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Abstract: Let S∗s be the class of normalized functions f defined in the open unit disk D = {z : |z| < 1}
such that the quantity z f ′(z)

f (z) lies in an eight-shaped region in the right-half plane and satisfying the

condition z f ′(z)
f (z) ≺ 1 + sin z (z ∈ D). In this paper, we aim to investigate the third-order Hankel

determinant H3(1) and Toeplitz determinant T3(2) for this function class S∗s associated with sine
function and obtain the upper bounds of the determinants H3(1) and T3(2).

Keywords: starlike function; Toeplitz determinant; Hankel determinant; sine function; upper bound

MSC: 30C45; 30C50; 30C80

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk D = {z : |z| < 1} of
the form

f (z) = z + a2z2 + a3z3 + · · · (z ∈ D) (1)

and let S denote the subclass of A consisting of univalent functions.
Suppose that P denotes the class of analytic functions p normalized by

p(z) = 1 + c1z + c2z2 + c3z3 + · · ·

and satisfying the condition
<(p(z)) > 0 (z ∈ D).

We easily see that, if p(z) ∈ P , then a Schwarz function ω(z) exists with ω(0) = 0 and |ω(z)| < 1,
such that (see [1])

p(z) =
1 + w(z)
1− w(z)

(z ∈ D).

Very recently, Cho et al. [2] introduced the following function class S∗s , which are associated with
sine function:

S∗s :=
{

f ∈ A :
z f ′(z)

f (z)
≺ 1 + sin z (z ∈ D)

}
, (2)

where “≺” stands for the subordination symbol (for details, see [3]) and also implies that the quantity
z f ′(z)

f (z) lies in an eight-shaped region in the right-half plane.
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The qth Hankel determinant for q ≥ 1 and n ≥ 1 of functions f was stated by Noonan and
Thomas [4] as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
(a1 = 1).

This determinant has been considered by several authors, for example, Noor [5] determined the
rate of growth of Hq(n) as n→ ∞ for functions f (z) given by Equation (1) with bounded boundary
and Ehrenborg [6] studied the Hankel determinant of exponential polynomials.

In particular, we have

H3(1) =

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣∣∣
(n = 1, q = 3).

Since f ∈ S , a1 = 1,

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2).

We note that |H2(1)| = |a3 − a2
2| is the well-known Fekete-Szego functional (see, for

example, [7–9]).
On the other hand, Thomas and Halim [10] defined the symmetric Toeplitz determinant Tq(n)

as follows:

Tq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an · · · an+q
...

...
...

an+q−1 an+q · · · an

∣∣∣∣∣∣∣∣∣∣∣∣
(n ≥ 1, q ≥ 1).

The Toeplitz determinants are closely related to Hankel determinants. Hankel matrices have
constant entries along the reverse diagonal, whereas Toeplitz matrices have constant entries along the
diagonal. For a good summary of the applications of Toeplitz matrices to the wide range of areas of
pure and applied mathematics, we can refer to [11].

As a special case, when n = 2 and q = 3, we have

T3(2) =

∣∣∣∣∣∣∣∣∣∣∣

a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣∣∣∣∣∣
.

In recent years, many authors studied the second-order Hankel determinant H2(2) and the
third-order Hankel determinant H3(1) for various classes of functions (the interested readers can
see, for instance, [12–25]). However, apart from the work in [10,21,26,27], there appears to be little
literature dealing with Toeplitz determinants. Inspired by the aforementioned works, in this paper,
we aim to investigate the third-order Hankel determinant H3(1) and Toeplitz determinant T3(2)
for the above function class S∗s associated with sine function, and obtain the upper bounds of the
above determinants.
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2. Main Results

To prove our desired results, we need the following lemmas.

Lemma 1. If p(z) ∈ P , then exists some x, z with |x| ≤ 1(see [28]), |z| ≤ 1, such that

2c2 = c2
1 + x(4− c2

1),

4c3 = c3
1 + 2c1x(4− c2

1)− (4− c2
1)c1x2 + 2(4− c2

1)(1− |x|2)z.

Lemma 2. Let p(z) ∈ P (see [29]), then

|cn| ≤ 2, n = 1, 2, · · · .

We now state and prove the main results of our present investigation.

Theorem 1. If the function f (z) ∈ S∗s and of the form Equation (1), then

|a2| ≤ 1, |a3| ≤
1
2

, |a4| ≤
5
9

, |a5| ≤
47
72

. (3)

Proof. Since f (z) ∈ S∗s , according to subordination relationship, so there exists a Schwarz function
ω(z) with ω(0) = 0 and |ω(z)| < 1, such that

z f ′(z)
f (z)

= 1 + sin(ω(z)).

Now,
z f ′(z)

f (z)
=

z + ∑∞
n=2 nanzn

z + ∑∞
n=2 anzn

= (1 +
∞

∑
n=2

nanzn−1)[1− a2z + (a2
2 − a3)z2 − (a3

2 − 2a2a3 + a4)z3

+(a4
2 − 3a2

2a3 + 2a2a4 + a2
3 − a5)z4 + · · · ]

= 1 + a2z + (2a3 − a2
2)z

2 + (a3
2 − 3a2a3 + 3a4)z3

+(4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3)z

4 + · · · . (4)

Define a function

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + · · · .

Clearly, we have p(z) ∈ P and

ω(z) =
p(z)− 1
1 + p(z)

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · . (5)

On the other hand,

1 + sin(ω(z)) = 1 +
1
2

c1z + (
c2

2
−

c2
1

4
)z2 + (

5c3
1

48
+

c3 − c1c2

2
)z3

+(
c4

2
+

5c2
1c2

16
−

c2
2

4
− c1c3

2
−

c4
1

32
)z4 + · · · . (6)
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Comparing the coefficients of z, z2, z3, z4 between Equations (4) and (6), we obtain

a2 =
c1

2
, a3 =

c2

4
, a4 =

c3

6
− c1c2

24
−

c3
1

144
, a5 =

c4

8
− c1c3

24
+

5c4
1

1152
−

c2
1c2

192
−

c2
2

32
. (7)

By using Lemma 2, we thus know that

|a2| ≤ 1, |a3| ≤
1
2

, |a4| ≤
5
9

, |a5| ≤
47
72

.

The proof of Theorem 1 is completed.

Theorem 2. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a3 − a2
2| ≤

1
2

. (8)

Proof. According to Equation (7), we have

|a3 − a2
2| =

∣∣∣∣∣ c2

4
−

c2
1

4

∣∣∣∣∣ .

By applying Lemma 1, we get

|a3 − a2
2| =

∣∣∣∣∣ x(4− c2
1)

8
−

c2
1

8

∣∣∣∣∣ .

Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, using the triangle inequality, we obtain

|a3 − a2
2| ≤

t(4− c2)

8
+

c2

8
.

Suppose that

F(c, t) =
t(4− c2)

8
+

c2

8
,

then ∀t ∈ (0, 1), ∀c ∈ (0, 2),
∂F
∂t

=
4− c2

8
> 0,

which shows that F(c, t) is an increasing function on the closed interval [0,1] about t. Therefore, the
function F(c, t) can get the maximum value at t = 1, that is, that

max F(c, t) = F(c, 1) =
(4− c2)

8
+

c2

8
=

1
2

.

Thus, obviously,

|a3 − a2
2| ≤

1
2

.

The proof of Theorem 2 is thus completed.

Theorem 3. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2a3 − a4| ≤
1
3

. (9)
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Proof. From Equation (7), we have

|a2a3 − a4| = | c1c2
8 +

c3
1

144 −
c3
6 + c1c2

24 |
= | c1c2

6 −
c3
6 +

c3
1

144 |.

Now, in view of Lemma 1, we get

|a2a3 − a4| =
∣∣∣∣∣ 7c3

1
144

+
(4− c2

1)c1x2

24
−

(4− c2
1)(1− |x|2)z

12

∣∣∣∣∣ .

Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, using the triangle inequality, we deduce that

|a2a3 − a4| ≤
7c3

144
+

(4− c2)ct2

24
+

(4− c2)(1− t2)

12
.

Assume that

F(c, t) =
7c3

144
+

(4− c2)ct2

24
+

(4− c2)(1− t2)

12
.

Therefore, we have, ∀t ∈ (0, 1), ∀c ∈ (0, 2)

∂F
∂t

=
(4− c2)t(c− 2)

12
< 0,

namely, F(c, t) is an decreasing function on the closed interval [0,1] about t. This implies that the
maximum value of F(c, t) occurs at t = 0, which is

max F(c, t) = F(c, 0) =
(4− c2)

12
+

7c3

144
.

Define

G(c) =
(4− c2)

12
+

7c3

144
,

clearly, the function G(c) has a maximum value attained at c = 0, also which is

|a2a3 − a4| ≤ G(0) =
1
3

.

The proof of Theorem 3 is completed.

Theorem 4. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2a4 − a2
3| ≤

1
4

. (10)

Proof. Suppose that f (z) ∈ S∗s , then from Equation (7), we have

|a2a4 − a2
3| =

∣∣∣∣ c1c3
12 −

c2
1c2
48 +

c4
1

48 −
c2

2
16

∣∣∣∣ .

Now, in terms of Lemma 1, we obtain

|a2a4 − a2
3| =

∣∣∣∣ c1c3
12 −

c2
1c2
48 −

c4
1

288 −
c2

2
16

∣∣∣∣
=

∣∣∣∣− 5c4
1

576 −
x2c2

1(4−c2
1)

48 − x2(4−c2
1)

2

64 +
c1(4−c2

1)(1−|x|
2)z

24

∣∣∣∣ .
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Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, using the triangle inequality, we get

|a2a4 − a2
3| ≤

t2c2(4− c2)

48
+

(1− t2)c(4− c2)

24
+

t2(4− c2)2

64
+

5c4

576
.

Putting

F(c, t) =
t2c2(4− c2)

48
+

(1− t2)c(4− c2)

24
+

t2(4− c2)2

64
+

5c4

576
,

then, ∀t ∈ (0, 1), ∀c ∈ (0, 2), we have

∂F
∂t

=
t(c2 − 8c + 12)(4− c2)

96
> 0,

which implies that F(c, t) increases on the closed interval [0,1] about t. That is, that F(c, t) have a
maximum value at t = 1, which is

max F(c, t) = F(c, 1) =
c2(4− c2)

48
+

(4− c2)2

64
+

5c4

576
.

Setting

G(c) =
c2(4− c2)

48
+

(4− c2)2

64
+

5c4

576
,

then we have

G′(c) =
c(4− c2)

24
− c3

24
− c(4− c2)

16
+

5c3

144
.

If G′(c) = 0, then the root is c = 0. In addition, since G′′(0) = − 1
12 < 0, so the function G(c) can

take the maximum value at c = 0, which is

|a2a4 − a2
3| ≤ G(0) =

1
4

.

The proof of Theorem 4 is completed.

Theorem 5. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2
2 − a2

3| ≤
5
4

. (11)

Proof. Suppose that f (z) ∈ S∗s , then, by using Equation (7), we have

|a2
2 − a2

3| = |
c2

1
4 −

c2
2

16 |.

Next, according to Lemma 1, we obtain

|a2
2 − a2

3| =
∣∣∣∣ c2

1
4 −

c2
2

16

∣∣∣∣

=

∣∣∣∣ c2
1
4 −

c4
1

64 −
xc2

1(4−c2
1)

32 − x2(4−c2
1)

2

64

∣∣∣∣ .

Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, by applying the triangle inequality, we get

|a2
2 − a2

3| ≤
c2

4
+

c4

64
+

tc2(4− c2)

32
+

t2(4− c2)2

64
.
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Taking

F(c, t) =
c2

4
+

c4

64
+

tc2(4− c2)

32
+

t2(4− c2)2

64
.

Then, ∀t ∈ (0, 1), ∀c ∈ (0, 2), we have

∂F
∂t

=
c2(4− c2)

32
+

t(4− c2)2

32
> 0,

which implies that F(c, t) increases on the closed interval [0,1] about t. Namely, the maximum value of
F(c, t) attains at t = 1, which is

max F(c, t) = F(c, 1) =
c2

4
+

c4

64
+

c2(4− c2)

32
+

(4− c2)2

64
.

Let

G(c) =
c2

4
+

c4

64
+

c2(4− c2)

32
+

(4− c2)2

64
,

then

G′(c) = c
2 > 0, ∀c ∈ (0, 2).

Therefore, the function G(c) is an increasing function on the closed interval [0,2] about c, and thus
G(c) has a maximum value attained at c = 2, which is

|a2
2 − a2

3| ≤ G(2) =
5
4

.

The proof of Theorem 5 is completed.

Theorem 6. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2a3 − a3a4| ≤
13
12

. (12)

Proof. Assume that f (z) ∈ S∗s , then from Equation (7), we obtain

|a2a3 − a3a4| = | c1c2
8 +

c3
1c2

576 −
c2c3
24 +

c1c2
2

96 |.

Now, by using Lemma 1, we see that

|a2a3 − a3a4| =
∣∣∣∣ c1c2

8 +
c3

1c2
576 −

c2c3
24 +

c1c2
2

96

∣∣∣∣
=

∣∣∣∣ c3
1

16 −
c5

1
576 −

11xc3
1(4−c2

1)
1152 +

xc1(4−c2
1)

16 +
x2c1(4−c2

1)[c
2
1+x(4−c2

1)]
192 +

c1x2(4−c2
1)

2

128 +
(1−|x|2)z(4−c2

1)[x(4−c2
1)+c2

1]
96

∣∣∣∣ .

If we let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2], then, using the triangle inequality, we have

|a2a3 − a3a4| ≤ c3

16 + c5

576 + 11tc3(4−c2)
1152 + t(4−c2)

8 + t2[c2+t(4−c2)](4−c2)
96 + t2(4−c2)2

64 + (4−c2)[t(4−c2)+c2]
96 .

Setting

F(c, t) = c3

16 + c5

576 + 11tc3(4−c2)
1152 + t(4−c2)

8 + t2[c2+t(4−c2)](4−c2)
96 + t2(4−c2)2

64 + (4−c2)[t(4−c2)+c2]
96 .

Then, we easily see that, ∀t ∈ (0, 1), ∀c ∈ (0, 2),

∂F
∂t = 11c3(4−c2)

1152 + (4−c2)
8 + t[c2+t(4−c2)](4−c2)

48 + t2(4−c2)2

96 + t(4−c2)2

32 + (4−c2)2

96 > 0,
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which implies that F(c, t) is an increasing function on the closed interval [0,1] about t. That is, that the
maximum value of F(c, t) occurs at t = 1, which is

max F(c, t) = F(c, 1) =
c3

16
+

c5

576
+

11c3(4− c2)

1152
+

(4− c2)

8
+

(4− c2)

24
+

(4− c2)2

64
+

(4− c2)

24
.

Taking

G(c) =
c3

16
+

c5

576
+

11c3(4− c2)

1152
+

(4− c2)

8
+

(4− c2)

24
+

(4− c2)2

64
+

(4− c2)

24
,

then

G′(c) =
3c2

16
+

5c4

576
+

11c2(4− c2)

384
− 11c4

576
− c(4− c2)

16
− c

12
,

G′′(c) =
3c
8

+
5c3

144
+

11c(4− 2c2)

192
− 11c3

144
− (4− c2)

16
+

c2

8
− 1

12
.

We easily find that c = 0 is the root of the function G′(c) = 0, sinceG′′(0) < 0, which implies that
the function G(c) can reach the maximum value at c = 0, also which is

|a2a3 − a3a4| ≤ G(0) =
13
12

.

The proof of Theorem 6 is completed.

Theorem 7. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|H3(1)| ≤
275
432
≈ 0.637. (13)

Proof. Since
H3(1) = a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2),

by applying the triangle inequality, we get

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|. (14)

Now, substituting Equations (3), (8), (9) and (10) into Equation (14), we easily obtain the desired
assertion (Equation (13)).

Theorem 8. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|T3(2)| ≤
139
72
≈ 1.931. (15)

Proof. Because
T3(2) = a2(a2

2 − a2
3)− a3(a2a3 − a3a4) + a4(a2

3 − a2a4),

by using the triangle inequality, we obtain

|T3(2)| ≤ |a2||a2
2 − a2

3|+ |a3||a2a3 − a3a4|+ |a4||a2
3 − a2a4|. (16)

Next, from Equations (3), (10), (11) and (12), we immediately get the desired assertion
(Equation (15)).

Finally, we give two examples to illustrate our results obtained.
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Example 1. If we take the function f (z) = ez − 1 = z + ∑∞
n=2

zn

n! ∈ S∗s , then we obtain

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|

=
1
3!
× | 1

2!
× 1

4!
− 1

3!
× 1

3!
|+ 1

4!
× | 1

4!
− 1

2!
× 1

3!
|+ 1

5!
× | 1

3!
− 1

2!
× 1

2!
|

≈ 0.004 < 0.637.

Example 2. If we set the function f (z) = − log(1− z) = z + ∑∞
n=2

zn

n ∈ S∗s , then we get

|T3(2)| ≤ |a2||a2
2 − a2

3|+ |a3||a2a3 − a3a4|+ |a4||a2
3 − a2a4|

=
1
2
× |1

2
× 1

2
− 1

3
× 1

3
|+ 1

3
× |1

2
× 1

3
− 1

3
× 1

4
|+ 1

4
× |1

3
× 1

3
− 1

2
× 1

4
|

≈ 0.107 < 1.931.
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