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Abstract: In this paper, we construct optimal repeated measurement designs of two treatments for
estimating direct effects, and we examine the case of compound symmetry dependency. We present
the model and the design that minimizes the variance of the estimated difference of the two treatments.
The optimal designs with dependent observations in a compound symmetry model are the same as
in the case of independent observations.

Keywords: repeated measurement designs; compound symmetry

1. Introduction

In repeated measurement designs, a sequence of treatments is applied to each experimental unit
(e.u.). In particular, one treatment is applied in each period. For example, for two treatments, A and
B, and three periods, a possible sequence is ABA, which means that the treatments A, B, and A are
respectively applied at the beginning of each of the three periods. The direct effect of a treatment is the
effect of the treatment which is applied in the period that is examined. The residual effect is the effect
of the treatment which is applied in the period preceding the period that is examined. In the case of
two treatments, A and B, the direct τA and τB can be estimated. In every period, a treatment is applied,
so either τA or τB is estimable. In this paper, the parameter of interest is the difference of direct effects
τ = τA − τB.

Most researchers who have investigated repeated measurement designs, such as [1–6], have
been occupied with universally optimal designs where the observations are independent. However,
researchers have also shown interest in designs with dependent observations, as in the cases of [7–11].

The model we use in this paper, and which is presented below, was first introduced by Hedayat
and Afsarinejad [12,13]. In previous research [14,15] using this model, the author of this article studied
two treatment designs under the assumption that consecutive observations were independent. Building
on that previous work, in the present article the author examines the case of compound symmetry
dependency. The aim is to find a design that corresponds to a minimum variance estimator.

2. The Model

A compound symmetry model has the following characteristics:

(i) For each sequence, the variance matrix is of the form Σm = aIm + bJm, where Im is the unit m × m
matrix, and Jm is the m × m matrix where all elements are equal to 1 (m is the number of periods).

(ii) The observations corresponding to different treatment sequences (different e.u.) are independent,
and the number of sequences is 2m.
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The goal is to find the design that corresponds to the minimum variance estimator. I show that, in
this case, the optimal design regarding the direct effect is the same as in the model of independent
observations, and only the variance of the estimator is different.

The model is [12]:
yi jk = µ+ τ+ πj + δi, j−1 + γi + ζk + ei jk (1)

j corresponds to the j-th period, j = 1, 2, . . . , m;
i corresponds to the i-th sequence, i = 0, 1, . . . 2m

− 1;
k corresponds to the unit k = 1, 2, . . . , n;
τA, τB: are direct effects of treatments A and B;
π j: is the effect of the j-th period;
δA, δB: are the residual effects of A and B;
γi: is the effect of the i-th sequence; and
ζk: is the effect of the k-th e.u. (subject effect), which is a random variable, independent of the error ei jk.

The errors ei jk are assumed to be independent. However, the quantities ζk + ei jk are independent
only between sequences and not within sequences.

The overparameterized model vector form of the above model is written as:

Y = τAτA + τBτB + δAδA + δBδB + π1π1 + · · ·+ πmπm ++γ0γ0 + · · ·+ γqγq + e (2)

where q = 2m
− 1 and Y,τA,τB,δA,δB,π1, · · ·πm,γ0, · · ·γq, e are 1×mn vectors; the direct effect vector

is 1 if the treatment is A, and zero if it is B. For example, for the sequence ABB . . . , τA =


1
0
0
...


and, in the same way, τB, δA, δBπι and γι are defined so that τA + τB = 1mn, δA + δB + π1 =

1mn, and π1 + π2 + . . .+ πm = 1mn. Also, 1 when the ith unit is employed, and 0 elsewhere, so
γ0 + γ1 + γ2 + . . .+ γ2m−1 = 1mn. So, in equation (2) there are linearly dependent vectors.

Keeping only the linear independent vector [16], the model (2) is transformed to

E(Y) = τ(τA − τB) + δ(δA − δB) + π1π1 + · · ·+ πm−1πm−1 ++γ0γ0 + · · ·+ γq−1γq−1

where q = 2m
− 1. In a vector form:

Y = Xb + e⇔ Y =
(

X1 X2
)( b1

b2

)
(3)

where Y is (mn) × 1, the design matrix X is (mn) × s, b is s × 1, e is (mn) × 1, and s is the number of
unknown parameters. If we are interested only in some and not in all of the parameters, then we write
b
′

=
(

b′1 b′2
)
, where b1 is the r parameters of interest, and b2 is the s-r remaining parameters.

We assume only one parameter of interest for the difference of the direct effects, τ = τA − τB,
which can be considered as the direct effect of A in the case of τB = 0. In order to guarantee the
estimability of the model, we postulate the restrictions τB = 0,πm = 0,γ2m−1 = 0.

The matrix X1 corresponds to the coefficients of τ, and the matrix X2 corresponds to the coefficients

of the rest of the non-random variables. Let us assume V = X2(X2
TΣ−1X2)

−1
X2

T is a (mn) × (mn)
matrix, P the projection matrix of X2, P = X2(X2

TX2)
−1X2

T and Σ are the (mn) × (mn) variance matrix
of the observations.

From the ordinal least-squares equations, we derive the following relation for the estimation of
the main effect τ:

(XT
1 Σ−1X1 −XT

1 Σ−1VΣ−1X1)τ̂ = XT
1 Σ−1(I− PΣ−1)Y
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We also have
var(τ) = σ2(XT

1 Σ−1X1 −XT
1 Σ−1VΣ−1X1)

−1
= σ2Q−1 (4)

3. The Case of Compound Symmetry

The observations are dependent within sequences with variance matrix Σm. The observations
from different sequences are independent, therefore:

Σ =


...

Σm 0 · · · 0
0 Σm · · · 0

. . .
...

0 0 · · · Σm

 and V =


Vm0 0 · · · 0

0 Vm1 · · · 0
. . .

...
0 0 · · · Vmq


where q = 2m

− 1 and Vmj = X2 j(X2 j
TΣm

−1X2 j)
−1X2 j

T.
In order to obtain a sequence enumeration, the binary enumeration system was used,

with 0 corresponding to A, and 1 to B. Thus, we obtained the enumerations 0, 1, . . . , 2m
− 1.

For example, if we have five periods and the sequence BABBA, then this is the 13th sequence,
since BABBA↔ 1 · 20 + 0 · 20 + 1 · 22 + 1 · 23 + 0 · 24 = 13 . For two periods, we have four sequences,
that is, AA↔ 0, BA↔ 1, AB↔ 2, BB↔ 3 . For three periods (two treatments) we have eight sequences:

A B A B A B A B

A A B B A A B B

A A A A B B B B

u0 u1 u2 u3 u4 u5 u6 u7

where ui i = 0, 2, 3, 4, 5, 6, 7 is the number of units that received the i-th sequence of treatments. The
sequences that we obtain by substituting A for B and vice versa are called dual or reversal designs.
Observe that for these sequences, we obtain the enumeration 7 − i, i = 0, 1, 2, 3.

Proposition 1. For a repeated measurement design with m periods, n experimental units, and a variance matrix
Σ that consists of n diagonal block matrices of the form Σm = aIm + bJm,

(XT
1 Σ−1X1 −XT

1 Σ−1VΣ−1X1) =
1
a
(XT

1 X1 −XT
1 PX1)

where P = X2(X2
TX2)

−1X2
T.

Proof. Let X̃1 = Σ−1/2X1, X̃2 = Σ−1/2X2, and Ỹ = Σ−1/2Y. Then

(XT
1 Σ−1X1 −XT

1 Σ−1VΣ−1X1) = XT
1 X1 − X̃

T
1 PX̃1

where P̃ = X̃2(X̃2
TX̃2)

−1
X̃2

T. In other words, P̃ is the matrix of the orthogonal projection to R(X̃2). �

X1 j j = 0, 1, 2 . . .m is the m × 1 matrix of τ in the j-th sequence, and X2 j j = 0, 1, 2 . . .m is the
mx(m + 2m) matrix of the parameters µ,π1,π2, . . . πm−1, δA, δB,γ1,γ2, . . . ,γq, where q = 2m

− 1.
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For example, for three periods (m = 3), we have the matrices:

X1 =


X10}u0

X11}u1
...

X17}u7

 and X2 =


X20

X21
...

X27


For the linear space R(X̃2j) and for any sequence (m observations) R(X̃2j) = R(X2j), we observe

the following:

(i) The matrix (aIm + bJm) is positive definite, so the matrix (aIm + bJm)
−

1
2 is also positive definite,

and we conclude that:

(aIm + bJm)
−

1
2 =

1
a
(Im −

b
a + bm

Jm)⇔ (aIm + bJm)
−

1
2 =

1
√

a
(Im − δJm)

where δ =
√ a

a+bm
m , 1− δ ·m > 0, and we have X̃2 j =

1
√
α
(Im − δJm)−1X2 j.

(ii) The coefficients of the general mean are 1, so 1m ∈ R(X2j) and.

1
√

a
(Im − δJm) · 1m =

1
√

a + bm
1m ⇒ 1m ∈ R(X̃2 j)

(iii) If z is another column vector, and z ∈ R(X2j), then

1
√

a
(Im − δJm)z =

1
√

a
(z− δ(1T

mz)1m)⇒ z ∈ R(X̃2 j)⇔ R(X̃2 j) = R(X2 j)

(iv) If P̃m is the matrix of the orthogonal projection to the linear space R(X̃2j), then P̃m j =

Pm j, where Pmj = X2 j(X2 j
TX2 j)

−1X2 j
T is the matrix of the orthogonal projection to R(X2j) and

Pmj · 1m = 1m ⇒ Pmj · Jm = Jm . From the above, we conclude that:

(X̃
T
1 jX̃1 j − X̃

T
1 jP̃mjX̃1 j) = X̃

T
1 jX̃1 j − X̃

T
1 jP̃mjX̃1 j =

1
a
(XT

1 jX1 j −XT
1 jPmjX1 j)

(Im − P̃mj)X̃1 j =
1
√

a
(Im − Pmj)(Im − δJm)X1 j =

1
√

a
(Im − Pmj)X1 j

(X̃
T
1 X̃1 − X̃

T
1 P̃X̃1) =

q∑
j=0

(X̃
T
1 jX̃1 j − X̃

T
1 jP̃mjX̃1 j) =

1
a
(XT

1 X1 −XT
1 PX1)

Corollary 1. The designs that result in the estimators with the minimum variance, i.e., minvar(τ̂) are exactly
the optimal designs of the model with independent observations. In this case, the variance var(τ̂) is multiplied
by α:

var(τ) = σ2(XT
1 X1 −XT

1 PX1)
−1

= σ2a · (Q∗)−1

σ2(Q∗)−1 is the variance of the optimal designs in the model with independent observations).

Proof. From the previous proof, we conclude that the variance of the estimator of the direct effect,
which is given by Formula (3), equals to

var(τ) = σ2a · (Q∗)−1

�
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Comments: (1) If we consider that an observation can influence another observation, the e.u are
correlated, and the correlation is given by ρ, −1 < ρ < 1. Dependent observations are often considered
observations of the same cluster [17]. A simple example of dependency appears when children of the
same mother are included in a sample. Due to their common household environment and genes, it is
expected that these children have a greater chance of having the same characteristics.

(2) In the case of compound symmetry, the variance matrix of each sequence observations is
Σm = (1 − ρ)Im + ρJm, so α = 1 − ρ, and b = ρ. In order for the matrix to be positive definite, the
condition − 1

m−1 < ρ < 1 is necessary. If ρ = 0, then we obtain the model with independent observations
and α = 1.

(3) The variance of the estimator of the direct effect, var(τ̂), decreases when the correlation
coefficient ρ increases and it approaches 0, when ρ approaches 1, since α = 1 − ρ.

(4) For two periods with dependent observations, the 2 × 2 variance matrix of the observations
in the compound symmetry model is Σ2 = (1− ρ)I2 + ρJ2 . The optimal design for this model is the
same as the optimal design for independent observations for every ρ, −1 < ρ < 1.

For an even n, such an optimal design is obtained when to the sequences AA and AB correspond to
n/2 e.u, while for an odd n, the optimal design is obtained when to the sequences AA and AB correspond
to (n − 1)/2 and (n + 1)/2 e.u., respectively [11]. The reverse sequences BB, BA also correspond to an
optimal design with: var(τ) = σ2(1− ρ)(Q∗)−1

(5) As illustrated, the examined model with dependent observations is also associated with
variance matrices Σ for which the optimal designs are the same as the ones of the model with
independent observations [14,18].
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