
mathematics

Article

Improved Whale Algorithm for Solving the Flexible
Job Shop Scheduling Problem

Fei Luan 1,2,*, Zongyan Cai 1, Shuqiang Wu 1, Tianhua Jiang 3 , Fukang Li 1 and Jia Yang 1

1 School of Construction Machinery, Chang’an University, Xi’an 710064, China; czyan@chd.edu.cn (Z.C.);
wushuqiangjob@163.com (S.W.); fukangli198@163.com (F.L.); yangjialearning@163.com (J.Y.)

2 College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology,
Xi’an 710021, China

3 School of Transportation, Ludong University, Yantai 264025, China; jth1127@163.com
* Correspondence: luanfei@sust.edu.cn

Received: 6 March 2019; Accepted: 24 April 2019; Published: 28 April 2019
����������
�������

Abstract: In this paper, a novel improved whale optimization algorithm (IWOA), based on the
integrated approach, is presented for solving the flexible job shop scheduling problem (FJSP) with the
objective of minimizing makespan. First of all, to make the whale optimization algorithm (WOA)
adaptive to the FJSP, the conversion method between the whale individual position vector and
the scheduling solution is firstly proposed. Secondly, a resultful initialization scheme with certain
quality is obtained using chaotic reverse learning (CRL) strategies. Thirdly, a nonlinear convergence
factor (NFC) and an adaptive weight (AW) are introduced to balance the abilities of exploitation
and exploration of the algorithm. Furthermore, a variable neighborhood search (VNS) operation is
performed on the current optimal individual to enhance the accuracy and effectiveness of the local
exploration. Experimental results on various benchmark instances show that the proposed IWOA
can obtain competitive results compared to the existing algorithms in a short time.

Keywords: whale optimization algorithm; flexible job shop scheduling problem; nonlinear
convergence factor; adaptive weight; variable neighborhood search

1. Introduction

In recent years, scheduling played a crucial role in almost all manufacturing systems, as global
competition became more and more intense. The classical job shop scheduling problem (JSP) is
one of the most important scheduling forms existing in real manufacturing. It became a hotspot in
the academic circle and received a large amount of attention in the research literature with its wide
applicability and inherent complexity [1–3]. In JSP, a group of jobs need to be processed on a set of
machines, where each job consists of a set of operations with a fixed order. The processing of each
operation of the jobs must be performed on a given machine. Each machine is continuously available
at time zero and can process only one operation at a time without interruption. The decision concerns
how to sequence the operations of all the jobs on the machines, so that a given performance indicator
can be optimized. Makespan is the time in which all the jobs need to be completed and is a typical
performance indicator for the JSP.

The flexible job shop scheduling problem (FJSP) is an extension of the classical JSP, where each
operation can be processed by any machine in a given set rather than one specified machine. The FJSP
is closer to a real manufacturing environment compared with classical JSP. According to its practical
applicability, the FJSP became very crucial in both academic and application fields. However, it is more
difficult than classical JSP because it contains an additional decision problem, assigning operations to

Mathematics 2019, 7, 384; doi:10.3390/math7050384 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9260-4041
http://www.mdpi.com/2227-7390/7/5/384?type=check_update&version=1
http://dx.doi.org/10.3390/math7050384
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 384 2 of 14

the appropriate machine. Therefore, the FJSP is a problem of challenging complexity and was proven
to be non-deterministic polynomial-time (NP)-hard [4].

In the initial study, Brucker and Schlie firstly proposed a polynomial algorithm for solving the
FJSP with two jobs [5]. During the past two decades, the FJSP attracted the interest of many researchers.
There were many approximation algorithms, mainly metaheuristics, presented for solving the FJSP.
Dauzere-Peres and Paulli [6] proposed a tabu search (TS) algorithm which was based on a new
neighborhood structure for the FJSP. Mastrolilli and Gambardella [7] designed two neighborhood
functions and presented an improved TS algorithm based on the original one which was proposed in
literature [6]. Mati et al. [8] proposed a genetic algorithm for solving the FJSP with blocking constraints.
Regarding the FJSP, Mousakhani. [9] developed a mixed-integer linear programming model (MILP)
and designed an iterated local search algorithm to minimize total tardiness. Yuan et al. [10] designed a
novel hybrid harmony search (HHS) algorithm based on the integrated approach for solving the FJSP
with the objective to minimize makespan. Tao and Hua [11] presented an improved bacterial foraging
algorithm (BFOA) based on cloud computing to solve the multi-objective flexible job shop scheduling
problem (MOFJSP). Gong et al. [12] proposed a double flexible job shop scheduling problem (DFJSP)
with flexible machines and workers, and then a new hybrid genetic algorithm (NHGA) was designed to
solve the proposed DFJSP. Wang et al. [13] presented a two-stage energy-saving optimization algorithm
for the FJSP. In their methods, the problem was divided into two subproblems: the machine assignment
problem and the operation sequencing problem. An improved genetic algorithm was designed to solve
the machine assignment problem and a genetic particle swarm hybrid algorithm was developed for
the operation sequencing problem. An improved particle swarm optimization (PSO) was developed
by Marzouki et al. [14]. Yuan and Xu [15] designed memetic algorithms (MAs) for solving the MOFJSP
with three objectives, makespan, total workload, and critical workload. Gao et al. [16] proposed a
discrete harmony search (DHS) to solve the MOFJSP with two objectives of makespan, the mean
of earliness and tardiness. Piroozfard et al. [17] devised a novel multi-objective genetic algorithm
(MOGA) for solving the problem with two conflicting objectives, total carbon footprint and total late
work. Jiang et al. [18] pronounced a gray wolf optimization algorithm with a double-searching mode
(DMGWO) to solve the energy-efficient job shop scheduling problem (EJSP). Singh and Mahapatra [19]
proposed an improved particle swarm optimization (PSO) for the FJSP, in which quantum behavior
and a logistic map were introduced. Wu and Sun. [20] presented a green scheduling algorithm for
solving the energy-saving flexible job shop scheduling problem (EFJSP).

According to their potential advantages, many metaheuristic algorithms were proposed and
improved to solve various problems [21–24]. The whale optimization algorithm (WOA) is a new
metaheuristic algorithm which imitates the hunting behavior of humpback whales in nature [25].
Because of its characteristics (simple principle, fewer parameter settings, and strong optimization
performance), WOA was applied to deal with various optimization problems in different fields,
i.e., neural networks [26], feature selection [27], image segmentation [28], photovoltaic cells [29],
the energy-efficient job shop scheduling problem [30], and the permutation flow shop scheduling
problem [31]. This motivates us to present an improved whale optimization algorithm (IWOA) that can
minimize the makespan of the FJSP. In our proposed IWOA, in order to make the whale optimization
algorithm (WOA) adaptive to the FJSP, the conversion between the whale individual position vector
and the scheduling solution is implemented by utilizing the converting method proposed in the
literature [10]. Then, a resultful initialization scheme with certain quality is obtained by combining
chaotic opposition-based learning strategies. To converge quickly, a nonlinear convergence factor
and an adaptive weight are introduced to balance the abilities of exploitation and exploration of the
algorithm. Furthermore, a variable neighborhood search operation is performed on the current optimal
individual to enhance the accuracy and effectiveness of the local exploration. Experimental results on
various benchmark instances show that the proposed IWOA can obtain competitive results compared
to the existing algorithms in short time.

Mathematics 2019, 7, 384 3 of 14

The rest of this paper is organized as follows: Section 2 introduces the definition of the problem.
Section 3 illustrates the original whale optimization algorithm. In Section 4, the proposed IWOA is
described in detail. Section 5 shows the empirical results of IWOA. Conclusions and suggestions for
future works are provided in Section 6.

2. Problem Description

The FJSP is defined in this section. There are a set of n jobs J = {J1, J2, . . . , Jn} and a set of q
machines M =

{
M1, M2, . . . , Mq

}
, where ni is the number of operations of job Ji, m is the total number

of all operations, and Oi j represents the jth operation of job Ji. Each operation Oi j can be processed
on one machine among a set of alternative machines of the jth operation of job Ji. The FJSP can be
decomposed into two subproblems: the routing subproblem of assigning each operation to a machine
among alternative machines Mi j, which is a subset of M, and the scheduling subproblem of sequencing
the assigned operations on all alternative machines to attain a feasible schedule for optimizing a certain
objective function.

The FJSP can be classified into total FJSP (TFJSP) and partial FJSP (PFJSP). For the TFJSP, each
operation can be processed on all machines of M. For the PFJSP, each operation can only be processed
on partial machine of M.

Moreover, the following assumptions are put forward in our study: all jobs are processable at
time 0; all machines available at time 0; each machine can process at most one operation at a time; each
operation must be completed once it starts; the transfer time between operations and the set-up time of
machines are negligible.

In this study, the makespan was selected as the objective to be minimized. The mathematical
model can be described as follows:

minCmax = min(max(Ci)), (1)

ST.Si jh −Ci(j−1)k ≥ 0, Yi jh = Yi(j−1)k = 1, (2)

Ci jk − Si jk = Li jk, Yi jk = 1, (3)

Cegk −Ci jk ≥ Legk, Ri jegk = 1, Yi jk = Yegk = 1, (4)

m∑
k=1

Yi jk = 1, i = 1, 2, . . . n; j = 1, 2, . . . ni, (5)

Yi jk ∈ {0, 1}, i = 1, 2, . . . n; j = 1, 2, . . . ni; k = 1, 2, . . . q, (6)

Ri jegk ∈ {0, 1}, i, e = 1, 2, . . . n; j = 1, 2, . . . ni; g = 1, 2, . . . ne; k = 1, 2, . . . q, (7)

1 ≤ i, e ≤ n, 1 ≤ j, g ≤ m, 1 ≤ k, h ≤ q, Si jk, Ci jk ≥ 0, (8)

where Cmax is the maximal completion time of jobs, Ci is the continuous variable for the completion
time of job Ji, Li jk denotes the processing time of operation Oi j on machine Mk, Mk denotes the kth
machine of M, Ci jk is the continuous variable for the completion time of operation Oi j processing on
machine Mk, Si jk is the continuous variable for the start time of operation Oi j processing on machine
Mk, and Yi jk is a 0–1 variable; if operation Oi j is processed on machine Mk, Yi jk = 1; otherwise, Yi jk = 0.
Ri jegk is a 0–1 variable; if operation Oi j is processed on machine Mk prior to operation Oeg as they both
can be processed on it, Ri jegk = 1; otherwise, Ri jegk = 0.

Equation (1) indicates the optimizing objective. Equation (2) ensures the operation precedence
constraint. Equation (3) states that each operation must be completed once it starts. Equation (4)
ensures that each machine can processes only one operation at each time. Equation (5) ensures the
operation can be processed only once. Equations (6) and (7) show the relevant 0–1 variables. Equation
(8) denotes the non-negative feature of relevant variables.

Mathematics 2019, 7, 384 4 of 14

3. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a new intelligent optimization algorithm that mimics
the foraging behavior of humpback whales. After discovering the prey, the humpback whales swim in a
spiral way toward the prey to surround it, at the same time emitting a bubble net for foraging. There are
three kinds of predation methods, namely “encircling prey”, “bubble-net attacking”, and “search for
prey”; among them, “bubble-net attacking” includes two kinds of approaches, namely “shrinking
encircling mechanism” and “spiral updating position”. Thus, the humpback whale’s foraging method
can be described mathematically as shown below.

3.1. Encircling Prey

Since the position of the prey (best position) is unknown in the search space, the WOA assumes
that the current optimal individual is the target prey or is the closest individual to the target prey. After
the optimal individual is discovered, other individuals will update their positions toward the optimal
individual, and this behavior can be represented as follows

→

X(t + 1) =
→

X
∗

(t) −
→

A·
→

D, (9)

→

D = |
→

C·
→

X
∗

(t) −
→

X(t)|, (10)
→

A = 2
→
a ·
→
r −

→
a , (11)

→

C = 2
→
r , (12)

where t defines the current iteration,
→

A and
→

C denote coefficient vectors,
→

D represents the distance

between the current optimal individual
→

X
∗

(t) and the current individual
→

X(t) at t iteration,
→

X
∗

(t)

represents the position vector of the optimal individual attained so far,
→

X(t) defines the position
vector of an individual whale, || represents the absolute value, and · means an element-by-element
multiplication. Furthermore,

→
r indicates a random vector in [0,1], and a is an element that linearly

decreases from 2 to 0 according to Equation (13) over the course of an iteration, where tmax defines the
maximum of the iteration.

a = 2−
2t

tmax
. (13)

The position of an individual whale can be updated according to the position of the current
optimal individual. Different places around the current optimal individual can be obtained with

regard to the current position by adjusting the values of
→

A and
→

C. It is possible to reach any position
within a feasible solution domain by defining the random vector r. Therefore, Equation (9) allows
any individual whale to update its position in the neighborhood of the current optimal solution and
simulates encircling the prey.

3.2. Bubble-Net Attacking

In the exploitation phase, the humpback whales swim around the prey in a shrinking circle
and along a spiral path simultaneously. To model these two mechanisms, it is assumed that
there is a probability of 50% to choose between them to update the position of whales during
the optimization process.

3.2.1. Shrinking Encircling Mechanism

This behavior is obtained by decreasing the fluctuation range of A in Equation (9). According to
Equation (11), the fluctuation range of A can be decreased by a. Specifically, A is a random value in the
interval [−a, a]. Setting random values for A in [−1,1], the new position of an individual whale can be

Mathematics 2019, 7, 384 5 of 14

defined anywhere in between the original position of the individual and the position of the current
optimal individual.

3.2.2. Spiral Updating Position

To model this mechanism, the distance between the whale and the prey (current optimal individual
position) is firstly calculated, and then a spiral path is achieved between the position of whale and the
prey to simulate the helix-shaped movement of the humpback whales, which can be defined as follows:

→

X(t + 1) =
→

D
′

·ebl
· cos(2πl) +

→

X
∗

(t), (14)

→

D
′

= |
→

X
∗

(t) −
→

X(t)|, (15)

where
→

D
′

is the absolute value for the distance between the current optimal individual
→

X
∗

(t) and the

current individual whale
→

X(t) at t iteration, b is a constant and denotes the shape of the logarithmic
spiral, l is a random number in [−1, 1], and · is an element-by-element multiplication.

Thus, the mathematical model of the bubble-net attacking behavior of humpback whales can be
defined by Equation (16), where p is a random number inside [0, 1].

→

X(t + 1) =

→

X
∗

(t) −
→

A·
→

D p < 0.5
→

D
′

·ebl
· cos(2πl) +

→

X
∗

(t) p ≥ 0.5
. (16)

3.3. Search for Prey

In contrast to the exploitation phase, the humpback whales also search for prey randomly; the
mechanism is implemented by the variation of the vector A. When |A| < 1, the exploitation is achieved
by updating the positions toward the current optimal individual; when |A| ≥ 1, the exploration is
adopted by updating the positions toward a randomly chosen individual to search for the global
optimum, which can be denoted as follows:

→

X(t + 1) =
→

Xrand(t) −
→

A·
→

D, (17)

→

D =

∣∣∣∣∣→C·→Xrand(t) −
→

X(t)
∣∣∣∣∣, (18)

where
→

Xrand(t) is the individual position vector randomly selected from the current population.

4. The Proposed IWOA

4.1. Scheduling Solution Denotation

As mentioned above, the FJSP contains two subproblems, i.e., machine assignment and operation
sequence. For this feature, a two-segment string with the size of 2mn is used to represent the scheduling
solution. The first segment aims to choose an appropriate machine for each operation, and the second
segment represents the processing sequence of operations on each machine. Taking a 3 × 3 (three jobs,
three machines) FJSP as an example, each job has two operations. The scheduling solution is shown
in Figure 1. For the first segment, the element j means the operation chooses the jth machine in the
alternative machine set, where all elements are stored in a fixed order. For the second segment, each
element represents the job code, where the elements with the same value i mean different operations of
the same job i, and Oik presents the kth operation of the job i.

Mathematics 2019, 7, 384 6 of 14

Mathematics 2019, 7, x FOR PEER REVIEW 6 of 15

and the second segment represents the processing sequence of operations on each machine. Taking a
3 × 3 (three jobs, three machines) FJSP as an example, each job has two operations. The scheduling
solution is shown in Figure 1. For the first segment, the element j means the operation chooses the
jth machine in the alternative machine set, where all elements are stored in a fixed order. For the
second segment, each element represents the job code, where the elements with the same value i
mean different operations of the same job i , and ikO presents the kth operation of the job i .

2 3 2 1 2 2 3 1 1 3 2

11O 12O22O21O 31O 32O 11O12O 22O21O 31O 32O

Operation sequenceMachine assignment

1

Figure 1. Scheduling solution denotation.

4.2. Individual Position Vector

In our proposed IWOA, the individual position is still denoted as a multi-dimensional real
vector, which also consists of two segments string with the size of mn, i.e.,

{ }(1), (2), ... (), (1), ... (2)X x x x mn x mn x mn= + , where min max() [(), ()], 1, 2, ...2x j x j x j j mn∈ = . The first segment

{ }1 (1) , (2) , .. . ()X x x x m n= denotes the information of machine assignment, and the second

segment { }2 (1) , (2) , . . . (2)X x m n x m n x m n= + + presents the information of operation sequencing.
For the above 3 × 2 FJSP, the individual position vector can be represented by Figure 2, where element
values are listed in the given order. In addition, the intervals min max[(), ()]x j x j are all set as []δ δ− ， ,
where δ presents the number of the jobs.

1.2 -1.7 1.9 2.3 -1.2 2.2 0.2 -1.5 -1.0 1.3 2.0

11O 12O22O21O 31O 32O 11O12O 22O21O 31O 32O

Operation sequenceMachine assignment

2.7

Figure 2. Individual position vector.

4.3. Conversion Mechanism

Since the original WOA was proposed to tackle continuous problems, but the FJSP belongs to a
discrete combinatorial problem, some measures should be implemented to construct the mapping
relationship between the individual position vector and the discrete scheduling solution. In a
previous study, Yuan et al. [10] proposed a method to implement the conversion between the
continuous individual position vector and the discrete scheduling solution for the FJSP. Therefore,
the conversion method in the literature [10] will be used in this study.

4.3.1. Conversion from Scheduling Solution to Individual Position Vector

For the machine assignment segment, the conversion process can be represented by Equation
(19). Here, ()x i denotes the ith element of the individual position vector, ()s i presents the number
of alternative machine set for the operation corresponding to the ith element, and ()n i means the
serial number of the chosen machine in its alternative machine set; if ()=1s i , then ()x i can be
achieved by choosing a random value in the interval []δ δ− ， .

2() (() 1) , () 1(() 1)x i n i s is i
δ δ = − − ≠−

. (19)

For the operation sequence segment, firstly, it is needed to randomly generate mn real numbers
in the range [-]δ δ， corresponding to the scheduling solution. According to the ranked-order-value

Figure 1. Scheduling solution denotation.

4.2. Individual Position Vector

In our proposed IWOA, the individual position is still denoted as a multi-dimensional
real vector, which also consists of two segments string with the size of mn, i.e.,
X =

{
x(1), x(2), . . . x(mn), x(mn + 1), . . . x(2mn)

}
, where x(j) ∈ [xmin(j), xmax(j)], j = 1, 2, . . . 2mn.

The first segment X1 =
{
x(1), x(2), . . . x(mn)

}
denotes the information of machine assignment, and

the second segment X2 =
{
x(mn + 1), x(mn + 2), . . . x(2mn)

}
presents the information of operation

sequencing. For the above 3 × 2 FJSP, the individual position vector can be represented by Figure 2,
where element values are listed in the given order. In addition, the intervals [xmin(j), xmax(j)] are all
set as [−δ, δ], where δ presents the number of the jobs.

Mathematics 2019, 7, x FOR PEER REVIEW 6 of 15

and the second segment represents the processing sequence of operations on each machine. Taking a
3 × 3 (three jobs, three machines) FJSP as an example, each job has two operations. The scheduling
solution is shown in Figure 1. For the first segment, the element j means the operation chooses the
jth machine in the alternative machine set, where all elements are stored in a fixed order. For the
second segment, each element represents the job code, where the elements with the same value i
mean different operations of the same job i , and ikO presents the kth operation of the job i .

2 3 2 1 2 2 3 1 1 3 2

11O 12O22O21O 31O 32O 11O12O 22O21O 31O 32O

Operation sequenceMachine assignment

1

Figure 1. Scheduling solution denotation.

4.2. Individual Position Vector

In our proposed IWOA, the individual position is still denoted as a multi-dimensional real
vector, which also consists of two segments string with the size of mn, i.e.,

{ }(1), (2), ... (), (1), ... (2)X x x x mn x mn x mn= + , where min max() [(), ()], 1, 2, ...2x j x j x j j mn∈ = . The first segment

{ }1 (1) , (2) , .. . ()X x x x m n= denotes the information of machine assignment, and the second

segment { }2 (1) , (2) , . . . (2)X x m n x m n x m n= + + presents the information of operation sequencing.
For the above 3 × 2 FJSP, the individual position vector can be represented by Figure 2, where element
values are listed in the given order. In addition, the intervals min max[(), ()]x j x j are all set as []δ δ− ， ,
where δ presents the number of the jobs.

1.2 -1.7 1.9 2.3 -1.2 2.2 0.2 -1.5 -1.0 1.3 2.0

11O 12O22O21O 31O 32O 11O12O 22O21O 31O 32O

Operation sequenceMachine assignment

2.7

Figure 2. Individual position vector.

4.3. Conversion Mechanism

Since the original WOA was proposed to tackle continuous problems, but the FJSP belongs to a
discrete combinatorial problem, some measures should be implemented to construct the mapping
relationship between the individual position vector and the discrete scheduling solution. In a
previous study, Yuan et al. [10] proposed a method to implement the conversion between the
continuous individual position vector and the discrete scheduling solution for the FJSP. Therefore,
the conversion method in the literature [10] will be used in this study.

4.3.1. Conversion from Scheduling Solution to Individual Position Vector

For the machine assignment segment, the conversion process can be represented by Equation
(19). Here, ()x i denotes the ith element of the individual position vector, ()s i presents the number
of alternative machine set for the operation corresponding to the ith element, and ()n i means the
serial number of the chosen machine in its alternative machine set; if ()=1s i , then ()x i can be
achieved by choosing a random value in the interval []δ δ− ， .

2() (() 1) , () 1(() 1)x i n i s is i
δ δ = − − ≠−

. (19)

For the operation sequence segment, firstly, it is needed to randomly generate mn real numbers
in the range [-]δ δ， corresponding to the scheduling solution. According to the ranked-order-value

Figure 2. Individual position vector.

4.3. Conversion Mechanism

Since the original WOA was proposed to tackle continuous problems, but the FJSP belongs to
a discrete combinatorial problem, some measures should be implemented to construct the mapping
relationship between the individual position vector and the discrete scheduling solution. In a previous
study, Yuan et al. [10] proposed a method to implement the conversion between the continuous
individual position vector and the discrete scheduling solution for the FJSP. Therefore, the conversion
method in the literature [10] will be used in this study.

4.3.1. Conversion from Scheduling Solution to Individual Position Vector

For the machine assignment segment, the conversion process can be represented by Equation
(19). Here, x(i) denotes the ith element of the individual position vector, s(i) presents the number of
alternative machine set for the operation corresponding to the ith element, and n(i) means the serial
number of the chosen machine in its alternative machine set; if s(i) = 1, then x(i) can be achieved by
choosing a random value in the interval [−δ, δ].

x(i) =
[
2δ/(s(i) − 1)

]
(n(i) − 1) − δ, s(i) , 1 . (19)

For the operation sequence segment, firstly, it is needed to randomly generate mn real numbers in
the range [−δ, δ] corresponding to the scheduling solution. According to the ranked-order-value (ROV)
rule, a unique ROV value is assigned to each random number in an increasing order, so that each ROV
value can correspond to an operation. Secondly, the ROV value is rearranged according to the coding
order of the operations, and the random number corresponding to the rearranged ROV value is the
value of the element of the individual position vector. The conversion process is shown in Figure 3.

Mathematics 2019, 7, 384 7 of 14

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 15

(ROV) rule, a unique ROV value is assigned to each random number in an increasing order, so that
each ROV value can correspond to an operation. Secondly, the ROV value is rearranged according to
the coding order of the operations, and the random number corresponding to the rearranged ROV
value is the value of the element of the individual position vector. The conversion process is shown
in Figure 3.

Figure 3. The conversion process from operation sequence to individual position vector.

4.3.2. Conversion from Individual Position Vector to Scheduling Solution

For the machine assignment segment, according to the reverse derivation of Equation (19), the
conversion can be achieved, which can be denoted by Equation (20).

 (20)

For the operation sequence segment, the ROV value is firstly increasingly assigned to each
element of the individual position vector, and then used as the Fixed ID. Therefore, a new operation
sequence can be obtained by corresponding the ROV value to the operations, which is shown in
Figure 4.

Opration sequence 1 3 3 1 2 2

Fixed ID 1 2 3 4 5 6
Opration ID 1 1 2 2 3 3

Position element -3 2.8 2.1 -1.2 -0.8 1.1

Position element -3 2.8 2.1 -1.2 -0.8 1.1
ROV value 1 6 5 2 3 4

Figure 4. The conversion from individual position vector to operation sequence.

4.4. Population Initialization

For a swarm intelligence optimization algorithm, the quality of the initial population is very
crucial for the computational performance. In light of the characteristic of the FJSP, the population
initialization process can be implemented in two phases. In the machine assignment phase, the better
initial assignment schemes can be generated by utilizing a chaotic reverse learning method. In the
operation sequence phase, some operation sequences are randomly generated. Combining each
operation sequence with one of the initial assignment schemes, some scheduling solutions are

(())(() 1)() 1
2

x i s in i round δ
δ

+ − = +

Figure 3. The conversion process from operation sequence to individual position vector.

4.3.2. Conversion from Individual Position Vector to Scheduling Solution

For the machine assignment segment, according to the reverse derivation of Equation (19), the
conversion can be achieved, which can be denoted by Equation (20).

n(i) = round
[
(x(i) + δ)(s(i) − 1)

2δ
+ 1

]
(20)

For the operation sequence segment, the ROV value is firstly increasingly assigned to each element
of the individual position vector, and then used as the Fixed ID. Therefore, a new operation sequence
can be obtained by corresponding the ROV value to the operations, which is shown in Figure 4.

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 15

(ROV) rule, a unique ROV value is assigned to each random number in an increasing order, so that
each ROV value can correspond to an operation. Secondly, the ROV value is rearranged according to
the coding order of the operations, and the random number corresponding to the rearranged ROV
value is the value of the element of the individual position vector. The conversion process is shown
in Figure 3.

Figure 3. The conversion process from operation sequence to individual position vector.

4.3.2. Conversion from Individual Position Vector to Scheduling Solution

For the machine assignment segment, according to the reverse derivation of Equation (19), the
conversion can be achieved, which can be denoted by Equation (20).

 (20)

For the operation sequence segment, the ROV value is firstly increasingly assigned to each
element of the individual position vector, and then used as the Fixed ID. Therefore, a new operation
sequence can be obtained by corresponding the ROV value to the operations, which is shown in
Figure 4.

Opration sequence 1 3 3 1 2 2

Fixed ID 1 2 3 4 5 6
Opration ID 1 1 2 2 3 3

Position element -3 2.8 2.1 -1.2 -0.8 1.1

Position element -3 2.8 2.1 -1.2 -0.8 1.1
ROV value 1 6 5 2 3 4

Figure 4. The conversion from individual position vector to operation sequence.

4.4. Population Initialization

For a swarm intelligence optimization algorithm, the quality of the initial population is very
crucial for the computational performance. In light of the characteristic of the FJSP, the population
initialization process can be implemented in two phases. In the machine assignment phase, the better
initial assignment schemes can be generated by utilizing a chaotic reverse learning method. In the
operation sequence phase, some operation sequences are randomly generated. Combining each
operation sequence with one of the initial assignment schemes, some scheduling solutions are

(())(() 1)() 1
2

x i s in i round δ
δ

+ − = +

Figure 4. The conversion from individual position vector to operation sequence.

4.4. Population Initialization

For a swarm intelligence optimization algorithm, the quality of the initial population is very
crucial for the computational performance. In light of the characteristic of the FJSP, the population
initialization process can be implemented in two phases. In the machine assignment phase, the
better initial assignment schemes can be generated by utilizing a chaotic reverse learning method.
In the operation sequence phase, some operation sequences are randomly generated. Combining
each operation sequence with one of the initial assignment schemes, some scheduling solutions are
generated and fitness function values of each scheduling solution are calculated. Then, the initial
population can be achieved by choosing the scheduling solution with the best fitness value each time.

4.5. Nonlinear Convergence Factor

Like other swarm intelligence optimization algorithms, the coordination between the abilities of
exploitation and exploration is important for the performance of the algorithm. In the original WOA,
the abilities of exploitation and exploration mainly depend on the convergence factor a. The larger
the value of a is, the stronger the ability of exploitation is, and then the WOA can exploit the optimal
solution in a large space. The smaller the value of a is, the stronger the ability of exploration is,

Mathematics 2019, 7, 384 8 of 14

and then it can merely explore the optimal solution in a small space. Therefore, for improving the
efficiency of exploitation, the value of a can be set to be larger in the early stage of iterations, which is
beneficial to exploit the optimal solution in a larger space, and then it can be set to be smaller in the
later stage of iterations, which is beneficial to concretely explore the better solution around the current
optimal one. However, the value of a linearly decreases over the course of iterations by Equation (13),
which cannot improve the efficiency of the nonlinear search of the algorithm. Therefore, a nonlinear
improvement of a is adopted by Equation (21), where tmax and t denote the maximum iteration and
current iteration, respectively.

a =
(
2−

2t
tmax

)(
1−

t3

t3
max

)
(21)

4.6. Adaptive Weight

The improvement of a can improve the optimization ability of the algorithm to some extent, but
it cannot achieve the purpose of effectively balancing the abilities of exploitation and exploration.
Therefore, the adaptive weight and the nonlinear convergence factor a are cooperated to coordinate
the abilities of exploitation and exploration of the algorithm. The adaptive weight proposed in the
literature [32] is used to improve the optimization performance of the algorithm, with the formula
shown by Equation (22), where tmax and t denote the maximum iteration and current iteration,
respectively. The improved iterative formulas in the WOA can be defined by Equations (23) and (24).

ω = sin(
π·t

2·tmax
+ π) + 1. (22)

→

X(t + 1) = ω·
→

X
∗

(t) −
→

A·
→

D. (23)
→

X(t + 1) =
→

D
′

·ebl
· cos(2πl) +ω

→

X
∗

(t). (24)

4.7. Variable Neighborhood Search

In the local exploration phase, the whale individuals update their positions toward the current
optimal individual X∗ using Equation (16). Therefore, X∗ determines the accuracy and effectiveness
of the local exploration to some extent. Taking this into account, the variable neighborhood search
strategy is used for improving the quality of the current optimal scheduling solution W∗, and then the
quality of the current optimal individual X∗ can be ameliorated as well. At the same time, an “iterative
counter” is set for W∗ and assigned 0 at the initial moment. If W∗ does not change at each iteration,
the “iterative counter” increases by 1; otherwise, it remains the same. When the “iterative counter” is
equal to stability threshold Ts (15 in this paper), as the individuals reach the steady state, the variable
neighborhood search strategy is performed on W∗, allowing it to escape from the local optimum. For
implementing the strategy, three neighborhood structures were designed as outlined below.

For the neighborhood structure N1, two random positions are chosen with different jobs in the
second segment of the scheduling solution, exchanging the order of jobs from the second random
position to the first random position.

For the neighborhood structure N2, two random positions are chosen with different jobs in the
second segment of the scheduling solution, inserting the job of the first random position in the position
behind the second random position.

For the neighborhood structure N3, a random position is chosen in the first segment of the
scheduling solution, where the number of alternative machines is more than one, and then the current
machine is replaced by another one of the alternative machines in the position.

The new scheduling solution is evaluated after each variable neighborhood search operation.
If the new scheduling solution is better than the original one, then the new scheduling solution is set as

Mathematics 2019, 7, 384 9 of 14

the original one. The procedure of the variable neighborhood search operation can is illustrated in
Algorithm 1.

Algorithm 1. The procedure of VNS.

Step 1: Set the current optimal scheduling solution W∗ as the initial solution W, where λ = 1, q = 1, qmax = 3,
and ηmax represents the maximum iteration, at the initial moment.

Step 2: If q = 1, set N1(W) as W′; if q = 2, set N2(W) as W′; if q = 3, set N3(W) as W′; W′ represents the new
scheduling solution, and Ni(W) represents employing the ith neighborhood structure operation on W, where I
= 1, 2, or 3.

Step 3: Set W′ as W, and then the local optimal scheduling solution W′′ can be obtained by executing the local
search operation.

Step 4: If W′′ is better than W, then set W′′ as W, and set q = 1; otherwise, set q + 1 as q.

Step 5: If q > qmax, then set η+ 1 as η, and go to step 6; otherwise, go to step 3.

Step 6: If η > ηmax, go to step 7; otherwise, go to step 2.

Step 7: End.

In this study, the threshold acceptance method is used for the local search operation, which is
shown as Algorithm 2.

Algorithm 2. The procedure of the local search in VNS.

Step 1: Get the initial solution W′, and set δ > 0, γ = 1, ρ = 1, and maximum iteration γmax.

Step 2: If ρ = 1, set N1(W′)∪N3(W′) as W′′ ; if ρ = 0, set N2(W′)∪N3(W′) as W′′ .

Step 3: If Fmax(W′′) − Fmax(W′) ≤ δ, then set W′′ as W′; otherwise, set
∣∣∣ρ− 1

∣∣∣ as ρ.

Step 4: Set γ+ 1 as γ, if γ > γmax, then set W′′ as W′, go to step 5; otherwise, go to step 2.

Step 5: End.

4.8. The Procedure of the Proposed IWOA

The detailed steps of the proposed IWOA can be described as Algorithm 3.

Algorithm 3. The procedure of IWOA.

Step 1: Set parameters and generate the initial population by utilizing the chaotic reverse learning strategy and
search method.

Step 2 Calculate the fitness value of each scheduling solution in the population, and then find and retain the
optimal scheduling solution W∗.

Step 3: Judge whether the termination conditions can be met. If not met, perform steps 4–7; otherwise, perform
step 8.

Step 4: Judge whether the value of the “iterative counter” is equal to 15. If met, go to step 5; otherwise, go to
step 6.

Step 5: Employ the variable neighborhood search operation on W∗, and update W∗.

Step 6: Execute the conversion from scheduling solution to individual position vector, and retain the optimal
individual position vector X∗ corresponding to W∗

Step 7: Update each individual position vector using Equations (17), (23) and (24), and execute the conversion
from individual position vector to scheduling solution; set t = t + 1, and then go to step 2.

Step 8: The algorithm ends and outputs the optimal scheduling solution W∗.

Mathematics 2019, 7, 384 10 of 14

5. Experimental Results

5.1. Experimental Settings

To evaluate the performance of the proposed IWOA for solving the FJSP, the algorithm was coded
in MATLAB 2016a and run on a computer configured with an Intel Core i5-8250 central processing unit
(CPU) with 1.80 GHz frequency, 8 GB random-access memory (RAM), and a Windows 10 Operating
System. Fifteen famous benchmarks that included a set of 10 instances taken from Brandimarte
(BRdata) [33] and five instances taken from Kacem et al (KAdata) [34] were chosen to test the proposed
algorithm. These benchmark instances were used by many researchers to estimate their approaches.
For each benchmark instance, experimental simulations were run 20 times using different algorithms.
After several preliminary experiments, the parameters of the proposed IWOA were set as follows: a
population size of 100, maximum iterations of 1000, spiral constant b of one, and ηmax and γmax both
set to 10.

5.2. Effectiveness of the Improvement Strategies

In this paper, three strategies were employed to enhance the performance of the IWOA, i.e., CRL,
NFC and AW, and VNS. In this subsection, the effectiveness of the three strategies is firstly evaluated.
In Table 1, the first and second columns present the name and size of the problems, and computational
data are listed in the following columns. “WOA” defines the original whale optimization algorithm.
“IWOA-1” is the algorithm where the nonlinear convergence factor and adaptive weight are both
applied to the WOA. “IWOA-2” is the whale optimization algorithm with the variable neighborhood
search strategy introduced. “IWOA” is the presented algorithm in this study. In addition, “Best”
represents the best result in the 20 runs. “Avg” means the average results value of the twenty runs.
“Time” is the mean computational time (in seconds) in the 20 runs. “LB” denotes the optimal value
of makespan found so far. Boldface denotes the best mean result in the 20 runs. To enhance the
comparison, the same parameters were set for the compared algorithms; for instance, population size
was 100 and maximum iterations were 1000.

From the experimental result in Table 1, the following conclusions can be obtained: (1) in
comparisons of the “Best” value, the IWOA algorithm was better than the other three algorithms,
which obtained seven optimal values, outperforming IWOA-1 in 12 out of 15 instances, IWOA-2 in
nine out of 15 instances, and WOA in 13 out of 15 instances; (2) in comparisons of the “Time” value,
WOA spent a shorter time than the other three algorithms. Compared with IWOA-1, the increase in
computation time was mainly the result of the addition of the variable neighborhood search operation
in WOA, which led to increased time complexity of the algorithm; (3) in comparisons of the “Avg”
value, the IWOA algorithm obtained all optimal values, outperforming WOA and IWOA-1 in 15 out of
15 instances, and outperforming IWOA-2 in 13 out of 15 instances.

5.3. Effectiveness of the Proposed IWOA

To demonstrate the effectiveness of the proposed IWOA, the second experiment was executed
on KAdata. In Table 2, the proposed algorithm is compared with the knowledge-based ant colony
optimization (KBACO) [35], hybrid tabu search algorithm (TSPCB) [36], and the hybrid gray wolf
optimization algorithm (HGWO) [37]. The first column presents the name of the problems. “Best”
represents the best makespan. “Avg” means the average makespan. “Time” is the mean computational
time of the instance. “LB” denotes the optimal value of makespan found so far. “Avg-T“ is the mean
computational time executed on KAdata. As can be seen, the proposed IWOA obtained three optimal
values in solving KAdata, compared with five for ACO, five for HTS, and four for HGWO. However,
the average computational time for the IWOA was very low, at only 4 s (on a Lenovo Thinkpad E480
with CPU i5-8250 @1.80GHz and 8 GB RAM) compared to 4978.8 s (in Matlab on a Dell Precision 650
workstation with a Pentium IV 2.4 GHz CPU and 1 GB RAM) for KBACO, 214.8 s (in C++ on a Pentium
IV 1.6 GHz CPU and 512 MB RAM) for TSPCB, and 19 s (in Fortran on a Pentium CPU G2030@ 3.0

Mathematics 2019, 7, 384 11 of 14

GHz and 2 GB) for HGWO. Because the computers applied for running the programs was different,
the comparison among the running times of different algorithms was difficult. However, even if there
exists some differences in the speed between the processors involved, IWOA was obviously faster than
the other three algorithms.

Another experiment was implemented on BRdata. Table 3 compares our proposed IWOA with
the following six algorithms: KBACO [35], TSPCB [36], HGWO [37], artificial immune algorithm
(AIA) [38], particle swarm optimization combined with tabu search (PSO+TS) [39], and tabu search
metaheuristic with a new neighborhood structure called “golf neighborhood” (TS3) [40]. The first
column stands for the name of the problems, and the second column represents the optimal value
found so far. “Best” represents the best makespan. “Mean” represents the average result of “RPD” in
the 20 runs. Boldface denotes the best result of “RPD” in the 20 runs. “RPD” represents the relative
percentage deviation to “LB” and is calculated as follows:

RPD =
Best− LB

LB
× 100. (25)

As can be seen from Table 3, the following conclusions can be easily obtained: (1) in comparisons
of the “Best” value, the proposed IWOA showed competitive performance on BRdata, obtaining four
optimal values, outperforming KBACO in seven out of 10 instances, TS3 and PSO+TS in nine out of 10
instances, and HGWO in eight out of 10 instances, while it was equal to both AIA and TSPCB in six out
of 10 instances; (2) in comparisons of the “RPD” value, the proposed IWOA obtained five optimal
values, outperforming KBACO in seven out of 10 instances, both TS3 and PSO+TS in nine out of 10
instances, and HGWO in eight out of 10 instances, while it was inferior to both AIA and TSPCB in
three out of 10 instances; (3) in comparisons of the “Mean” value, the value for the proposed IWOA
was very low at only 4.91, outperforming the 5.65 for KBACO, 10.12 for HGWO, 23.89 for PSO+TS, and
13.34 for TS3, while it was inferior to the 2.78 for TSPCB and 2.22 for AIA. However, by comparison,
the IWOA obtained the best values in an acceptable time.

Table 1. Effectiveness analysis of improvement strategy. See Section 5.2 for column descriptions.
WOA—whale optimization algorithm.

Instance
WOA WOA-1 WOA-2 IWOA

n ×m LB Best Avg Time Best Avg Time Best Avg Time Best Avg Time

Kacem01 4 × 5 11 11 11.7 0.2 11 11.3 0.2 11 11 1.8 11 11 1.8
Kacem02 8 × 8 14 22 26.3 0.4 16 17.4 0.4 14 15.4 2.9 14 14.8 2.9
Kacem03 10 × 7 11 17 19.5 0.5 14 16.1 0.6 13 14.1 3.1 13 13.6 3.3
Kacem04 10 × 10 7 13 15.8 0.9 7 7.5 1.0 7 7 3.8 7 7 4.1
Kacem05 15 × 10 11 24 28.7 1.4 19 21.5 1.6 14 14.5 7.6 14 14.2 7.9

MK01 10 × 6 39 40 42.3 1.4 40 41.9 1.4 40 40.5 7.4 40 40.2 8.2
MK02 10 × 6 26 34 36.6 1.2 34 35.2 1.2 26 29.7 7.9 26 28.1 8.8
MK03 15 × 8 204 235 2523 3.3 218 234.6 3.6 204 211.6 26.4 204 210.6 31.3
MK04 15 × 8 60 73 77.6 2.1 67 71.3 2.5 65 66.1 13.8 60 62.3 15.7
MK05 15 × 4 172 175 181.4 2.0 175 183.1 2.7 175 178.3 16.1 175 177.1 21.2
MK06 10 × 15 58 93 98.6 1.3 97 105.2 1.5 65 71.5 22.5 63 64.2 30.5
MK07 20 × 5 139 152 163.5 1.6 155 158.6 1.6 148 151.2 19.5 144 147.5 24.7
MK08 20 × 10 523 523 535.1 5.6 523 528.1 5.8 523 525.2 62.5 523 523 89.2
MK09 20 × 10 307 363 384.0 5.9 371 387.2 6.2 312 318.9 81.4 307 315.2 121.4
MK10 20 × 15 198 245 265.2 6.0 231 241.3 6.9 216 235.3 76.5 212 216.6 96.7

Mathematics 2019, 7, 384 12 of 14

Table 2. Comparison between the proposed improved WOA (IWOA) and existing algorithms on the
KAdata. See Section 5.3 for column descriptions.

Instance LB
KBACO TSPCB HGWO IWOA

Best Avg Time Best Avg Time Best Avg Time Best Avg Time

Kacem01 11 11 11 900 11 11 2.5 11 11 5.6 11 11 1.8
Kacem02 14 14 14.3 3882 14 14.2 234 14 14.3 14.8 14 14.8 2.9
Kacem03 11 11 11 3966 11 11 260.5 11 11.6 16.3 13 13.6 3.3
Kacem04 7 7 7.4 6642 7 7 86 7 7.5 17.5 7 7 4.1
Kacem05 11 11 11.3 9504 11 11.7 491 13 14.1 40.7 14 14.2 7.9
Avg-T - - - 4978.8 - - 214.8 - - 19.0 - - 4.0

Table 3. Comparison between different algorithms on the BRdata.

Instancee LB
KBACO TSPCB HGWO AIA PSO+TS TS3 IWOA

Best RPD Best RPD Best RPD Best RPD Best RPD Best RPD Best RPD

MK01 39 39 0 40 2.6 40 2.6 40 2.6 40 2.6 41 5.1 40 2.6
MK02 26 29 11.5 26 0 29 11.5 26 0 32 23.1 30 15.4 26 0
MK03 204 204 0 204 0 204 0 204 0 207 1.5 204 0 204 0
MK04 60 65 8.3 62 3.3 65 8.3 60 0 67 11.7 65 8.3 60 0
MK05 172 173 0.6 172 0 175 1.7 173 0.6 188 9.3 174 1.2 175 1.7
MK06 58 67 15.5 65 12.1 79 36.2 63 8.6 85 45.7 71 22.4 63 8.6
MK07 139 144 3.6 140 0.7 149 7.2 140 0.7 154 10.8 148 6.5 144 3.6
MK08 523 523 0 523 0 523 0 523 0 523 0 551 6.1 523 0
MK09 307 311 1.3 310 1.0 325 5.9 312 1.6 437 42.3 410 33.6 339 10.4
MK10 198 229 15.7 214 8.1 253 27.8 214 8.1 380 91.9 267 34.8 242 22.2
Mean - - 5.65 - 2.78 - 10.12 - 2.22 - 23.89 - 13.34 - 4.91

6. Conclusions

In this paper, a novel improved whale optimization algorithm (IWOA), based on the integrated
approach, was presented for solving the flexible job shop scheduling problem (FJSP) with the objective
of minimizing makespan. The conversion method between the whale individual position vector and
the scheduling solution was firstly proposed. After that, three improvement strategies were employed
in the algorithm, namely chaotic reverse learning (CRL), the nonlinear convergence factor (NFC)
and adaptive weight (AW), and the variable neighborhood search (VNS). The CRL was employed to
ensure the quality of the initial solutions. The NFC and AW were introduced to balance the abilities of
exploitation and exploration. The VNS was adopted to enhance the accuracy and effectiveness of the
local exploration.

Extensive experiments based on 15 benchmark instances were executed. The effectiveness of
improvement strategies was firstly certified by a number of experiments. Then, the proposed IWOA
was compared with six recently published algorithms. According to the comparison results, the
proposed IWOA can obtain better results in an acceptable time.

In the future, we will concentrate on a more complex FJSP, such as the energy-efficient flexible job
shop scheduling problem, the multi-objective flexible job shop scheduling problem, or the dynamic
flexible job shop scheduling problem. Meanwhile, other effective improvement strategies in WOA will
be studied to further improve the capacity of the algorithm for this FJSP.

Author Contributions: Conceptualization, methodology and writing—original manuscript, F.L. (Fei Luan);
project management, supervision and writing—review, Z.C. and T.J.; experiments and result analysis, S.W. and
F.L. (Fukang Li); investigation, formal analysis and editing, J.Y.

Funding: This work was supported by the National Natural Science Foundation of China under Grant 11072192,
the Project of Shaanxi Province Soft Science Research Program under Grant 2018KRM090, the Project of Xi’an
Science and Technology Innovation Guidance Program under Grant 201805023YD1CG7(1), and the Shandong
Provincial Natural Science Foundation of China under Grant ZR2016GP02.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2019, 7, 384 13 of 14

References

1. Nowicki, E.; Smutnicki, C. A fast taboo search algorithm for the job shop problem. Manag. Sci. 1996, 42,
797–813. [CrossRef]

2. Gonc, J.F.; Magalhaes Mendes, J.J.; Resende, M.G.C. A hybrid genetic algorithm for the job shop scheduling
problem. Eur. J. Oper. Res. 2005, 167, 77–95.

3. Lochtefeld, D.F.; Ciarallo, F.W. Helper-objective optimization strategies for the Job-Shop Scheduling Problem.
Appl. Soft Comput. 2011, 11, 4161–4174. [CrossRef]

4. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flow shop and job shop scheduling. Math. Oper. Res.
1976, 1, 117–129. [CrossRef]

5. Brucker, P.; Schlie, R. Job-shop scheduling with multi-purpose machines. Computing 1990, 45, 369–375.
[CrossRef]

6. Dauzere-Peres, S.; Paulli, J. An integrated approach for modeling and solving the general multi-processor
job-shop scheduling problem using tabu search. Ann. Oper. Res. 1997, 70, 281–306. [CrossRef]

7. Mastrolilli, M.; Gambardella, L.M. Effective neighborhood functions for the flexible job shop problem. J. Sched.
2000, 3, 3–20. [CrossRef]

8. Mati, Y.; Lahlou, C.; Dauzere-Peres, S. Modelling and solving a practical flexible job shop scheduling problem
with blocking constraints. Int. J. Prod. Res. 2011, 49, 2169–2182. [CrossRef]

9. Mousakhani, M. Sequence-dependent setup time flexible job shop scheduling problem to minimise total
tardiness. Int. J. Prod. 2013, 51, 3476–3487. [CrossRef]

10. Yuan, Y.; Xu, H.; Yang, J. A hybrid harmony search algorithm for the flexible job shop scheduling problem.
Appl. Soft Comput. 2013, 13, 3259–3272. [CrossRef]

11. Tao, N.; Hua, J. A cloud based improved method for multi-objective flexible job shop scheduling problem.
J. Intell. Fuzzy Syst. 2018, 35, 823–829.

12. Gong, G.L.; Deng, Q.W.; Gong, X.R. A new double flexible job shop scheduling problem integrating processing
time, green production, and human factor indicators. J. Clean. Prod. 2018, 174, 560–576. [CrossRef]

13. Wang, H.; Jiang, Z.G.; Wang, Y. A two-stage optimization method for energy-saving flexible job shop
scheduling based on energy dynamic characterization. J. Clean. Prod. 2018, 188, 575–588. [CrossRef]

14. Marzouki, B.; Driss, O.B.; Ghédira, K. Multi Agent model based on Chemical Reaction Optimization with
Greedy algorithm for Flexible Job shop Scheduling Problem. Procedia Comput. Sci. 2017, 112, 81–90.
[CrossRef]

15. Yuan, Y.; Xu, H. Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom.
Sci. Eng. 2015, 12, 336–353. [CrossRef]

16. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Discrete Harmony Search Algorithm
for Flexible Job Shop Scheduling Problem with Multiple Objectives. J. Intell. Manuf. 2016, 27, 363–374.
[CrossRef]

17. Piroozfard, H.; Wong, K.Y.; Wong, W.P. Minimizing total carbon footprint and total late work criterion in
flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resour. Conserv. Recycl.
2018, 128, 267–283. [CrossRef]

18. Jiang, T.H.; Zhang, C.; Zhu, H.Q.; Deng, G.L. Energy-Efficient scheduling for a job shop using grey wolf
optimization algorithm with double-searching mode. Math. Probl. Eng. 2018, 2018, 1–12. [CrossRef]

19. Singh, M.R.; Mahapatra, S. A quantum behaved particle swarm optimization for flexible job shop scheduling.
Comput. Ind. Eng. 2016, 93, 36–44. [CrossRef]

20. Wu, X.L.; Sun, Y.J. A green scheduling algorithm for flexible job shop with energy-saving measures.
J. Clean. Prod. 2018, 172, 3249–3264. [CrossRef]

21. Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: job shop and
flexible job shop scheduling cases. IEEE Access 2018, 6, 26231–26240. [CrossRef]

22. Jiang, T.H.; Deng, G.L. Optimizing the low-carbon flexible job shop scheduling problem considering energy
consumption. IEEE. Access 2018, 6, 46346–46355. [CrossRef]

23. Jiang, T.H.; Zhang, C.; Sun, Q. Green job shop scheduling problem with discrete whale optimization algorithm.
IEEE Access 2019, 7, 43153–43166. [CrossRef]

24. Li, X.Y.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling
problem. Int. J. Prod. Econ. 2016, 174, 93–110. [CrossRef]

http://dx.doi.org/10.1287/mnsc.42.6.797
http://dx.doi.org/10.1016/j.asoc.2011.03.007
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1007/BF02238804
http://dx.doi.org/10.1023/A:1018930406487
http://dx.doi.org/10.1002/(SICI)1099-1425(200001/02)3:1<3::AID-JOS32>3.0.CO;2-Y
http://dx.doi.org/10.1080/00207541003733775
http://dx.doi.org/10.1080/00207543.2012.746480
http://dx.doi.org/10.1016/j.asoc.2013.02.013
http://dx.doi.org/10.1016/j.jclepro.2017.10.188
http://dx.doi.org/10.1016/j.jclepro.2018.03.254
http://dx.doi.org/10.1016/j.procs.2017.08.174
http://dx.doi.org/10.1109/TASE.2013.2274517
http://dx.doi.org/10.1007/s10845-014-0869-8
http://dx.doi.org/10.1016/j.resconrec.2016.12.001
http://dx.doi.org/10.1155/2018/8574892
http://dx.doi.org/10.1016/j.cie.2015.12.004
http://dx.doi.org/10.1016/j.jclepro.2017.10.342
http://dx.doi.org/10.1109/ACCESS.2018.2833552
http://dx.doi.org/10.1109/ACCESS.2018.2866133
http://dx.doi.org/10.1109/ACCESS.2019.2908200
http://dx.doi.org/10.1016/j.ijpe.2016.01.016

Mathematics 2019, 7, 384 14 of 14

25. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Soft. 2016, 95, 51–67. [CrossRef]
26. Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale

optimization algorithm. Soft. Comput. 2018, 22, 1–15. [CrossRef]
27. Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature

selection. Neurocomputing 2017, 260, 302–312. [CrossRef]
28. Aziz, M.A.E.; Ewees, A.A.; Hassanien, A.E. Whale optimization algorithm and moth-flame optimization for

multilevel thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [CrossRef]
29. Oliva, D.; Aziz, M.A.E.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved

chaotic whale optimization algorithm. Appl. Energy 2017, 200, 141–154. [CrossRef]
30. Jiang, T.H.; Zhang, C.; Zhu, H.Q.; Zhu, H.Q.; Gu, J.C.; Deng, G.L. Energy-efficient scheduling for a job shop

using an improved whale optimization algorithm. Mathematics 2018, 6, 220. [CrossRef]
31. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S.; Gunasekaran, M. A hybrid whale optimization

algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Gener.
Comput. Syst. 2018, 85, 129–145. [CrossRef]

32. Guo, Z.Z.; Wang, P.; Ma, Y.F.; Wang, Q.; Gong, C.Q. Whale optimization algorithm based on adaptive weights
and cauchy variation. Micro Comput. 2017, 34, 20–22. (In Chinese)

33. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. 1993, 41, 157–183.
[CrossRef]

34. Kacem, I.; Hammadi, S.; Borne, P. Correction to “Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems”. IEEE Trans. Syst. Man Cybern. Part C 2002, 32, 172.
[CrossRef]

35. Xing, L.N.; Chen, Y.W.; Wang, P.; Zhao, Q.S.; Xiong, J. A knowledge-based ant colony optimiztion for flexible
job shop scheduling problems. Appl. Soft Comput. 2010, 10, 888–896. [CrossRef]

36. Li, J.Q.; Pan, Q.K.; Suganthan, P.N.; Chua, T.J. A hybrid tabu search algorithm with an efficient neighborhood
structure for the flexible job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2011, 52, 683–697.
[CrossRef]

37. Jiang, T.H. A hybrid grey wolf optimization algorithm for solving flexible job shop scheduling problem.
Control Decis. 2018, 33, 503–508. (In Chinese)

38. Bagheri, A.; Zandieh, M.; Mahdavi, I.; Yazdani, M. An artificial immune algorithm for the flexible job-shop
scheduling problem. Future Gener. Comput. Syst. 2010, 26, 533–541. [CrossRef]

39. Henchiri, A.; Ennigrou, M. Particle Swarm Optimization Combined with Tabu Search in a Multi-Agent Model. for
Flexible Job Shop Problem; Springer Nature: Basingstoke, UK, 2013; Volume 7929, pp. 385–394.

40. Bozejko, W.; Uchronski, M.; Wodecki, M. The New Golf Neighborhood for the Flexible Job Shop Problem; ICCS,
Elsevier Series; Elsevier: Amsterdam, The Netherlands, 2010; pp. 289–296.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s00500-016-2442-1
http://dx.doi.org/10.1016/j.neucom.2017.04.053
http://dx.doi.org/10.1016/j.eswa.2017.04.023
http://dx.doi.org/10.1016/j.apenergy.2017.05.029
http://dx.doi.org/10.3390/math6110220
http://dx.doi.org/10.1016/j.future.2018.03.020
http://dx.doi.org/10.1007/BF02023073
http://dx.doi.org/10.1109/TSMCC.2002.804307
http://dx.doi.org/10.1016/j.asoc.2009.10.006
http://dx.doi.org/10.1007/s00170-010-2743-y
http://dx.doi.org/10.1016/j.future.2009.10.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description
	Whale Optimization Algorithm
	Encircling Prey
	Bubble-Net Attacking
	Shrinking Encircling Mechanism
	Spiral Updating Position

	Search for Prey

	The Proposed IWOA
	Scheduling Solution Denotation
	Individual Position Vector
	Conversion Mechanism
	Conversion from Scheduling Solution to Individual Position Vector
	Conversion from Individual Position Vector to Scheduling Solution

	Population Initialization
	Nonlinear Convergence Factor
	Adaptive Weight
	Variable Neighborhood Search
	The Procedure of the Proposed IWOA

	Experimental Results
	Experimental Settings
	Effectiveness of the Improvement Strategies
	Effectiveness of the Proposed IWOA

	Conclusions
	References

