a constant β ∈ (0, 1). We take Sn := Tn and obtain

sup
x∈D
‖Snx− Sn−1x‖ = sup

x∈D
‖Tnx− Tn−1x‖ ≤ βn−1 · sup

x∈D
‖Tx− x‖, ∀n ≥ 1,

for any bounded subset D of C. Therefore, it follows that

+∞ >
∞

∑
n=1

βn−1 · sup
x∈D
‖Tx− x‖ ≥

∞

∑
n=1

sup
x∈D
‖Snx− Sn−1x‖.

In particular, whenever D is a bounded sequence {xn}∞
n=0 in C, we have

+∞ >
∞

∑
n=0

sup
x∈D
‖Sn+1x− Snx‖ ≥

∞

∑
n=0
‖Sn+1xn − Snxn‖ =

∞

∑
n=0
‖Tn+1xn − Tnxn‖.
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Since T is a contraction mapping, Banach’s Contraction Mapping Principle guarantees that T has
a unique fixed point. Say p ∈ C. We define Sx := p for all x ∈ C. It is easy to see that Sx = limn→∞ Snx
for all x ∈ C and Fix(S) =

⋂∞
n=0 Fix(Sn).

Example 2. Let E = R and C = [−1, 1], and let T : C → C be an identity mapping, i.e., Tx = x for all
x ∈ C. Moreover, we define

Snx :=
sin x + x

2 + n
, ∀x ∈ C, ∀n ≥ 0.

Then we obtain

|Snx− Sny| = | sin x+
n + 2

− sin y + y
n + 2

|

≤ |y− x|+ | sin y− sin x|
n + 2

≤ 2|x− y|
n + 2

≤ |x− y|, ∀x, y ∈ C, ∀n ≥ 0,

and
sup
x∈C
|Snx− Sn−1x| = sup

x∈C
| x + sin x

n + 2
− x + sin x

n + 1
| = sup

x∈C
| x + sin x
(n + 2)(n + 1)

|

≤ 2
(n + 2)(n + 1)

≤ 2
(n + 1)2 , ∀n ≥ 0.

Therefore, it follows that for any bounded subset D of C,

∞

∑
n=1

sup
x∈D
|Snx− Sn−1x| < ∞.

In addition, whenever {xn}∞
n=0 is a bounded sequence in C, it is clear that

∞

∑
n=0
|Tnxn − Tn+1xn| < ∞.

Also, we define Sx := 0 for all x ∈ C. Then, it is clear that Sx = limn→∞ Snx ∀x ∈ C, and
Fix(S) =

⋂∞
n=0 Fix(Sn).

4. Applications

Now, we give an application to solve CFPPs of asymptotically nonexpansive and
pseudocontractive mappings, and variational inequality problems for strict pseudocontractive
mappings in Banach spaces.

Let C be a nonempty, closed, and convex subset of a real Banach space E. A mapping T : C → C
is said to be λ-strictly pseudocontractive if for every x, y ∈ C there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉+ λ‖(I − T)x− (I − T)y‖2 ≤ ‖x− y‖2, for some λ ∈ (0, 1). (42)

A simple computation shows that (42) is equivalent to the following inequality:

〈(I − T)x− (I − T)y, j(x− y)〉 ≥ λ‖(I − T)x− (I − T)y‖2, (43)

for every x, y ∈ C and for some j(x− y) ∈ J(x− y). Therefore, I − T is λ-inverse-strongly accretive.
By Theorem 1, we can obtain the following results easily.

Theorem 2. Let C be a convex closed set in a 2-uniformly smooth and uniformly convex Banach space E which
admits a weakly sequentially continuous duality mapping. Let ΠC be a sunny nonexpansive retraction from
E onto C. Let the mappings B1, B2 : C → C be α-strictly pseudocontractive and β-strictly pseudocontractive,
respectively. Let f : C → C be a contraction mapping with coefficient γ ∈ [0, 1) and F : E→ E be a strongly
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positive linear bounded operator with the coefficient γ̄ such that 0 < γ < γ̄θ and 0 < θ ≤ ‖F‖−1. Let
T : C → C be uniformly continuous and asymptotically nonexpansive mapping in the intermediate sense,
and {Sn}∞

n=0 be a countable family of `-uniformly Lipschitzian pseudocontractive self-mappings on C such
that Ω :=

⋂∞
n=0 Fix(Sn) ∩ GSVI(C, I − B1, I − B2) ∩ Fix(T) 6= ∅ where GSVI(C, I − B1, I − B2) is the

fixed-point set of the mapping G := [(1− µ1)I + µ1B1][(1− µ2)I + µ2B2] with 0 < µ1κ2 < min{1, α} and
0 < µ2κ2 < min{1, β} for κ the 2-uniformly smooth constant of E. Assume that ∑∞

n=0 cn < ∞, where cn is
defined by (2). For arbitrarily given x0 ∈ C, let {xn} be the sequence generated by

yn = (1− µ1)zn + µ1B1zn,

zn = (1− µ2)un + µ2B2un,

un = βn(xn − Snun) + Snun,

xn+1 = ΠC[(Tnyn − αnθFTnyn) + αn f (xn)], ∀n ≥ 0,

(44)

where {αn} and {βn} are the sequences in [0, 1] satisfying the following conditions:

(i) ∑∞
n=0 αn = ∞, ∑∞

n=1 |αn − αn−1| < ∞ and limn→∞ αn = 0;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and ∑∞

n=1 |βn − βn−1| < ∞.

Assume that ∑∞
n=1 supx∈D ‖Snx− Sn−1x‖ < ∞ for any bounded subset D of C, and let S be a mapping

of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =
⋂∞

n=0 Fix(Sn).
If ∑∞

n=0 ‖Tn+1yn − Tnyn‖ < ∞, then {xn} converges strongly to x∗ ∈ Ω. In this case,

(a) x∗ ∈ Ω solves the VI: 〈 f (x∗)− θF(x∗), j(x− x∗)〉 ≤ 0, ∀x ∈ Ω;
(b) (x∗, y∗) is a solution of GSVI (1.3) for two inverse-strongly accretive mappings I − Bi, i = 1, 2, where

y∗ = (1− µ2)x∗ + µ2B2x∗.

Proof. Since the mappings B1, B2 : C → C are α-strictly pseudocontractive and β-strictly
pseudocontractive, respectively, it can be seen readily that I− B1, I− B2 : C → E are α-inverse-strongly
accretive and β-inverse-strongly accretive, respectively. Please note that 0 < µ1κ2 < min{1, α} and
0 < µ2κ2 < min{1, β} for κ the 2-uniformly smooth constant of E. Then, GSVI(C, I − B1, I − B2) is the
fixed-point set of the following mapping

Gx : = ΠC[(1− µ1)I + µ1B1]ΠC[(1− µ2)x + µ2B2x]

= ΠC{(1− µ1)[(1− µ2)x + µ2B2x] + µ1B1[(1− µ2)x + µ2B2x]}

= [(1− µ1)I + µ1B1][(1− µ2)I + µ2B2]x, ∀x ∈ C.

In this case, it is easy to see that the iterative scheme (7) reduces to (44). Therefore, by Theorem 1
we obtain the desired result.

Theorem 3. Let C be a bounded, convex and closed set in a 2-uniformly smooth and uniformly convex Banach
space E which admits a weakly sequentially continuous duality mapping. Let ΠC be a sunny nonexpansive
retraction from E onto C. Let the mappings B1, B2 : C → C be α-strictly pseudocontractive and β-strictly
pseudocontractive, respectively. Let f : C → C be a contraction mapping with coefficient γ ∈ [0, 1) and F : E→
E be a strongly positive linear bounded operator with the coefficient γ̄ such that 0 < γ < γ̄θ and 0 < θ ≤ ‖F‖−1.
Let T : C → C be an asymptotically nonexpansive mapping with a sequence {θn} ⊂ [0, ∞) satisfying
∑∞

n=0 θn < ∞, and {Sn}∞
n=0 be a countable family of `-uniformly Lipschitzian pseudocontractive self-mappings

on C such that Ω :=
⋂∞

n=0 Fix(Sn)∩GSVI(C, I− B1, I− B2)∩ Fix(T) 6= ∅ where GSVI(C, I− B1, I− B2)

is the fixed-point set of the mapping G := [(1− µ1)I + µ1B1][(1− µ2)I + µ2B2] with 0 < µ1κ2 < min{1, α}
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and 0 < µ2κ2 < min{1, β} for κ the 2-uniformly smooth constant of E. For arbitrarily given x0 ∈ C, let {xn}
be the sequence generated by

zn = (1− µ2)un + µ2B2un,

un = βn(xn − Snun) + Snun,

yn = (1− µ1)zn + µ1B1zn,

xn+1 = ΠC[αn f (xn) + (I − αnθF)Tnyn], ∀n ≥ 0,

(45)

where {αn} and {βn} are the sequences in [0, 1] satisfying the following conditions:

(i) ∑∞
n=0 αn = ∞, ∑∞

n=1 |αn − αn−1| < ∞ and limn→∞ αn = 0;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and ∑∞

n=1 |βn − βn−1| < ∞.

Assume that ∑∞
n=1 supx∈D ‖Snx− Sn−1x‖ < ∞ for any bounded subset D of C, and let S be a mapping

of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =
⋂∞

n=0 Fix(Sn).
If ∑∞

n=0 ‖Tn+1yn − Tnyn‖ < ∞, then {xn} converges strongly to x∗ ∈ Ω. In this case,

(a) x∗ ∈ Ω solves the VI: 〈 f (x∗)− θF(x∗), j(x− x∗)〉 ≤ 0, ∀x ∈ Ω;
(b) (x∗, y∗) is a solution of GSVI (1.3) for two inverse-strongly accretive mappings I − Bi, i = 1, 2, where

y∗ = (1− µ2)x∗ + µ2B2x∗.

Proof. Since set C is a bounded set, we know that diam(C) = supx,y∈C ‖x− y‖ < ∞. We have that
T : C → C is an asymptotically nonexpansive mapping with a sequence {θn} ⊂ [0, ∞) satisfying
∑∞

n=0 θn < ∞. Then, we deduce that for all x, y ∈ C,

‖Tnx− Tny‖ ≤ (1 + θn)‖x− y‖ = ‖x− y‖+ θn‖x− y‖ ≤ ‖x− y‖+ θndiam(C).

Hence, we get

cn := max{0, sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖)} ≤ θndiam(C),

which immediately attains ∑∞
n=0 cn < ∞. Therefore, by Theorem 1 we derive the desired result.

5. Conclusions

In this work, we studied problem of solving a general system of monotone variational inequalities
whose solutions are also the solutions of the CFPP of countably many nonlinear operators via a hybrid
viscosity implicit iteration method. Strong convergence theorems were established in 2-uniformly
smooth and uniformly convex Banach spaces. An application to CFPPs of asymptotically nonexpansive
and pseudocontractive mappings, and variational inequality problems for strict pseudocontractive
mappings was also given in Banach spaces. We also provided two examples to support the main
results of this paper.
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