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Abstract: In this work, we focus on the Cauchy problem for the Poisson equation in the two
dimensional domain, where the initial data is disturbed by random noise. In general, the problem
is severely ill-posed in the sense of Hadamard, i.e., the solution does not depend continuously
on the data. To regularize the instable solution of the problem, we have applied a nonparametric
regression associated with the truncation method. Eventually, a numerical example has been carried
out, the result shows that our regularization method is converged; and the error has been enhanced
once the number of observation points is increased.
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1. Introduction

The Cauchy problem for the Poisson equation of elliptic type has been applied to a wide range
of science and technology fields. It arises, for instance, to describe some phenomena relating to
physics [1,2], and biology [3]. In this paper, we are interested in finding a solution u(x, y, t) of the
Cauchy problem for the Poisson equation

utt + uxx + uyy = F (x, y, t), (x, y, t) ∈ Ω× (0, T),
u(x, y, 0) = g(x, y), (x, y) ∈ Ω,

ut(x, y, 0) = h(x, y), (x, y) ∈ Ω,
(1)

where Ω = (0, π)× (0, π), and T > 0 is a given real number.
In reality, the exact values of the functions F , g, h are not available, we only know the observations

themselves, F̂ , ĝ, ĥ instead. As is well-known, observational data are always discrete sets obtained from
temporal and spatial measurements, and containing errors. Some previous studies by many authors
are often assumed that the error is deterministic ‖F̂ − F‖+ ‖h− ĥ‖+ ‖g− ĝ‖ ≤ ε, such as [4,5], etc.
However, there are the errors which come from uncontrollable sources, such as volcanic activity, wind,
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rain, snow, humidity, radiation, etc., then the errors are random. It is reasonable to assume that the
observed value of F , g, h follow the random models

F̂ij(t) = F (xi, yj, t) + τBij(t), (2)

ĝij = g(xi, yj) + σijξi,j, (3)

ĥij = h(xi, yj) + υijχij, (4)

where (xi, yj) =
(

π 2i−1
2n , π

2j−1
2m

)
, i = 1, . . . , n and j = 1, . . . , m is grid points in Ω. Here τ is a positive

constant, Bij(t) are Brownian motions, and random variables ξij and χij are mutually independent

and identically distributed; ξij and χij
i.i.d∼ N(0, 1); σij and υij are unknown positive constants which

are bounded by constants Vσ,max and Vυ,max, respectively; i.e., 0 < σij ≤ Vσ,max and 0 < υij ≤ Vυ,max.
A small perturbation in the given Cauchy data F , g, h may cause a very large error on the solution

of Problem (1). This implies that the problem (1) associated with random models (2)–(4) is ill-posed in
the sense of Hadamard. Hence, some regularization methods should be applied. This problem has not
been studied before, and that is the motivation for us to conduct this paper. Our main goal is to apply
the nonparametric regression method for approximating the functions F , g, h. Then we produce an
estimate for u(x, y, t) for t ∈ (0, T].

This paper is organized as follows. In Section 2, we define some notations. The discretization
form of Fourier coefficients is introduced in Section 3. Section 4 is devoted to the ill-posedness of the
problem. In Section 5, we construct an estimator which is called the regularized solution. An upper
bound of the estimation error is also described in this section. Finally, a numerical result is presented
in Section 7.

2. Some Notions and the Solution of Problem

2.1. Some Notions

In this section, we present some notions which are useful for our main results. We first designate
the L2(Ω) space. The Dirichlet Laplacian operator is defined by

A f := −∆ f = −
(

∂2 f
∂x2 +

∂2 f
∂y2

)
.

Since A is a linear, densely defined self-adjoint and positive definite elliptic operator on the
connected bounded domain Ω with Dirichlet boundary condition. By the spectral theory, it is easy
to show that the eigenvalues of A are given by λp,q = p2 + q2. The corresponding eigenfunctions
are denote by ϕp,q(x, y) = ϕp(x)ϕq(y) for all p, q ∈ Z+, where ϕp(x) =

√
2/π sin(px). Thus the

eigenpairs (λp,q, ϕp,q), p, q ∈ Z+ satisfy{
Aϕp,q(x, y) = λp,q ϕp,q(x, y), (x, y) ∈ Ω,

ϕp,q(x, y) = 0, (x, y) ∈ ∂Ω.

The functions ϕp,q are normalized so that
{

ϕp,q
}

p,q∈Z+ is an orthonormal basis of L2(Ω).
According to the characterization of Hilbert basis, for any integer N, M, the set

SN,M := span
{

ϕp,q : p = 1, . . . N; q = 1, . . . , M
}

,
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is an N × M-dimensional subspace of L2(Ω). From [6] (Lemma 1.10), we give the projection of
f ∈ L2(Ω) onto finite dimensional subspaces SN,M, as follows:

PSN,M f =
N

∑
p=1

M

∑
q=1

〈
f , ϕp,q

〉
ϕp,q(x, y). (5)

For any positive numbers α, β and E, we denote the Sobolev class of functions by

SE
α,β(Ω) =

{
f ∈ L2(Ω) :

∞

∑
p=1

∞

∑
q=1

p2αq2β〈 f , ϕp,q〉2 < E2

}
. (6)

2.2. The Solution of Problem

Lemma 1. If (1) has a solution then it has a form

u(x, y, t) =
∞

∑
p=1

∞

∑
q=1

up,q(t)ϕp,q(x, y), (7)

the Fourier coefficients

up,q(t) = cosh
(

t
√

λp,q

)
gp,q +

sinh
(
t
√

λp,q
)√

λp,q
hp,q +

∫ t

0

sinh
(√

λp,q
)√

λp,q
Fp,q(s)ds, (8)

where gp,q = 〈g, ϕp,q〉, hp,q = 〈h, ϕp,q〉 and Fp,q(t) = 〈F (·, ·, t), ϕp,q〉.

Proof. Suppose that the solution of (1) has the Fourier series

u(x, y, t) =
∞

∑
p=1

∞

∑
q=1

up,q(t)ϕp,q(x, y), where up,q(t) = 〈u(·, ·, t), ϕp,q〉. (9)

Multiplying both sides of the equation utt + uxx + uyy = F (x, y, t) by ϕp,q(x, y) and integrating over
[0, T] we get

d2

dt2 up,q + λp,qup,q = Fp,q(t). (10)

Multiplying the equation (10) by
sinh((t−s)

√
λp,q)√

λp,q
and integrating both sides from 0 to t, we obtain

up,q(t) = cosh
(

t
√

λp,q

)
gp,q +

sinh
(
t
√

λp,q
)√

λp,q
hp,q +

∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
Fp,q(s)ds. (11)

Now we insert λp,q = p2 + q2 into (11) and we complete the proof.

3. Discretization Form of the Fourier Coefficients

In this section, we consider the discretization form of the Fourier coefficients, we first state the
Lemmas below (see [7], page 145) which derive certain orthogonality results concerning the sine
functions over uniform design.
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Lemma 2. Let i = 1, . . . , n with xi = π 2i−1
2n and ϕp(x) =

√
2
π sin(px), then for all p = 1, . . . , n − 1

we have

dp,r =
1
n

n

∑
i=1

ϕp(xi)ϕr(xi) =


(−1)k

π , if r− p = 2kn,

− (−1)k

π , if r + p = 2kn,

0, otherwise.

If r = 1, . . . , n− 1 then we have

dp,r =
1
n

n

∑
i=1

ϕp(xi)ϕr(xi) =

{
1
π , if p = r,

0, if p 6= r.

Lemma 3. For p = 1, . . . , n− 1 and q = 1, . . . , m− 1, with xi = π 2i−1
2n and yj = π

2j−1
2n , if we denote

Dp,r;q,s = dp,rdq,s =
1
n

n

∑
i=1

ϕp(xi)ϕr(xi)
1
m

m

∑
j=1

ϕq(yj)ϕs(yj).

then we have

Dp,r;q,s =


(−1)k+l

π2 , if (r, s)± (p, q) = (2kn, 2lm),

− (−1)k+l

π2 , if (r, s)± (−p, q) = (2kn, 2lm),

0, otherwise.

(12)

For r = 1, . . . , n− 1 and s = 1, . . . , m− 1, we have

Dp,r;q,s =

{
1

π2 , if (r, s) = (p, q),

0, if (r, s) 6= (p, q).
(13)

Proof. This Lemma is derived from Lemma 2.

Lemma 4. Assume that f ∈ C1(Ω̄). For p = 1, . . . , n− 1 and q = 1, . . . , m− 1, we set

fn,m;p,q :=
π2

nm

m

∑
i=1

n

∑
j=1

f (xi, yj)ϕp,q(xi, yj),

with (xi, yj) ∈ Ω are grid points of Ω. The Fourier coefficients fp,q = 〈 f , ϕp,q〉 of the function f (x, y) can be
represented as

fp,q = fn,m;p,q −Θ f
n,m;p,q,

where Θ f
n,m;p,q consists of the terms:

Θ f
n,m;p,q = Θ1

n;p,q + Θ2
m;p,q + Θ3

n,m;p,q, (14)

which are defined as:

Θ1
n;p,q =

∞

∑
l=1

(−1)l
(

fp,2lm+q − fp,2lm−q

)
, Θ2

m;p,q =
∞

∑
k=1

(−1)k
(

f2kn+p,q − f2kn−p,q

)
,
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and

Θ3
n,m;p,q =

∞

∑
k=1

∞

∑
l=1

(−1)k+l( f2kn+p,2lm+q − f2kn+p,2lm−q

− f2kn−p,2lm+q + f2kn−p,2lm−q).

Proof. The function f (x, y) has the expansion

f (x, y) =
∞

∑
r=1

∞

∑
s=1
〈 f , ϕr,s〉ϕr,s(x, y).

For p = 1, . . . , n− 1 and q = 1, . . . , m− 1, at grid point (xi, yj) ∈ Ω, we have

1
nm

n

∑
i=1

m

∑
j=1

f (xi, yj)ϕp,q(xi, yj) =
1

nm

n

∑
i=1

m

∑
j=1

(
∞

∑
r=1

∞

∑
s=1
〈 f , ϕr,s〉ϕr,s(xi, yj)

)
ϕp,q(xi, yj)

=
∞

∑
r=1

∞

∑
s=1
〈 f , ϕr,s〉

(
1
n

n

∑
i=1

ϕp(xi)ϕr(xi)
1
m

m

∑
j=1

ϕq(yj)ϕs(yj)

)

=
∞

∑
r=1

(
m−1

∑
s=1
〈 f , ϕr,s〉Dp,r;q,s +

∞

∑
s=m
〈 f , ϕr,s〉Dp,r;q,s

)
(15)

=
n−1

∑
r=1

m−1

∑
s=1
〈 f , ϕr,s〉Dp,r;q,s +

n−1

∑
r=1

∞

∑
s=m
〈 f , ϕr,s〉Dp,r;q,s

+
∞

∑
r=n

m−1

∑
s=1
〈 f , ϕr,s〉Dp,r;q,s +

∞

∑
r=n

∞

∑
s=m
〈 f , ϕr,s〉Dp,r;q,s.

The formula (13) give us
n−1

∑
r=1

m−1

∑
s=1
〈 f , ϕr,s〉Dp,r;q,s =

1
π2 〈 f , ϕp,q〉, (16)

and from (12), we obtain

n−1

∑
r=1

∞

∑
s=m
〈 f , ϕr,s〉Dp,r;q,s =

1
π2

∞

∑
l=1

(−1)l
(

fp,2lm+q − fp,2lm−q

)
(17)

∞

∑
r=n

m−1

∑
s=1
〈 f , ϕr,s〉Dp,r;q,s =

1
π2

∞

∑
k=1

(−1)k
(

f2kn+p,q − f2kn−p,q

)
, (18)

and

∞

∑
r=n

∞

∑
s=m
〈 f , ϕr,s〉Dp,r;q,s =

1
π2

∞

∑
k=1

∞

∑
l=1

(−1)k+l( f2kn+p,2lm+q − f2kn+p,2lm−q

− f2kn−p,2lm+q + f2kn−p,2lm−q). (19)

Combining (15)–(19) we get

1
nm

n

∑
i=1

m

∑
j=1

f (xi, yj)ϕp,q(xi, yj) =
1

π2 〈 f , ϕp,q〉+
1

π2 Θ f
n,m,p,q.

This completes the proof of Lemma 3.
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Remark 1. Let us now consider the term

Θ f
n,m;p,q = fn,m;p,q − fp,q

in Lemma 3. The hidden ideal inside is that the Fourier coefficients fp,q is approximated by fn.m;p,q which is the

function of the data set. So Θ f
n,m;p,q is a different between them; Θ f

n,m;p,q also is called a residual. Naturally, it
must converge to zero as n, m tend to infinity.

We obtain the upper boundary of Θ f
n,m;p,q in the following Lemma:

Lemma 5. Suppose that f (·, ·) ∈ SE
α,β, α, β > 1 . Then there exists a constant C independent of n, m, p, q

such that ∣∣∣Θ f
n,m;p,q

∣∣∣ ≤ C ( 1
nα

+
1

mβ

)
. (20)

Proof. From (14), the triangle inequality implies∣∣∣Θ f
n,m;p,q

∣∣∣ ≤ ∣∣∣Θ1
n;p,q

∣∣∣+ ∣∣∣Θ2
m;p,q

∣∣∣+ ∣∣∣Θ3
n,m;p,q

∣∣∣ .

The first term is bounded by

∣∣∣Θ1
n;p,q

∣∣∣ ≤ ∞

∑
k=1

(
| f2kn+p,q|+ | f2kn−p,q|

)
≤

∞

∑
k=1

(
E

(2kn + p)αqβ
+

E
(2kn− p)αqβ

)
≤

∞

∑
k=1

(
E

(kn)αqβ
+

E
(kn)αqβ

)
≤ 1

nα

∞

∑
k=1

2E
kα

,

and the second term is estimated as follows∣∣∣Θ2
m;p,q

∣∣∣ ≤ ∞

∑
l=1
| fp,2lm+q|+ | fp,2lm−q|

≤
∞

∑
l=1

(
E

pα(2lm + q)β
+

E
pα(2lm− q)β

)
≤

∞

∑
l=1

(
E

pα(lm)β
+

E
pα(lm)β

)
=

1
mβ

∞

∑
k=1

2E
lβ

.

Similarly, we also have

∣∣∣Θ3
n,m;p,q

∣∣∣ ≤ ∞

∑
k=1

∞

∑
l=1
| f2kn+p,2lm+q|+ | f2kn+p,2lm−q|+ | f2kn−p,2lm+q|+ | f2kn−p,2lm−q|

≤ 1
nαmβ

∞

∑
k=1

∞

∑
l=1

4E
kαlβ

.

Therefore, there exists a constant number in such a way that

C = 1
2

max

{
∞

∑
k=1

2E
kα

;
∞

∑
l=1

2E
lβ

;
∞

∑
k=1

∞

∑
l=1

4E
kαlβ

}
,

such that (20) is verified.
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Lemma 6. Assume that f ∈ C
(
[0, T]; C1(Ω̄)

)
. For p = 1, . . . , n− 1 and q = 1, . . . , m− 1, we set

fn,m;p,q(t) :=
π2

nm

m

∑
i=1

n

∑
j=1

f (xi, yj, t)ϕp,q(xi, yj),

with (xi, yj) ∈ Ω are grid points of Ω. The Fourier coefficients fp,q(t) = 〈 f (·, ·, t), ϕp,q〉 of the function f (x, y)
can be represented as

fp,q(t) = fn,m;p,q(t)−Θ f
n,m;p,q(t), (21)

where Θ f
n,m;p,q(t) is

Θ f
n,m;p,q(t) = Θ1

n;p,q(t) + Θ2
m;p,q(t) + Θ3

n,m;p,q(t), (22)

and

Θ1
n;p,q(t) =

∞

∑
k=1

(−1)k
(

fp,2lm+q(t)− fp,2lm−q(t)
)

,

Θ2
m;p,q(t) =

∞

∑
l=1

(−1)l
(

f2kn+p,q(t)− f2kn−p,q(t)
)

,

and

Θ3
n,m;p,q(t) =

∞

∑
k=1

∞

∑
l=1

(−1)k+l
[

f2kn+p,2lm+q(t)− f2kn+p,2lm−q(t)

− f2kn−p,2lm+q(t) + f2kn−p,2lm−q(t)
]

.

Lemma 7 (Upper boundary of residual Θ f
n,m;p,q(t)). Suppose that f (·, ·, t) ∈ SE

α,β for all t ∈ [0, T], α, β > 1

and that p = 1, . . . , n− 1; q = 1, . . . , m− 1. Let us recall that Θ f
n,m;p,n(t) defined by (22). Then there exists a

generic constant C which is independent of n, m, p, q such that∣∣∣Θ f
n,m;p,q(t)

∣∣∣ ≤ C ( 1
nα

+
1

mβ

)
. (23)

Lemma 8. For any integer N, M such that 0 < N < n and 0 < M < m, the solution u can be represented
as follows

u(x, y, t) =
N

∑
p=1

M

∑
q=1

[
cosh

(
t
√

λp,q

)
gn,m;p,q +

sinh
(
t
√

λp,q
)√

λp,q
hn,m;p,q

+
∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
Fn,m;p,q(s)ds− cosh

(
t
√

λp,q

)
Θg

n,m;p,q

−
sinh

(
t
√

λp,q
)√

λp,q
Θh

n,m;p,q −
∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
ΘFn,m;p,q(s)ds

]
ϕp,q(x, y)

+
(

u− PSN,M u
)
(x, y, t).

Proof. According to Lemma 4, we can present the Fourier coefficients:

gp,q = gn,m;p,q −Θg
n,m;p,q,

and
hp,q = hn,m;p,q −Θh

n,m;p,q.
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In addition, Lemma 6 gives us

Fpq(t) = Fn,m;p,q(t)−ΘFn,m;p,q(t).

Moreover, from (5), the projection of u into subspace SN,M can be written as

PSN,M u =
N

∑
p=1

M

∑
q=1

up,q ϕp,q(x, y),

where up,q is defined in (8). Substituting gp,q, hp,q and Fpq(t) into up,q, and since u(x, y, t) =

PSN,M u(x, y, t) +
(

u− PSN,M u
)
(x, y, t), so the proof is completed.

4. The Ill-Posedness of the Problem

Based on above fundamental, we can now consider the ill–posedness of our problem.
We investigate a model with concrete data and prove the instability of the solution in the case of
random noise data. We divide our task into two parts.

Part 1. Small change in the data: If F (x, y, t) = 0, g(x, y) = 0, and h(x, y) = 0 then problem (1) has
the unique solution u(x, y, t) = 0. Let us take the following random observation data:

F̂ij(t) =
1√
nm
Bij(t), ĝij =

1√
nm

ξij, ĥij =
1√
nm

χij, i = 1, . . . , n, j = 1, . . . , m

where Bij(t) are Brownian motions, ξij
i.i.d∼ N(0, 1) and χij

i.i.d∼ N(0, 1). Next, we consider the mean
square error between g and its estimation, ĝN,M

n,m (see Lemma 9), which is characterized by E‖ĝN,M
n,m −

g‖2. Firstly, the Paserval’s identity give us

‖ĝN,M
n,m − g‖2

L2(Ω) =
N

∑
p=1

M

∑
q=1

(
π2

nm

n

∑
i=1

m

∑
j=1

1√
nm

ξij ϕpq(xi, yj)

)2

. (24)

Secondly, since ξij
i.i.d∼ N(0, 1), we have Eξijξlk = 0 for all i 6= l or j 6= k. Hence, taking expectation

both sides of (24), we obtain

E‖ĝN,M
n,m − g‖2

L2(Ω) =
N

∑
p=1

M

∑
q=1

(
π4

n2m2

n

∑
i=1

m

∑
j=1

1
nm

Eξ2
ij ϕ

2
pq(xi, yj)

)
.

On the other hand Eξ2
ij = 1 and from (13) give us 1

nm ∑n
i=1 ∑m

j=1 ϕ2
pq(xi, yj) =

1
π2 . Thus

E‖ĝN,M
n,m − g‖2

L2(Ω) =
N

∑
p=1

M

∑
q=1

π2

n2m2 =
π2NM
n2m2 .

Finally, if we set N = n− 1 and M = m− 1, then

lim
n,m→∞

E‖ĝn−1,m−1
n,m − g‖2

L2(Ω) = lim
n,m→∞

π2(n− 1)(m− 1)
n2m2 = 0.

Doing the same manner as above, we also have

lim
n,m→∞

E‖ĥn−1,m−1
n,m − h‖2

L2(Ω) = lim
n,m→∞

π2(n− 1)(m− 1)
n2m2 = 0,
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and

lim
n,m→∞

E‖F̂n−1,m−1
n,m −F‖2

L2(Ω) = lim
n,m→∞

π2t(n− 1)(m− 1)
n2m2 = 0.

Part 2. Large change in the solution: We shall construct the solution of problem (1) with respect to
the random data. Noting that Un−1,m−1 is a trigonometric polynomial with order less than n (with
respect to the variable x) and less than m (with respect to the variable y). Using (31) with N = n− 1,
M = m− 1, and we have

Un−1,m−1(x, y, t) =
n−1

∑
p=1

m−1

∑
q=1

[
cosh

(
t
√

λp,q

)
ĝn−1,m−1

n,m;p,q +
sinh

(
t
√

λp,q
)√

λp,q
ĥn−1,m−1

n,m;p,q

+
∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
F̂n−1,m−1

n,m;p,q (s)ds

]
ϕp,q(x, y),

we deduce

‖Un−1,m−1‖2
L2(Ω) ≥

[
cosh

(
t
√

λn−1,m−1

)
ĝn−1,m−1

n,m;n−1,m−1 +
sinh

(
t
√

λn−1,m−1
)√

λn−1,m−1
ĥn−1,m−1

n,m;n−1,m−1

+
∫ t

0

sinh
(√

λn−1,m−1(t− s)
)√

λn−1,m−1
F̂n−1,m−1

n,m;n−1,m−1(s)ds

]2

=: (K1 +K2 +K3)
2 .

Since 2(a + b)2 ≥ a2 − 2b2 for all a, b ∈ R, we deduce

2‖Un−1,m−1‖2
L2(Ω) ≥ 2 (K1 +K2 +K3)

2

≥ K2
1 − 2 (K2 +K3)

2

≥ K2
1 − 4K2

2 − 4K2
3.

Therefore, we get the inequality expectation

2E‖Un−1,m−1‖2
L2(Ω) ≥ EK2

1 − 4EK2
2 − 4EK2

3. (25)

Here, we need to estimate the terms EK2
1, EK2

2 and EK2
3. By using the Parseval’s identity, we first

see that

K2
1 =

[
cosh

(
t
√

λn−1,m−1

)
ĝn−1,m−1

n,m;n−1,m−1

]2

= cosh2
(

t
√

λn−1,m−1

) [ π2

nm

n

∑
i=1

m

∑
j=1

1√
nm

ξij ϕn−1,m−1(xi, yj)

]2

.

Since the noises ξij are mutually independent and identically distributed ξij
i.i.d∼ N(0, 1), we obtain

E
(
ξijξlk

)
= 0 for all i 6= l or j 6= k. In addition, from (13) given that

n

∑
i=1

m

∑
j=1

[
1

nm
ϕ2

n−1,m−1(xi, yj)

]
=

1
π2 .
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Hence

EK2
1 =

π4

n2m2 cosh2
(

t
√

λn−1,m−1

) n

∑
i=1

m

∑
j=1

[
1

nm
Eξ2

ij ϕ
2
n−1,m−1(xi, yj)

]

=
π4

n2m2 cosh2
(

t
√

λn−1,m−1

) n

∑
i=1

m

∑
j=1

[
1

nm
ϕ2

n−1,m−1(xi, yj)

]
(26)

=
π2

n2m2 cosh2
(

t
√

λn−1,m−1

)
.

Next, we estimate EK2
2. Applying similar transform as in the previous step, we get

K2
2 =

[
sinh

(
t
√

λn−1,m−1
)√

λn−1,m−1
ĥn−1,m−1

n,m;n−1,m−1

]2

=

[
sinh

(
t
√

λn−1,m−1
)√

λn−1,m−1

π2

nm

n

∑
i=1

m

∑
j=1

1√
nm

χij ϕn−1,m−1(xi, yj)

]2

,

and we also have

EK2
2 =

π2

n2m2
sinh2 (t√λn−1,m−1

)
λn−1,m−1

≤ π2

n2m2
cosh2 (t√λn−1,m−1

)
λn−1,m−1

. (27)

Finally, the Parseval’s identity implies that

K2
3 =

[∫ t

0

sinh
(√

λn−1,m−1(t− s)
)√

λn−1,m−1
F̂n−1,m−1

n,m;p,q (s)ds

]2

=

[∫ t

0

sinh
(√

λn−1,m−1(t− s)
)√

λn−1,m−1

π2

nm

n

∑
i=1

m

∑
j=1

1√
nm
Bij(t)ϕpq(xi, yj)(s)ds

]2

,

and using the Hölder’s inequality, we obtain

K2
3 ≤

∫ t

0
ds
∫ t

0

[
sinh

(√
λn−1,m−1(t− s)

)√
λn−1,m−1

π2

nm

n

∑
i=1

m

∑
j=1

1√
nm
Bij(s)ϕpq(xi, yj)

]2

ds

≤ π2T
n2m2

sinh2 (t√λn−1,m−1
)

λn−1,m−1

∫ t

0

[
n

∑
i=1

m

∑
j=1

1√
nm
Bij(s)ϕpq(xi, yj)

]2

ds.

From the properties of Brownian motion, we known that E
(
Bij(s)Blk(s)

)
= 0 for all i 6= l or j 6= k and

E
(
B2

ij(s)
)
= s, thus

EK2
3 ≤

π2T
n2m2

sinh2 (t√λn−1,m−1
)

λn−1,m−1

∫ t

0

n

∑
i=1

m

∑
j=1

[
1

nm
B2

ij(s)ϕ2
pq(xi, yj)

]
ds

≤ T3

n2m2
cosh2 (t√λn−1,m−1

)
λn−1,m−1

. (28)
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Substituting (26)–(28) into (25), we have

2‖Un−1,m−1‖2
L2(Ω) ≥

π2

n2m2 cosh2
(

t
√

λn−1,m−1

)
− 2π2

n2m2
cosh2 (t√λn−1,m−1

)
λn−1,m−1

− 2T3

n2m2
cosh2 (t√λn−1,m−1

)
λn−1,m−1

,

and then

2‖Un−1,m−1‖2
C([0,T],L2(Ω) ≥ cosh2

(
t
√

λn−1,m−1

) [ π2

n2m2 −
4π2

n2m2λn−1,m−1
− 4T3

n2m2λn−1,m−1

]
.

As n, m tend to infinity, it shows that

lim
n,m→∞

E
(
‖ĝn−1,m−1

n,m − g‖2
L2(Ω) + ‖ĥ

n−1,m−1
n,m − h‖2

L2(Ω) + ‖F̂
n−1,m−1
n,m −F‖2

L2(Ω)

)
= 0,

whereas
lim

n,m→∞
E‖Un−1,m−1 − u‖2

C([0,T],L2(Ω)) = ∞.

From the above proposition, we see that a small change in the data leads to a significant change in
the solution of the problem. Thus, we can conclude that the problem (1) is ill-posed in the Hadamard
sense. Hence, a regularization is in order.

5. Regularization and Error Estimate

5.1. Nonparametric Estimate for Functional Data

In this section, we consider a nonparametric regression model which are developed when the
predictor is a function valued random variable f̂ij; i = 1, . . . , n; j = 1, . . . m, based on a representation
of the unknown regression function f (x, y) by the model

f̂ij = f (xi, yj) + Xij,

where (xi, yj) are as in the introduction, Xij are independent and identically distributed random
variables with distribution N(0, 1). Our goal in this section is to find an estimated function for f (x, y)
from random data f̂ij at grid points (xi, yj).

The finite dimensional subspace SN,M, 0 < N < n, 0 < M < n of L2(Ω) is closed [8] (page 362).
Moreover, the projection Theorem [9] (page 130) leads to the following Corollary.

Corollary 1. Let SN,M be a closed subspace of the Hilbert space L2(Ω). For each f ∈ L2(Ω) there is unique
closest function f̂ N,M

n,m ∈ SN,M such that

‖ f − f̂ N,M
n,m ‖L2 = min

ξ∈SN,M
‖ f − ξ‖L2 .

In the statistic sense, the function f is unknown, we only know its observed values, f̂ij, at discrete
points (xi, yj). The estimate function for f in subspace SN,M is

f̂ N,M
n,m = arg min

ξ∈SN,M

n

∑
i=1

m

∑
j=1

(
f̂ij − ξ(xi, yj)

)2
. (29)

The Lemma below gives us a result of the function f̂ N,M = ξ which satisfies (29).
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Lemma 9. Problem (29) has a unique solution

f̂ N,M
n,m =

N

∑
p=1

M

∑
q=1

(
π2

nm

n

∑
i=1

m

∑
j=1

f̂ij ϕp,q(xi, yj)

)
ϕp,q.

Proof. Since ξ ∈ SN,M, its Fourier expansion has a form

ξ(x, y) =
N

∑
p=1

M

∑
q=1

ξpq ϕp,q(x, y),

then Equation (29) becomes

f̂ N,M
n,m = arg min

ξ∈SN,M

n

∑
i=1

m

∑
j=1

(
f̂ij −

N

∑
p=1

M

∑
q=1

ξpq ϕp,q(xi, yj)

)2

.

Let the n×m variables function

Ξ(ξl=1,n,k=1,m) =
n

∑
i=1

m

∑
j=1

(
f̂ij −

N

∑
p=1

M

∑
q=1

ξpq ϕp,q(xi, yj)

)2

.

Here, our goal is to find ξl,k such that Ξ(ξl=1,n,k=1,m) has the minimum value. A necessary and
sufficient condition to get that point is

∂

∂ξl,k
Ξ(ξl=1,n,k=1,m) = −2

n

∑
i=1

m

∑
j=1

(
f̂ij −

N

∑
p=1

M

∑
q=1

ξpq ϕp,q(xi, yj)

)
ϕl,k(xi, yj) = 0,

for all l = 1, . . . , N, k = 1, . . . , M. Based on (13), we obtain

ξl,k =
π2

nm

n

∑
i=1

m

∑
j=1

f̂ij ϕl,k(xi, yj).

Hence, the estimate function for f is

f N,M
n,m =

N

∑
p=1

M

∑
q=1

(
π2

nm

n

∑
i=1

m

∑
j=1

f̂ij ϕp,q(xi, yj)

)
ϕp,q,

as desired.

5.2. Regularized Solution

In reality, we only have n×m observation values (ĝij, ĥij, F̂ij) of the functions (g, h,F ) at grid
points (xi, yj) instead of known (g, h,F ). Using Lemma 9, the estimation of g, h,F is

ĝN,M
n,m (x, y) =

N

∑
p=1

M

∑
q=1

gN,M
n,m;p,q ϕp,q(x, y), where ĝN,M

n,m;p,q =
π2

nm

n

∑
i=1

m

∑
j=1

ĝij ϕpq(xi, yj),

ĥN,M
n,m (x, y) =

N

∑
p=1

M

∑
q=1

hN,M
n,m;p,q ϕp,q(x, y), where ĥN,M

n,m;p,q =
π2

nm

n

∑
i=1

m

∑
j=1

ĥij ϕpq(xi, yj),

F̂N,M
n,m (x, y, t) =

N

∑
p=1

M

∑
q=1
F̂N,M

n,m;p,q(t)ϕp,q(x, y), where F̂N,M
n,m;p,q(t) =

π2

nm

n

∑
i=1

m

∑
j=1
F̂ij ϕpq(xi, yj).
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Choosing two integer numbers N, M in such a way that 1 < N < n, 1 < M < m, we will find a
solution UN,M of the problem on the subspace SN,M such that

UN,M
tt + UN,M

xx + UN,M
yy = F̂N,M

n,m (x, y, t), (x, y, t) ∈ Ω× (0, T),
UN,M(x, y, 0) = ĝN,M

n,m (x, y), (x, y) ∈ Ω,
UN,M

t (x, y, 0) = ĥN,M
n,m (x, y), (x, y) ∈ Ω,

(30)

Using Lemma 8, we deduce that the system (30) has a unique solution

UN,M(x, y, t) =
N

∑
p=1

M

∑
q=1

[
cosh

(
t
√

λp,q

)
ĝN,M

n,m;p,q +
sinh

(
t
√

λp,q
)√

λp,q
ĥN,M

n,m;p,q

+
∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
F̂N,M

n,m;p,q(s)ds

]
ϕp,q(x, y).

(31)

5.3. Convergence Estimate

The main result in this section is to study the convergence rate of the estimator. We recall the
regularized solution of the problem (1) as shown above:

UN,M(x, y, t) =
N

∑
p=1

M

∑
q=1

[
cosh

(
t
√

λp,q

)
ĝN,M

n,m;p,q +
sinh

(
t
√

λp,q
)√

λp,q
ĥN,M

n,m;p,q

+
∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
F̂N,M

n,m;p,q(s)ds

]
ϕp,q(x, y),

(32)

which is constructed from the observation data ĝi,j, ĥi,j, F̂i,j at grid points (xi, yj), i = 1, . . . , n;
j = 1, . . . , m of unknown functions g, h,F , respectively. The theorem below will show that a suitable
choosing regularization parameter is necessary.

Theorem 1 (Convergence estimate for the regularized solution). Let E > 0 α, β > 1, 0 < N < n,
0 < M < m and g ∈ C1(Ω̄) ∩ SE

α,β(Ω), h ∈ C1(Ω̄) ∩ SE
α,β(Ω), F ∈ C([0, T]; C1(Ω̄) ∩ SE

α,β(Ω)). Assume

that problem (1) has unique solution u ∈ C
(
[0, T]; L2(Ω)

)
∩ C

(
[0, T];SE

α,β(Ω)
)

. For n, m large enough,

(
1

nα
+

1
mβ

)2
≤ 1

nm
, (33)

there is a constant Ψ such that

E‖UN,M − u‖2
C([0,T];L2(Ω)) ≤Ψ

1
nm

NMe2t
√

λN,M + 3p−2αq−2βE, (34)

Remark 2. Let us consider the equality e2t
√

N2
n,m+M2

n,m = namb, 0 < a, b < 1. By choosing the integer
number Nn,m = Mn,m such that

Nn,m = Mn,m :=
⌊

1
2
√

2t
ln
(

namb
)⌋

,

where bxc is integer number which is a truncation of a real number x. The mean squared error, E‖UNn,m ,Mn,m −
u‖2

L2(Ω)
is of order na−1mb−1.
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Proof. We have

UN,M − u =
N

∑
p=1

M

∑
q=1

cosh
(

t
√

λp,q

) (
ĝN,M

n,m;p,q − gn,m;p,q

)
ϕp,q(x, y)

+
N

∑
p=1

M

∑
q=1

sinh
(
t
√

λp,q
)√

λp,q

(
ĥN,M

n,m;p,q − hn,m;p,q

)
ϕp,q(x, y)

+
N

∑
p=1

M

∑
q=1

[∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q

(
F̂N,M

n,m;p,q(s)−Fn,m;p,q(s)
)

ds

]
ϕp,q(x, y)

−
N

∑
p=1

M

∑
q=1

cosh
(

t
√

λp,q

)
Θg

n,m;p,q ϕp,q(x, y)−
N

∑
p=1

M

∑
q=1

sinh
(
t
√

λp,q
)√

λp,q
Θh

n,m;p,q ϕp,q(x, y)

−
N

∑
p=1

M

∑
q=1

(∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
ΘFn,m;p,q(s)ds

)
ϕp,q(x, y)

−
(

u− PSN,M u
)
(x, y, t) := Υ1 + Υ2 + Υ3 − Υ4 − Υ5 − Υ6 − Υ7.

Here, we find the upper bounds for EΥ1, EΥ2, EΥ3 and Υ4 to Υ7 by six steps below. We first proceed
to step 1.

Step 1. Estimate E‖Υ1‖2
L2(Ω)

: Using the fact that

Υ1 =
N

∑
p=1

M

∑
q=1

cosh
(

t
√

λp,q

) (
ĝN,M

n,m;p,q − gn,m;p,q

)
ϕp,q(x, y)

=
N

∑
p=1

M

∑
q=1

cosh
(

t
√

λp,q

)( π2

nm

n

∑
i=1

m

∑
j=1

[
ĝij − g(xi, yj)

]
ϕ(xi, yj)

)
ϕp,q(x, y)

=
N

∑
p=1

M

∑
q=1

cosh
(

t
√

λp,q

)( π2

nm

n

∑
i=1

m

∑
j=1

σijξij ϕ(xi, yj)

)
ϕp,q(x, y),

the Parseval’s identity implies that

‖Υ1‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

cosh2
(

t
√

λp,q

)( π2

nm

n

∑
i=1

m

∑
j=1

σijξij ϕ(xi, yj)

)2

.

Since the noises ξij are mutually independent and identically distributed ξij
i.i.d∼ N(0, 1), we obtain

E
(
ξijξlk

)
= 0 for all i 6= l or j 6= k. Hence

E‖Υ1‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

cosh2
(

t
√

λp,q

)( π4

n2m2

n

∑
i=1

m

∑
j=1

σ2
ijEξ2

ij ϕ
2(xi, yj)

)
.

In addition, we also have
n

∑
i=1

m

∑
j=1

[
1

nm
ϕ2

n−1,m−1(xi, yj)

]
=

1
π2 .

and < σij ≤ Vσ,max. Thus

E‖Υ1‖2
L2(Ω) ≤ V2

σ,max
π2

nm

N

∑
p=1

M

∑
q=1

cosh2
(

t
√

λp,q

)
≤ π2

nm
V2

σ,max

N

∑
p=1

M

∑
q=1

e2t
√

λN,M

≤ π2

nm
V2

σ,maxNMe2t
√

λN,M .

(35)
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Step 2. Estimate E‖Υ2‖2
L2(Ω)

: Applying a similar manner as in Step 1, we have

Υ2 =
N

∑
p=1

M

∑
q=1

sinh
(
t
√

λp,q
)√

λp,q

(
hN,M

n,m;p,q − hn,m;p,q

)
ϕp,q(x, y)

=
N

∑
p=1

M

∑
q=1

sinh
(
t
√

λp,q
)√

λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

[
ĥij − h(xi, yj)

]
ϕ(xi, yj)

)
ϕp,q(x, y)

=
N

∑
p=1

M

∑
q=1

sinh
(
t
√

λp,q
)√

λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

υijχij ϕ(xi, yj)

)
ϕp,q(x, y),

and the Parseval’s identity give us

‖Υ2‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

sinh2 (t√λp,q
)

λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

υijχij ϕ(xi, yj)

)2

.

Because of mutually independent and identically properties of normal distribution, we have

E‖Υ2‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

sinh2 (t√λp,q
)

λp,q

(
π4

n2m2

n

∑
i=1

m

∑
j=1

υ2
ijEχ2

ij ϕ
2(xi, yj)

)

≤
N

∑
p=1

M

∑
q=1

sinh2 (t√λp,q
)

λp,q

(
π4

n2m2 V2
υ,max

n

∑
i=1

m

∑
j=1

ϕ2(xi, yj)

)

≤ V2
υ,max

π2

nm

N

∑
p=1

M

∑
q=1

sinh2 (t√λp,q
)

λp,q
≤ π2

nm
V2

υ,max

N

∑
p=1

M

∑
q=1

e2t
√

λN,M

λ1,1

≤ π2

nm
V2

υ,maxNM
e2t
√

λN,M

λ1,1
.

(36)

Step 3. Estimate E‖Υ3‖2
L2(Ω)

:

Υ3 =
N

∑
p=1

M

∑
q=1

t∫
0

sinh
(
(t− s)

√
λp,q

)√
λp,q

(
F̂N,M

n,m;p,q −Fn,m;p,q

)
ϕp,q(x, y)

=
N

∑
p=1

M

∑
q=1

t∫
0

sinh
(
(t− s)

√
λp,q

)√
λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

[
F̂ij −F (xi, yj, t)

]
ϕ(xi, yj)

)
ϕp,q(x, y)

=
N

∑
p=1

M

∑
q=1

t∫
0

sinh
(
(t− s)

√
λp,q

)√
λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

τBij(t)ϕ(xi, yj)

)
ϕp,q(x, y).

From the Parseval’s identity, we obtain

‖Υ3‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

 t∫
0

sinh
(
(t− s)

√
λp,q

)√
λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

τBij(t)ϕ(xi, yj)

)
ds

2

,
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and using the Hölder’s inequality, we get

‖Υ3‖2
L2(Ω) ≤

N

∑
p=1

M

∑
q=1

t∫
0

ds
t∫

0

sinh2 ((t− s)
√

λp,q
)

λp,q

(
π2

nm

n

∑
i=1

m

∑
j=1

τBij(t)ϕ(xi, yj)

)2

ds

≤
N

∑
p=1

M

∑
q=1

e2t
√

λN,M

λ1,1

t∫
0

ds
t∫

0

(
π2

nm

n

∑
i=1

m

∑
j=1

τBij(t)ϕ(xi, yj)

)2

ds

≤
N

∑
p=1

M

∑
q=1

e2t
√

λN,M

λ1,1
T

t∫
0

(
π2

nm

n

∑
i=1

m

∑
j=1

τBij(t)ϕ(xi, yj)

)2

ds.

From the properties of Brownian motion, we know that E
(
Bij(s)Blk(s)

)
= 0 for all i 6= l or j 6= k and

E
(
B2

ij(s)
)
= s. Hence

E‖Υ3‖2
L2(Ω) ≤

N

∑
p=1

M

∑
q=1

e2t
√

λN,M

λ1,1
T

t∫
0

π4

n2m2

n

∑
i=1

m

∑
j=1

τ2EB2
ij(s)ϕ2(xi, yj)ds

≤
N

∑
p=1

M

∑
q=1

e2t
√

λN,M

λ1,1
T

t∫
0

π4

n2m2 τ2t
n

∑
i=1

m

∑
j=1

ϕ2(xi, yj)ds (37)

≤
N

∑
p=1

M

∑
q=1

e2t
√

λN,M

λ1,1
T

t∫
0

π2

nm
τ2sds ≤ π2

nm
T3τ2NM

e2t
√

λN,M

λ1,1
.

Step 4. Estimate ‖Υ4‖2
L2(Ω)

and ‖Υ5‖2
L2(Ω)

. The Parseval’s identity implies that

‖Υ4‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

cosh2
(

t
√

λp,q

) (
Θg

n,m;p,q

)2
.

Moreover, Lemma 5 also give us the upper bound. We deduce

‖Υ4‖2
L2(Ω) ≤ C

2
(

1
nα

+
1

mβ

)2
NMe2t

√
λN,M . (38)

By a similar transform, as above, we get

‖Υ5‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

sinh2 (t√λp,q
)

λp,q

(
Θh

n,m;p,q

)2

≤ C2
(

1
nα

+
1

mβ

)2
NM

e2t
√

λN,M

λ1,1
.

(39)

Step 5. Estimate ‖Υ6‖2
L2(Ω)

. Applying the Parseval’s identity, we have

‖Υ6‖2
L2(Ω) =

N

∑
p=1

M

∑
q=1

 t∫
0

sinh
(
(t− s)

√
λp,q

)√
λp,q

ΘFn,m;p,q(s)ds

2

,
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and using the Hölder’s inequality, we have

‖Υ6‖2
L2(Ω) ≤

N

∑
p=1

M

∑
q=1

t∫
0

ds
t∫

0

sinh2 ((t− s)
√

λp,q
)

λp,q

(
ΘFn,m;p,q(s)

)2
ds.

The Lemma 7 give us the upper bound of
∣∣∣ΘFn,m;p,q(s)

∣∣∣. Hence

‖Υ6‖2
L2(Ω) ≤ C

2
(

1
nα

+
1

mβ

)2
T2NM

e2t
√

λN,M

λ1,1
. (40)

Step 6. Estimate ‖Υ7‖2
L2(Ω)

:

‖Υ7‖2
L2(Ω) =

N

∑
p=1

∞

∑
q=M+1

〈u, ϕp,q〉2 +
∞

∑
p=N+1

M

∑
q=1
〈u, ϕp,q〉2 +

∞

∑
p=N+1

∞

∑
q=M+1

〈u, ϕp,q〉2

≤ 3p−2αq−2βE.

(41)

If the condition (33) holds, then by combining six steps above, we obtain

E‖UN,M − u‖2
C([0,T];L2(Ω)) ≤Ψ

1
nm

NMe2t
√

λN,M + 3p−2αq−2βE,

where

Ψ = π2V2
σ,max +

π2V2
υ,max

λ1,1
+

π2T3τ

λ1,1
+ C2 +

C2

λ1,1
+
C2T2

λ1,1
.

This completes the proof.

6. Numerical Example

6.1. The Ill-Posedness of the Problem

In this subsection, we implement the numerical experiment to illustrate the ill-posedness of
the problem which presented in Section 4. For convenience, let us assign the change in the data
as following

D(t) := E
(
‖ĝN,M

n,m − g‖2
L2(Ω) + ‖ĥ

N,M
n,m − h‖2

L2(Ω) + ‖F̂
N,M
n,m −F‖2

L2(Ω)

)
,

the change in the solution
S(t) := E‖UN,M(·, ·, t)− u(·, ·, t)‖2

L2(Ω).

In this situation, we set t = 1/4, N = n− 1, M = m− 1 and n = m. Observation value of F , g, h
follow the random models, see Figure 1,

F̂ij(t) =
1√
nm
Bij(t), ĝij =

1√
nm

ξij, ĥij =
1√
nm

χij, i = 1, . . . , n, j = 1, . . . , m.
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Figure 1. The exact data g(x, y) = h(x, y) = F (x, y, t) and their observation value at time t = 1/4.

The value of D(t) and S(t) are given in Table 1. Through this result, we clearly see that the smaller
D(1/4), the larger S(1/4) will be, when n = m increases from 5 to 50.

Table 1. A small change in the data result in a large change in the solution.

n = m = 5 n = m = 10 n = m = 20 n = m = 50

D(1/4) 0.5685 0.1799 0.0501 0.0085
S(1/4) 0.5800 1.7333 × 103 1.9078 × 1010 1.7587 × 1035

6.2. Convergence Behavior of the Regularized Solution

In this section, we present an example in order to illustrate the efficiency of the proposed methods.
We consider following Cauchy problem:

utt + uxx + uyy = F (x, y, t), (x, y, t) ∈ Ω× (0, 1),
u(x, y, 0) = g(x, y), (x, y) ∈ Ω,

ut(x, y, 0) = h(x, y), (x, y) ∈ Ω,

where F (x, y, t) = −2t sin x sin y, g(x, y) = 0 and h(x, y) = sin x sin y. This system has the exact
solution u(x, y, t) = t sin x sin y.

The observation data at grid points (xi, yj) =
(

π 2i−1
2n , π

2j−1
2m

)
; i = 1, . . . , n; j = 1, . . . , m of

functions F , h, g are

F̂ij(t) = F (xi, yj, t) + αBij(t), α = 1 and Bij(t)
i.i.d∼ N(0, 1),

ĝij = g(xi, yj) + σijξi,j, σij = 0.1 and ξij i.i.d∼ N(0, 1),

ĥij = h(xi, yj) + υijχij, υij = 0.1 and χij
i.i.d∼ N(0, 1),

for all i = 1, . . . , n; j = 1, . . . , m. For fixed t, the matrix form of the regularized solution will be

UN,M =


UN,M(x1, y1, t) UN,M(x1, y2, t) · · · UN,M(x1, ym, t)
UN,M(x2, y1, t) UN,M(x2, y2, t) · · · UN,M(x2, ym, t)

...
...

...
...

UN,M(xn, y1, t) UN,M(xn, y2, t) · · · UN,M(xn, ym, t)

 ,



Mathematics 2019, 7, 422 19 of 20

the elements of UN,M are computed as

UN,M(xi, yj, t) =
N

∑
p=1

M

∑
q=1

[
cosh

(
t
√

λp,q

)
ĝN,M

n,m;p,q +
sinh

(
t
√

λp,q
)√

λp,q
ĥN,M

n,m;p,q

+
∫ t

0

sinh
(√

λp,q(t− s)
)√

λp,q
F̂N,M

n,m;p,q(s)ds

]
ϕp,q(xi, yj).

The errors are esimated by

ErrN,M
n,m (t) =

√√√√ 1
nm

n

∑
i=1

m

∑
j=1

[
UN,M(xi, yj, t)− u(xi, yj, t)

]2.

Figure 2. 3D graphs of exact solution at time t = 1/4, and the regularized solution for the regularization
parameters of N = M = 3 and n = m = 1000.

In this numerical example, we keep the fixed value of regularization parameters with N = M = 3.
We carried out the numerical calculations for two cases with different observation points; the first one
for n = m = 500, and another one for n = m = 1000. From Table 2, it shows that the error is reduced
once the spatial observation points are increased; on the other hand the convergence rate has been
increased once time t tends to 0. This reflects the behavior of the rate of convergence in Theorem 1.
For a more intuitive look, in Figure 2, we show the 3D graphs of the exact solution and regularized
solution at t = 1/4, where we chose N = M = 3 and n = m = 1000.

Table 2. Numerical errors

ErrN,M
n,m (t) t = 1/4 t = 1/2 t = 3/4 t = 1

n = m = 500 7.92 × 10−4 1.51 × 10−3 3.60 × 10−3 1.27 × 10−2

n = m = 1000 4.91 × 10−4 7.75 × 10−4 1.50 × 10−3 3.31× 10−3

7. Conclusions

In this work, we considered the problem of finding the solution for the 2-D inhomogeneous
elliptic equation with initial data and source pertubed by random noise. We first estimate the initial
functions and source function using the nonparametric least square regression method in statistic
manner. Then we approximated Fourier coefficients fp,q by fn,m;p,q which is the function of the data
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set. This problem is ill-posed, hence a regularization is needed. Eventually, we have carried out the
numerical example, and validated the regularized solution against the exact solution, it shows the
numerical errors have been reduced once the number of spatial observation points is increased; on the
other hand the convergence rate is increased once t tends to zero.
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