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Abstract: In this paper, we propose a generalized viscosity implicit iterative method for
asymptotically non-expansive mappings in Banach spaces. The strong convergence theorem of
this algorithm is proved, which solves the variational inequality problem. Moreover, we provide
some applications to zero-point problems and equilibrium problems. Further, a numerical example
is given to illustrate our convergence analysis. The results generalize and improve corresponding
results in the literature.
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1. Introduction

Variational inequality theory and fixed point theory are two important fields in non-linear analysis
and optimization. Much attention has been given to developing implementable viscosity iterative
methods for solving variational inequality problems, due to their applications in many real world
problems, such as signal processing, saddle point problems, equilibrium problems, and game theory,
in the frameworks of Hilbert spaces or Banach spaces; see [1–9] and the references therein.

The implicit midpoint rule is one of the most important numerical methods for solving certain
differential algebraic equations. Convergence analysis for viscosity iterative algorithms using the
implicit midpoint rule have been introduced by many authors; see [10–16] and the references therein.
More precisely, in 2015, Xu et al. [17] introduced the viscosity implicit midpoint rule for non-expansive
mappings in Hilbert spaces, wherein they showed that the sequence {xn} generated by

xn+1 = αn f (xn) + (1− αn)T(
xn+1 + xn

2
), n ≥ 0,

converges strongly to a fixed point of T, which was also the solution of the following variational
inequality (VI):

〈(I − f )q, x− q〉 ≥ 0, x ∈ F(T),

where F(T) is the set of fixed points of T. In 2017, Luo et al. [14] extended the work of Xu et al. [17]
to uniformly smooth Banach spaces, which contains Hilbert spaces as a special case. They proved
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a strong convergence theorem for the iterative scheme. In 2015, Ke et al. [18] studied the following
generalized viscosity implicit rule for nonexpansive mappings in Hilbert spaces:

xn+1 = αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1), n ≥ 0,

which converges strongly to a fixed point of T under certain assumptions, and is also solved by the
variational inequality (VI). In 2017, He et al. [19] considered the generalized viscosity implicit rule of
asymptotically non-expansive mappings in Hilbert spaces. They proved that the iterative algorithm,
defined by

xn+1 = αn f (xn) + (1− αn)Tn(βnxn + (1− βn)xn+1), n ≥ 0,

converges strongly to a fixed point of T, which was also the solution of the variational inequality (VI).
Motivated and inspired by the above works, we present a generalized viscosity implicit iterative

method for an asymptotically non-expansive mapping in a Banach space. Then, we prove a strong
convergence theorem of this algorithm, which solves the variational inequality problem. Applications
to zero-point problems and equilibrium problems are presented. Finally, a numerical example is given,
to illustrate our convergence analysis. Therefore, the results in this paper generalize and improve the
corresponding results found in [13–15,17–19].

2. Preliminaries

Throughout this paper, let K be a subset of a real Banach space E and let E∗ be the dual space of E.
Let T : K → K be a mapping, and denote by F(T) the set of fixed points of T. Recall that the duality
mapping J : E→ 2E∗ is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

A mapping T is said to be contractive on K if there exists a constant ρ ∈ (0, 1) such that ‖Tx−
Ty‖ ≤ ρ‖x− y‖ for all x, y ∈ K. Further, T is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all
x, y ∈ K, and T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞):
limn→∞ kn = 1 such that ‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ K, and {kn} is called an asymptotic
coefficient sequence of T.

We need some Lemmas for the proof of our main results.

Lemma 1 ([20]). Let {αn} be a sequence of non-negative real numbers satisfying the condition

αn+1 ≤ (1− γn)αn + γnσn, ∀n ≥ 0,

where {γn} ⊂ (0, 1) and {σn} satisfy
(i) limn→∞ γn = 0 and ∑∞

n=0 γn = ∞; and
(ii) either lim supn→∞ σn ≤ 0 or ∑∞

n=0 |γnσn| < ∞.
Then, {αn} converges to zero.

Lemma 2 ([15]). Let {xn} and {yn} be bounded sequences in a Banach space E and {βn} be a sequence
in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1− βn)xn + βnzn for
all n ≥ 0 and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖zn − xn‖ = 0.

Lemma 3 ([21]). Let K be a non-empty closed convex subset of a Banach space E, and let T : K → K be
an asymptotically non-expansive mapping with a fixed point. Suppose that E admits a weakly sequentially
continuous duality mapping. Then, the mapping I− T is demiclosed at zero (i.e., where I is the identity mapping,
if xn ⇀ x and ‖xn − Txn‖ → 0, then x = Tx).
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Lemma 4 ([22]). Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and
T : K → K be a nonexpansive mapping with F(T) 6= ∅. Let f : K → K be a contractive mapping. Then, the
sequence xt defined by xt = t f (xt) + (1− t)Txt, t ∈ (0, 1) converges strongly to a point in F(T). If we define
a mapping Q : Πc → F(T) by Q( f ) = limt→0 xt, f ∈ Πc, then Q( f ) solves the variational inequality

〈(I − f )Q( f ), j(Q( f )− p)〉 ≤ 0, ∀p ∈ F(T).

Lemma 5 ([23]). Let E be strictly convex, and T1 and T2 be an attracting non-expansive and a non-expansive
mapping, respectively, which have a common fixed point. Then, F(T1T2) = F(T2T1) = F(T1)

⋂
F(T1).

3. Main Results

Theorem 1. Let K be a non-empty closed convex subset of a uniformly smooth Banach space E, which has a
weakly continuous duality mapping. Let T : K → K be an asymptotically nonexpansive mapping with its
asymptotic coefficient sequence {kn} ⊂ [1, ∞): limn→∞ kn = 1. Assume that F(T) 6= ∅ and f : K → K
is a contraction with coefficient ρ ∈ (0, 1). For a given x0 ∈ K, let {xn} be a sequence generated in the
following manner:

xn+1 = αnxn + βn f (xn) + γnTn(tnxn + (1− tn)xn+1), (1)

where {αn}, {βn}, {γn}, {tn} ⊂ (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1, lim
n→∞

βn = 0, Σ∞
n=0βn = ∞, kn − 1 = εβn, 0 < ε < 1− ρ;

(ii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, lim
n→∞

|αn+1 − αn| = 0, lim
n→∞

|βn+1 − βn| = 0;

(iii) 0 < tn ≤ tn+1 < 1, γn(1− tn)kn < 1; and

(iv) T satisfies the uniformly asymptotic regular condition (i.e., limn→∞ sup
x∈K
‖Tn+1x− Tnx‖ = 0).

Then, {xn} converges strongly to a fixed point x∗ of the asymptotically nonexpansive mapping T, which solves
the variational inequality:

〈(I − f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T).

Proof. We divide the proof into five steps.
Step 1: We show that {xn} is bounded. Indeed, if we let p ∈ F(T), then we have

‖xn+1 − p‖ = ‖αnxn + βn f (xn) + γnTn(tnxn + (1− tn)xn+1)− p‖
= ‖αn(xn − p) + βn( f (xn)− f (p)) + βn( f (p)− p) + γn(Tn(tnxn + (1− tn)xn+1)− p)‖
≤ αn‖xn − p‖+ βn‖ f (xn)− f (p)‖+ βn‖ f (p)− p‖+ γn‖Tn(tnxn + (1− tn)xn+1)− p‖
≤ αn‖xn − p‖+ βnρ‖xn − p‖+ βn‖ f (p)− p‖+ γnkn‖(tnxn + (1− tn)xn+1)− p‖
≤ αn‖xn − p‖+ βnρ‖xn − p‖+ βn‖ f (p)− p‖+ γnkntn‖xn − p‖+ γnkn(1− tn)‖xn+1 − p‖
= (αn + ρβn + γnkntn)‖xn − p‖+ βn‖ f (p)− p‖+ γnkn(1− tn)‖xn+1 − p‖.

It follows that

[1− γnkn(1− tn)]‖xn+1 − p‖ ≤ (αn + ρβn + γnkntn)‖xn − p‖+ βn‖ f (p)− p‖. (2)
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As kn − 1 = εβn, we can get

‖xn+1 − p‖ ≤ αn + ρβn + γnkntn

1− γnkn(1− tn)
‖xn − p‖+ βn

1− γnkn(1− tn)
‖ f (p)− p‖

= [1− 1− αn − ρβn − γnkn

1− γnkn(1− tn)
]‖xn − p‖+ βn

1− γnkn(1− tn)
‖ f (p)− p‖

= [1− βn(1− ρ)− γn(kn − 1)
1− γnkn(1− tn)

]‖xn − p‖+ βn

1− γnkn(1− tn)
‖ f (p)− p‖

≤ [1− βn[1− ρ− ε]

1− γnkn(1− tn)
]‖xn − p‖+ βn[1− ρ− ε]

1− γnkn(1− tn)

‖ f (p)− p‖
1− ρ− ε

.

We deduce that
‖xn+1 − p‖ ≤ max{‖xn − p‖, 1

1− ρ− ε
‖ f (p)− p‖}, ∀n ≥ 0.

By induction, we get

‖xn − p‖ ≤ max{‖x0 − p‖, 1
1− ρ− ε

‖ f (p)− p‖}, ∀n ≥ 0.

Then, we obtain that xn is bounded, and so are f (xn), Tn(tnxn + (1− tn)xn+1).
Step 2: Show that ‖xn+1 − xn‖ → 0, n→ ∞. Setting zn = xn+1−αnxn

1−αn
, for all n ≥ 0, we have

zn+1 − zn =
xn+2 − αn+1xn+1

1− αn+1
− xn+1 − αnxn

1− αn

=
βn+1 f (xn+1) + γn+1Tn+1(tn+1xn+1 + (1− tn+1)xn+2)

1− αn+1

− βn f (xn) + γnTn(tnxn + (1− tn)xn+1)

1− αn

=
βn+1 f (xn+1) + (1− αn+1 − βn+1)Tn+1(tn+1xn+1 + (1− tn+1)xn+2)

1− αn+1

− βn f (xn) + (1− αn − βn)Tn(tnxn + (1− tn)xn+1)

1− αn

=
βn+1

1− αn+1
[ f (xn+1)− f (xn)] + (

βn+1

1− αn+1
− βn

1− αn
) f (xn)

− (
βn+1

1− αn+1
− βn

1− αn
)Tn(tnxn + (1− tn)xn+1)

− βn+1

1− αn+1
[Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn(tnxn + (1− tn)xn+1)]

+ [Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn(tnxn + (1− tn)xn+1)]

=
βn+1

1− αn+1
[ f (xn+1)− f (xn)] + (

βn+1

1− αn+1
− βn

1− αn
)[ f (xn)− Tn(tnxn + (1− tn)xn+1)]

− βn+1

1− αn+1
[Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn(tnxn + (1− tn)xn+1)]

+ [Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn(tnxn + (1− tn)xn+1)]

=
βn+1

1− αn+1
[ f (xn+1)− f (xn)] + (

βn+1

1− αn+1
− βn

1− αn
)[ f (xn)− Tn(tnxn + (1− tn)xn+1)]

+ (1− βn+1

1− αn+1
)[Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn+1(tnxn + (1− tn)xn+1)]

+ (1− βn+1

1− αn+1
)[Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)],
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which implies that

‖zn+1 − zn‖ ≤
ρβn+1

1− αn+1
‖xn+1 − xn‖+ |

βn+1

1− αn+1
− βn

1− αn
|C +

γn+1

1− αn+1
sup
x∈K
‖Tn+1x− Tnx‖

+ (1− βn+1

1− αn+1
)kn+1‖tn+1xn+1 + (1− tn+1)xn+2 − (tnxn + (1− tn)xn+1)‖

≤ ρβn+1

1− αn+1
‖xn+1 − xn‖+ |

βn+1

1− αn+1
− βn

1− αn
|C +

γn+1

1− αn+1
sup
x∈K
‖Tn+1x− Tnx‖

+ (1− βn+1

1− αn+1
)kn+1‖tn(xn+1 − xn) + (1− tn+1)(xn+2 − xn+1)‖

≤ ρβn+1

1− αn+1
‖xn+1 − xn‖+ |

βn+1

1− αn+1
− βn

1− αn
|C +

γn+1

1− αn+1
sup
x∈K
‖Tn+1x− Tnx‖

+ (1− βn+1

1− αn+1
)kn+1[tn‖xn+1 − xn‖+ (1− tn+1)‖xn+2 − xn+1‖],

(3)

where C > 0 is a constant that satisfies:

C ≥ {supn≥0‖xn − Tn+1(tnxn + (1− tn)xn+1)‖, supn≥0‖ f (xn)− Tn+1(tnxn + (1− tn)xn+1)‖,
supn≥0‖ f (xn)− Tn(tnxn + (1− tn)xn+1‖}.

By (1), we can get

‖xn+2 − xn+1‖ = ‖αn+1xn+1 + βn+1 f (xn+1) + γn+1Tn+1(tn+1xn+1 + (1− tn+1)xn+2)

− αnxn − βn f (xn)− γnTn(tnxn + (1− tn)xn+1)‖
= ‖αn+1(xn+1 − xn) + (αn+1 − αn)xn + βn+1( f (xn+1)− f (xn)) + (βn+1 − βn) f (xn)

+ γn+1[Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn+1(tnxn + (1− tn)xn+1)]

+ (γn+1 − γn)Tn+1(tnxn + (1− tn)xn+1)

+ γn[Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)]‖
= ‖αn+1(xn+1 − xn) + (αn+1 − αn)xn + βn+1( f (xn+1)− f (xn)) + (βn+1 − βn) f (xn)

+ γn+1[Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn+1(tnxn + (1− tn)xn+1)]

− [(αn+1 − αn) + (βn+1 − βn)]Tn+1(tnxn + (1− tn)xn+1)

+ γn[Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)]‖
= ‖αn+1(xn+1 − xn) + (αn+1 − αn)[xn − Tn+1(tnxn + (1− tn)xn+1)]

+ (βn+1 − βn)[ f (xn)− Tn+1(tnxn + (1− tn)xn+1)] + βn+1( f (xn+1)− f (xn))

+ γn+1[Tn+1(tn+1xn+1 + (1− tn+1)xn+2)− Tn+1(tnxn + (1− tn)xn+1)]

+ γn[Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)]‖
≤ αn+1‖xn+1 − xn‖+ |αn+1 − αn|‖xn − Tn+1(tnxn + (1− tn)xn+1)‖
+ |βn+1 − βn|‖ f (xn)− Tn+1(tnxn + (1− tn)xn+1)‖+ ρβn+1‖xn+1 − xn‖
+ γn‖Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)‖
+ γn+1kn+1‖tn+1xn+1 + (1− tn+1)xn+2 − tnxn − (1− tn)xn+1‖
≤ αn+1‖xn+1 − xn‖+ |αn+1 − αn|C + |βn+1 − βn|C + ρβn+1‖xn+1 − xn‖
+ γn+1kn+1‖(1− tn+1)(xn+2 − xn+1) + tn(xn+1 − xn)‖
+ γn‖Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)‖
≤ (αn+1 + ρβn+1 + γn+1kn+1tn)‖xn+1 − xn‖+ γn+1kn+1(1− tn+1)‖xn+2 − xn+1‖
+ (|αn+1 − αn|+ |βn+1 − βn|)C
+ γn‖Tn+1(tnxn + (1− tn)xn+1)− Tn(tnxn + (1− tn)xn+1)‖
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≤ (αn+1 + ρβn+1 + γn+1kn+1tn)‖xn+1 − xn‖+ γn+1kn+1(1− tn+1)‖xn+2 − xn+1‖
+ (|αn+1 − αn|+ |βn+1 − βn|)C + γn sup

x∈K
‖Tn+1x− Tnx‖.

This implies that

[1− γn+1kn+1(1− tn+1)]‖xn+2 − xn+1‖ ≤ (αn+1 + ρβn+1 + γn+1kn+1tn)‖xn+1 − xn‖
+ (|αn+1 − αn|+ |βn+1 − βn|)C + γn sup

x∈K
‖Tn+1x− Tnx‖.

Then,

‖xn+2 − xn+1‖

≤ αn+1 + ρβn+1 + γn+1kn+1tn

1− γn+1kn+1(1− tn+1)
‖xn+1 − xn‖+

C
1− γn+1kn+1(1− tn+1)

(|αn+1 − αn|+ |βn+1 − βn|)

+
γn

1− γn+1kn+1(1− tn+1)
sup
x∈K
‖Tn+1x− Tnx‖

= [1− βn+1(1− ρ) + γn+1kn+1(tn+1 − tn)− γn+1(kn+1 − 1)
1− γn+1kn+1(1− tn+1)

]‖xn+1 − xn‖

+
C

1− γn+1kn+1(1− tn+1)
(|αn+1 − αn|+ |βn+1 − βn|) +

γn

1− γn+1kn+1(1− tn+1)
sup
x∈K
‖Tn+1x− Tnx‖

≤ [1− βn+1[1− ρ− ε] + γn+1kn+1(tn+1 − tn)

1− γnkn+1(1− tn+1)
]‖xn+1 − xn‖

+
C

1− γn+1kn+1(1− tn+1)
(|αn+1 − αn|+ |βn+1 − βn|) +

γn

1− γn+1kn+1(1− tn+1)
sup
x∈K
‖Tn+1x− Tnx‖.

(4)

Substituting (4) into (3), we have

‖zn+1 − zn‖ ≤ [
ρβn+1

1− αn+1
+ (1− βn+1

1− αn+1
)kn+1tn + (1− βn+1

1− αn+1
)kn+1(1− tn+1)]‖xn+1 − xn‖

+
γn+1kn+1(1− tn+1)C

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
(|αn+1 − αn|+ |βn+1 − βn|)

+
γn+1

1− αn+1
sup
x∈K
‖Tn+1x− Tnx‖

+
γnγn+1kn+1(1− tn+1)

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
sup
x∈K
‖Tn+1x− Tnx‖+ | βn+1

1− αn+1
− βn

1− αn
|C

≤ ρβn+1 + γn+1kn+1tn + γn+1kn+1(1− tn+1)

1− αn+1
‖xn+1 − xn‖+ |

βn+1

1− αn+1
− βn

1− αn
|C

+
1

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
sup
x∈K
‖Tn+1x− Tnx‖

+
γn+1kn+1(1− tn+1)C

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
(|αn+1 − αn|+ |βn+1 − βn|)

≤ ρβn+1 + γn+1kn+1

1− αn+1
‖xn+1 − xn‖+ |

βn+1

1− αn+1
− βn

1− αn
|C

+
1

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
sup
x∈K
‖Tn+1x− Tnx‖

+
γn+1kn+1(1− tn+1)C

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
(|αn+1 − αn|+ |βn+1 − βn|)

= [1− (1− ρ)βn+1 − γn+1(kn+1 − 1)
1− αn+1

]‖xn+1 − xn‖+ |
βn+1

1− αn+1
− βn

1− αn
|C
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+
1

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
sup
x∈K
‖Tn+1x− Tnx‖

+
γn+1kn+1(1− tn+1)C

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
(|αn+1 − αn|+ |βn+1 − βn|)

≤ [1− [1− ρ− ε]βn+1

1− αn+1
]‖xn+1 − xn‖+ |

βn+1

1− αn+1
− βn

1− αn
|C

+
1

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
sup
x∈K
‖Tn+1x− Tnx‖

+
γn+1kn+1(1− tn+1)C

(1− αn+1)[1− γn+1kn+1(1− tn+1)]
(|αn+1 − αn|+ |βn+1 − βn|).

By conditions (i), (ii), and (iv), we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Applying Lemma 2, we can get
lim

n→∞
‖zn − xn‖ = 0.

Note that
zn − xn =

xn+1 − xn

1− αn
,

and so we have
lim

n→∞
‖xn+1 − xn‖ = 0.

Step 3: We show that limn→∞ ‖xn − Txn‖ = 0.

‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖
= ‖αnxn + βn f (xn)− αnTn(tnxn + (1− tn)xn+1)− βnTn(tnxn + (1− tn)xn+1)‖
= ‖αn[xn − Tn(tnxn + (1− tn)xn+1)] + βn[ f (xn)− Tn(tnxn + (1− tn)xn+1)]‖
≤ αn‖xn − xn+1‖+ αn‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖+ βn‖ f (xn)− Tn(tnxn + (1− tn)xn+1)‖.

Moreover, we know that

(1− αn)‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖ ≤ αn‖xn − xn+1‖+ βn‖ f (xn)− Tn(tnxn + (1− tn)xn+1)‖.

That is,

‖xn+1− Tn(tnxn + (1− tn)xn+1)‖ ≤
αn

1− αn
‖xn − xn+1‖+

βn

1− αn
‖ f (xn)− Tn(tnxn + (1− tn)xn+1)‖.

From conditions (i) and (ii), and Step 2, we obtain

‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖ → 0, (n→ ∞). (5)

Then,

‖xn − Tnxn‖ = ‖xn − xn+1 + xn+1 − Tn(tnxn + (1− tn)xn+1) + Tn(tnxn + (1− tn)xn+1)− Tnxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖+ ‖Tn(tnxn + (1− tn)xn+1)− Tnxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖+ kn‖tnxn + (1− tn)xn+1 − xn‖
= ‖xn − xn+1‖+ ‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖+ kn(1− tn)‖xn+1 − xn‖
= (1 + kn(1− tn))‖xn − xn+1‖+ ‖xn+1 − Tn(tnxn + (1− tn)xn+1)‖.
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By (5) and Step 2, we have

‖xn − Tnxn‖ → 0, n→ ∞. (6)

We know that T is an asymptotically non-expansive mapping, and so we have

‖xn − Txn‖ = ‖xn − xn+1 + xn+1 − Tn+1xn+1 + Tn+1xn+1 − Tn+1xn + Tn+1xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn+1 − Tn+1xn‖+ ‖Tn+1xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ kn+1‖xn+1 − xn‖+ k1‖Tnxn − xn‖
≤ (1 + kn+1)‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ k1‖Tnxn − xn‖.

By Step 2 and (6), we can get
‖xn − Txn‖ → 0, n→ ∞.

Step 4: We prove that lim supn→∞〈(I − f )p, j(p− xn)〉 ≤ 0.
As K is a uniformly smooth Banach space and xn is bounded, then there exists a subsequence of xn

which converges weakly to y. Further,

lim
k→∞
〈(I − f )p, j(p− xnk )〉 = lim sup

n→∞
〈(I − f )p, j(p− xn)〉.

It follows from Step 3 and Lemma 3, we can get y ∈ F(T). Then, p ∈ F(T) satisfies

〈(I − f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T),

by the weakly sequential continuous duality mapping and Lemma 4, we have

lim sup
n→∞

〈(I − f )p, j(p− xn)〉 = lim
k→∞
〈(I − f )p, j(p− xnk )〉 = 〈(I − f )p, j(p− y)〉 ≤ 0.

Step 5: Finally, we prove that xn converges strongly to p ∈ F(T).

‖xn+1 − p‖2 = 〈αnxn + βn f (xn) + γnTn(tnxn + (1− tn)xn+1)− p, j(xn+1 − p)〉
= αn〈xn − p, j(xn+1 − p)〉+ βn〈 f (xn)− p, j(xn+1 − p)〉
+ γn〈Tn(tnxn + (1− tn)xn+1)− p, j(xn+1 − p)〉
≤ αn〈xn − p, j(xn+1 − p)〉+ βn〈 f (xn)− f (p), j(xn+1 − p)〉
+ βn〈 f (p)− p, j(xn+1 − p)〉+ γn〈Tn(tnxn + (1− tn)xn+1)− p, j(xn+1 − p)〉
≤ αn‖xn − p‖‖xn+1 − p‖+ βnρ‖xn − p‖‖xn+1 − p‖
+ βn〈 f (p)− p, j(xn+1 − p)〉+ γnkn‖tnxn + (1− tn)xn+1 − p‖‖xn+1 − p‖
≤ αn‖xn − p‖‖xn+1 − p‖+ βnρ‖xn − p‖‖xn+1 − p‖+ βn〈 f (p)− p, j(xn+1 − p)〉
+ γnkntn‖xn − p‖‖xn+1 − p‖+ γnkn(1− tn)‖xn+1 − p‖2

= [αn + βnρ + γnkntn]‖xn − p‖‖xn+1 − p‖+ γnkn(1− tn)‖xn+1 − p‖2

+ βn〈 f (p)− p, j(xn+1 − p)〉

≤ αn + βnρ + γnkntn

2
‖xn − p‖2 +

αn + βnρ + γnkntn

2
‖xn+1 − p‖2

+ γnkn(1− tn)‖xn+1 − p‖2 + βn〈 f (p)− p, j(xn+1 − p)〉

=
αn + βnρ + γnkntn

2
‖xn − p‖2 +

αn + βnρ + γnkn(2− tn)

2
‖xn+1 − p‖2

+ βn〈 f (p)− p, j(xn+1 − p)〉,
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which implies taht

[1− αn + βnρ + γnkn(2− tn)

2
]‖xn+1− p‖2 ≤ αn + βnρ + γnkntn

2
‖xn− p‖2 + βn〈 f (p)− p, j(xn+1− p)〉.

That is,

‖xn+1 − p‖2 ≤ αn + βnρ + γnkntn

2− αn − ρβn − γnkn(2− tn)
‖xn+1 − p‖2

+
2βn

2− αn − ρβn − γnkn(2− tn)
〈 f (p)− p, j(xn+1 − p)〉

= [1− 2(1− αn − ρβn − γnkn)

2− αn − ρβn − γnkn(2− tn)
]‖xn+1 − p‖2

+
2βn

2− αn − ρβn − γnkn(2− tn)
〈 f (p)− p, j(xn+1 − p)〉

≤ [1− 2((1− ρ)βn − γn(kn − 1)
2− αn − ρβn − γnkn(2− tn)

]‖xn+1 − p‖2

+
2βn

2− αn − ρβn − γnkn(2− tn)
〈 f (p)− p, j(xn+1 − p)〉

≤ [1− 2((1− ρ− ε)βn

2− αn − ρβn − γnkn(2− tn)
]‖xn+1 − p‖2

+
2βn

2− αn − ρβn − γnkn(2− tn)
〈 f (p)− p, j(xn+1 − p)〉;

(7)

we note that

2− αn − ρβn − γnkn(2− tn)

= 1− αn − ρβn − γnkn + [1− γnkn(1− tn)]

= βn(1− ρ)− γn(kn − 1) + [1− γnkn(1− tn)]

= βn(1− ρ− εγn) + [1− γnkn(1− tn)]

> βn(1− ρ)(1− γn) + [1− γnkn(1− tn)] > 0.

By Step 4, we have 〈(I − f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T). Thus, by condition (i) and applying Lemma 1
to (7), we conclude that limn→∞ ‖xn − p‖ = 0 . This completes the proof.

Theorem 2. Let K be a nonempty closed convex subset of a uniformly smooth Banach space E, which has a
weakly continuous duality mapping. Let T : K → K be a non-expansive mapping. Assume that F(T) 6= ∅ and
f : K → K is a contraction. For a given x0 ∈ K, let {xn} be a sequence generated in the following manner:

xn+1 = αnxn + βn f (xn) + γnT(tnxn + (1− tn)xn+1),

where {αn}, {βn}, {γn}, {tn} ⊂ (0, 1), satisfy the following conditions:

(i) αn + βn + γn = 1, lim
n→∞

βn = 0, Σ∞
n=0βn = ∞;

(ii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, lim
n→∞

|αn+1 − αn| = 0, lim
n→∞

|βn+1 − βn| = 0; and

(iii) 0 < tn ≤ tn+1 < 1.

Then, {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T, which solves the
variational inequality:

〈(I − f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T).
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Remark 1. The aim of this paper is to study the general viscosity implicit midpoint rule for asymptotically
non-expansive mappings in Banach spaces. In Theorem 1, if tn = 1

2 in a Hilbert space, this is the main result of
Yan et al. [24]. We know that every non-expansive mapping is an asymptotically non-expansive mapping. In
Theorem 1, if kn ≡ 1, then T is a non-expansive mapping. Thus, we extend and generalize the Hilbert space
results to Banach spaces, the non-expansive mapping to asymptotically non-expansive mapping, and the implicit
midpoint rule to the generalized viscosity implicit midpoint rule, which includes some corresponding recent
results (see, for example, [13,14,17–19]) as special cases.

4. Applications

4.1. Application to Zero-Point Problems

Consider the zero-point problem: Find x ∈ E, such that

0 ∈ Ax,

where A ⊂ E × E is an accretive operator: An operator is accretive if, for ∀x, y ∈ E, there exists
j(x − y) ∈ J(x − y) such that 〈Ax − Ay, j(x − y)〉 ≥ 0. Further, Jr : R(I + rA) → D(A) is called
the resolvent of A, which we define by Jr = (I + rA)−1. It is well-known that Jr is a non-expansive
mapping and that A−1(0) = F(Jr), where A−1(0) = {x ∈ E : 0 ∈ Ax} is the set of zeros of A and F(Jr)

is the fixed point set of Jr. Thus, we can apply the our results by taking T = Jr.

Corollary 1. Let K be a nonempty closed convex subset of a uniformly smooth Banach space E, which has
a weakly continuous duality mapping. Let A be a m-accretive operator in E, such that A−1(0) 6= ∅ and
f : K → K is a contraction. For a given x0 ∈ K, let {xn} be a sequence generated in the following manner:

xn+1 = αnxn + βn f (xn) + γn Jr(tnxn + (1− tn)xn+1),

where {αn}, {βn}, {γn}, {tn} ⊂ (0, 1) , satisfy the following conditions:

(i) αn + βn + γn = 1, lim
n→∞

βn = 0, Σ∞
n=0βn = ∞;

(ii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, lim
n→∞

|αn+1 − αn| = 0, lim
n→∞

|βn+1 − βn| = 0; and

(iii) 0 < tn ≤ tn+1 < 1.

Then, {xn} converges strongly to x∗ ∈ A−1(0), which solves the variational inequality:

〈(I − f )p, j(p− y)〉 ≤ 0, ∀y ∈ A−1(0).

4.2. Application to Equilibrium Problems

Let B be a non-empty, closed, and convex subset of a Hilbert space H. Consider the equilibrium
problem: Find x ∈ B, such that

G(x, y) ≥ 0, f or all y ∈ B,

where G : B× B→ R is a bi-function satisfying the following conditions:
(H1) G(x, x) = 0 for all x ∈ B;
(H2) G(x, y) + G(y, x) ≤ 0, for all x, y ∈ B;
(H3) for each x, y, z,∈ B,limt→∞ G(tz + (1− t)x, y) ≤ G(x, y); and
(H4) for all x ∈ B, G(x, y) is convex and weakly lower semi-continuous.

Assume that G satisfies H(1)–H(4). For r > 0 and x ∈ H, we define Tr : H → B by Tr = {u ∈
B : G(u, y) + 1

r 〈y − u, u − x〉 ≥ 0, ∀y ∈ B}, and the set of solutions of the equilibrium problem is
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denoted by EP. It is well-known that the single-valued mapping Tr is firmly non-expansive and that
EP(G) = F(Tr), where EP(G) is a closed and convex set. Thus, we can apply our results by Lemma 5.

Corollary 2. Let B be a non-empty, closed, and convex subset of a real Hilbert space H and G : B× B → R
be a bi-function satisfying the conditions (H1)–(H4). Let T : B→ B be a non-expansive mapping such that
Ω = F(T)

⋂
EP(G) 6= ∅ and f : B→ B is a contraction. For a given x0 ∈ B, let {xn} be a sequence generated

in the following manner:

xn+1 = αnxn + βn f (xn) + γnTTr(tnxn + (1− tn)xn+1),

where {αn}, {βn}, {γn}, {tn} ⊂ (0, 1) , satisfy the following conditions:

(i) αn + βn + γn = 1, lim
n→∞

βn = 0, Σ∞
n=0βn = ∞;

(ii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, lim
n→∞

|αn+1 − αn| = 0, lim
n→∞

|βn+1 − βn| = 0; and

(iii) 0 < tn ≤ tn+1 < 1.

Then, {xn} converges strongly to x∗ ∈ Ω, which solves the variational inequality:

〈(I − f )p, p− y〉 ≤ 0, ∀y ∈ Ω.

5. Numerical Examples

Example 1. Let the inner product 〈., .〉 : R3 × R3 → R be 〈x, y〉 = x1y1 + x2y2 + x3y3. We set Tnx =

(1 + 1
3n )x and f (x) = 1

4 x, where x = (x1, x2, x3) ∈ R3 . We take αn = 1
3 +

1
n , βn = 1

n , γn = 2( 1
3 −

1
n ), and

tn = 1− 1
3n , for all n ∈ N. It is easy to see that kn = 1 + 1

3n , ε = 1
3 , and ρ = 1

4 satisfy the conditions (i)–(iv)
in Theorem 1. Then, we get

xn+1 =
108n3 − 81n2 − 8n + 24

108n3 − 24n2 + 64n + 24
xn.

Starting with x1 = (1, 2, 3) and using the algorithm in Theorem 1, we get the following numerical results, as
shown in Figures 1 and 2.

Figure 1. Two dimensions.
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Figure 2. Three dimensions.
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