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Abstract: In this work, we focus on the Cauchy problem for the Poisson equation in the two
dimensional domain, where the initial data is disturbed by random noise. In general, the problem
is severely ill-posed in the sense of Hadamard, i.e., the solution does not depend continuously
on the data. To regularize the instable solution of the problem, we have applied a nonparametric
regression associated with the truncation method. Eventually, a numerical example has been carried
out, the result shows that our regularization method is converged; and the error has been enhanced
once the number of observation points is increased.

Keywords: Poisson problem; Ill-posed problem; discrete data

1. Introduction

The Cauchy problem for the Poisson equation of elliptic type has been applied to a wide range
of science and technology fields. It arises, for instance, to describe some phenomena relating to
physics [1,2], and biology [3]. In this paper, we are interested in finding a solution u(x, y, t) of the
Cauchy problem for the Poisson equation

Ut + thyx +tyy = F(x,y,t), (x,y,t) € Qx(0,T),
u(x,y,0) = g(xy), (x,y) € Q, 1)
ur(x,y,0) = h(x,y), (xvy) € Q

where Q) = (0, 71) x (0,7),and T > 0 is a given real number.

In reality, the exact values of the functions F, g, h are not available, we only know the observations
themselves, F , 8 hiinstead. Asis well-known, observational data are always discrete sets obtained from
temporal and spatial measurements, and containing errors. Some previous studies by many authors
are often assumed that the error is deterministic || F — F|| 4 ||k — ii|| + || — ¢|| < ¢, such as [4,5], etc.
However, there are the errors which come from uncontrollable sources, such as volcanic activity, wind,
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rain, snow, humidity, radiation, etc., then the errors are random. It is reasonable to assume that the
observed value of F, g, h follow the random models

Fij(t) = Flxi,yj,t) + 8B (t), ()
$ii = 8(xi,yj) + 7iiGij, 3)
hij = h(xi,y;) + vijxij, 4)

where (xi,yj) = (7123;1, n%), i=1,...,nandj=1,...,mis grid points in (). Here 7 is a positive

constant, B;;(t) are Brownian motions, and random variables ¢;; and x;; are mutually independent

and identically distributed; ¢;; and x;; BN (0,1); 0jj and vj; are unknown positive constants which
are bounded by constants Vi max and Vi, max, respectively;i.e., 0 < ij < Vo,max and 0 < vjj < Vi, max-

A small perturbation in the given Cauchy data F, g, h may cause a very large error on the solution
of Problem (1). This implies that the problem (1) associated with random models (2)—(4) is ill-posed in
the sense of Hadamard. Hence, some regularization methods should be applied. This problem has not
been studied before, and that is the motivation for us to conduct this paper. Our main goal is to apply
the nonparametric regression method for approximating the functions F, g, h. Then we produce an
estimate for u(x,y,t) for t € (0, T].

This paper is organized as follows. In Section 2, we define some notations. The discretization
form of Fourier coefficients is introduced in Section 3. Section 4 is devoted to the ill-posedness of the
problem. In Section 5, we construct an estimator which is called the regularized solution. An upper
bound of the estimation error is also described in this section. Finally, a numerical result is presented
in Section 7.

2. Some Notions and the Solution of Problem

2.1. Some Notions

In this section, we present some notions which are useful for our main results. We first designate
the L2(Q) space. The Dirichlet Laplacian operator is defined by

Af:zAfz(E;?;ngZ).

Since A is a linear, densely defined self-adjoint and positive definite elliptic operator on the
connected bounded domain () with Dirichlet boundary condition. By the spectral theory, it is easy
to show that the eigenvalues of A are given by A, ; = p* + ¢°. The corresponding eigenfunctions
are denote by ¢, 4(x,y) = @p(x)@,(y) for all p,q € Z*, where ¢,(x) = v/2/msin(px). Thus the
eigenpairs (Apg, 9pq), P, q € L7 satisfy

{A(Pp,q(x/y) = Apa®pa(x,y), (x,y) €Q,
Ppq(x,y) =0, (x,y) € 9Q).

The functions ¢, , are normalized so that {gop,q}p gz is an orthonormal basis of L2(Q).
According to the characterization of Hilbert basis, for any integer N, M, the set

Snmi=span{gp,:p=1,...N;q=1,..., M},
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is an N x M-dimensional subspace of L2(Q)). From [6] (Lemma 1.10), we give the projection of
f € L?(Q) onto finite dimensional subspaces Sy a1, as follows:

N M
Psyuf = 2 Y Fr Ppa) Ppa(xy)- ©)
p=1g=1
For any positive numbers &, § and E, we denote the Sobolev class of functions by
SEﬁ( )= {fGLZ ZZPZCI fﬁ"ptﬁ <E2}- (6)
p=1g=1
2.2. The Solution of Problem

Lemma 1. If (1) has a solution then it has a form

u(e,y,t) =3 ) upg(t)Ppqa(x,y), )
p=1g=1

the Fourier coefficients

inh (¢ t h
tpq(t) = cosh (£/Ag) 8 + > ( /sm W D) 7 (5)ds, ®)

where gpq = (8, Ppq), hpq = (W, @pq) and Fpg(t) = (F (1), @paq)-

Proof. Suppose that the solution of (1) has the Fourier series
(x,y,t) Z Z t)@p,q(x,y), where up (t) = (u(-, -, t), Ppq)- ©)

Multiplying both sides of the equation uy + uxy + uyy = F(x,y,t) by ¢p4(x,y) and integrating over
[0, T] we get

d2
qea T Apating = Fpa(t)- (10)
Multiplying the equation (10) by % VA1) and integrating both sides from 0 to ¢, we obtain
Pa

sinh (t,/A tsinh (y/Apq(t—s
Upq(t) = cosh (t, /)\W) Spq T \(/mp'q)hplq —l—/o ( )’::: ) Fpq(s)ds.  (11)

Now we insert A, ; = p? 4 % into (11) and we complete the proof. [

3. Discretization Form of the Fourier Coefficients

In this section, we consider the discretization form of the Fourier coefficients, we first state the
Lemmas below (see [7], page 145) which derive certain orthogonality results concerning the sine
functions over uniform design.
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Lemma 2. Leti = 1,...,n with x; =

(x) = \/gsin(px), then forallp = 1,...,n—1

we have
(=DF ; _
—, ifr—p=2kn,
*qup Jor(xi) =4~ ifr 4 p = 2kn,

0, otherwise.

Ifr=1,...,n— 1 then we have

1 1 ifp=r,
p,r—*z :{n ,fp
mi3 0, ifp#r.

Lemma3. Forp=1,...,.n—landq=1,...,m —1, with x; —7122” andy] = 41 2n ,szedenote

1 & 1 &
Dyrgs = dprdgs = " Z} G”p(xi)é”r(xi)% 21 Pq (yj)fPs (I/j)-
1= =

then we have
(71)k+l

—a—,  if(r,s) = (p,q) = (2kn,2Im),
k+1
Dprgs = § —Hh—, if (r,s) £ (—p,q) = (2kn,2Im), (12)
0, otherwise.

Forr=1,...,n—=1ands =1,...,m —1, we have

i -
- :{ i (1,5) = (p.1), .

0, if(r,s)# (pq)

Proof. This Lemma is derived from Lemma 2. [

Lemma 4. Assume that f € Cl(Q). Forp=1,...,n—1landq=1,...,m—1, we set

fnmpq - nm ZZf xu}// G”pq(xuy])

i=1j=1

with (x;,y;) € Q are grid points of Q). The Fourier coefficients fpq = (f, ¢p,q) of the function f(x,y) can be
represented as

f pg = f nm;pq — ®£,m;p,qr

where ®£,m;p,q consists of the terms:

O ipq = Oy + O

mp.q + 62/’"?!’#’ (14)

which are defined as:

G)}z ;9 Z(_l)l (fp,21m+q _fp,Zlm—q) ’ ®%z pq Z(_l)k (kan+p,q _kan—p,q) ’

=1 k=1
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and
O mipg = 2 2 T (Fakntpaimq = Fakntp2im—g
- f2kn7p,21m+q + f2kn7p,21qu)'

Proof. The function f(x,y) has the expansion

szq’rs Prs(x,Y).

r=1s=

Forp=1,...,.n—1landgq=1,...,m—1, at grid point (xi,yj) € ), we have

[\1:
™=

§\H

1 n
i Z f( XisYj Gopq(xz/y])

nm i—1i

(Z Z (fr ors fPfS(%%)) Ppa(xi,yj)

r=1s=1

i

I
—
<.
I
—

Il
[1e
[7e

§

(o prs) (ii@ i) r(xi) li (i) es(vj )

1 i=1 j=1

‘
Il
—_
v
Il

00 m—1
:Z<Z<f Prs) prqs‘i‘z (f, ors) pr;q,s) (15)
r=1 \s=1
n—1m—1 n—1
= <f, §9r,s>Dp,r;q,s + Z Z <f, §9r,s>Dp,r;q,s
r=1 s=1 r=1s=m
co m—1
+ Z <f (Prs prqs+ Z Z f (Prs DI,
r=n s=1 r=ns=m
The formula (13) give us
—1m—1
2 2 (f, @rs)Dpyrigs = 2<f/(Pp,q>r (16)
r=1 s=

and from (12), we obtain

— (o) 1 [e)

Z Z f Prs Dprqs Y Z(_l)l (fp,21m+q _fp,Zlm—q) 17)
r=1s=m w5

[e0) — 1 [e9)

Z E f q)rs pirgs = 71{_21(_1)]( <f2kn+p,q _fzkn—p,q) ’ (18)

and

M (Faknp2imq — Fakntp2im—q

Mg

(o) (e ) 1 (o)
2 E (f+ @rs)Dprgs = 2 2

r=ns=m k=1

—

1

= fokn—p2im+q + fokn—pim—q)- (19)

Combining (15)—(19) we get

L S F )0 5) = 5 0p) + 5@

nmi3 i3

This completes the proof of Lemma 3. O
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Remark 1. Let us now consider the term

®£,m;p,q = f nn;p,q f pq

in Lemma 3. The hidden ideal inside is that the Fourier coefficients fp q is approximated by fy m;pq which is the

function of the data set. So G)/;/m;p,q is a different between them; ®£,m;p,q also is called a residual. Naturally, it
must converge to zero as n, m tend to infinity.

We obtain the upper boundary of @){;m;p,q in the following Lemma:

Lemma 5. Suppose that f(-,-) € Sfﬁ, «,B > 1. Then there exists a constant C independent of n,m, p,q
such that

‘@nmpq’<c<1 +1>. (20)

n* - mb
Proof. From (14), the triangle inequality implies
[Ohnna| < [0

|+ (@l + e

mpq mp.q nnp.q

The first term is bounded by

d E
‘anq’ < <|f2kn+pq| + |f2kn pq|) Z ( an—l—p) qlg + (an—p)“qﬁ>

k=1
Z ( kn)*qb (knﬁ"qﬂ) - o

1 [ee)
= Z
and the second term is estimated as follows

m;p,q ,2lm-+q p2lm—q
©; |+ 1f |

| N

| A

>
i ( ZIfn+q)ﬁ i P“(Zlﬂf—q)ﬁ>
i ( p”‘(fm)ﬁ) - # i ZZE

Similarly, we also have

such that (20) is verified. O
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Lemma 6. Assume that f € C ([0, T];C}(Q))). Forp=1,...,n—landq=1,...,m — 1, we set

7.[ m n
Fnmipaq () 7122 xl,y], (qu(xuy])

with (x;,y;) € Qare grid points of Q). The Fourier coefficients f, 4(t) = (f(-,-,t), ¢pq) of the function f(x,y)
can be represented as

Fra(®) = Fumipa(t) = Ohmipq(t), (21)
where @J;,m;p,q(t) is
O g (1) = Ohip (1) + O (6) + O3 (1), (22)
and -
Ohpa(t) = LD (fpamsq(t) = Fram- (1),
Ohpa(t) = L (1) (fatspg () = fainpg(1))
and

O mipa (D) = 1 Y (D [ fatnspomsg(8) = Fakn s paim (1)
_kan—p,Zlm—l-q (t) + f2kn—p,21m—q(t)} .

Lemma 7 (Upper boundary of residual @J;,m;p,q(t)). Suppose that f(-,-,t) € Sflﬁfor allt € [0,T], &, > 1

andthatp =1,...,n—1,9=1,...,m—1. Let us recall that ®£,m;p’n(t) defined by (22). Then there exists a
generic constant C which is independent of n,m, p, q such that

]®£,m;p,q(t)‘ <c (1 + 1) . (23)

Lemma 8. For any integer N, M such that 0 < N < nand 0 < M < m, the solution u can be represented
as follows

N M sinh (t\/Ap,q)
u(x,y,t) cosh (ty/Apg) Sumpg + ———=—=—"Tnm;p,
Z_:E[ (\/ P‘i) P, e
tsinh (\/Apq(t—s))
+ 0 \/7 .Fn,m;p,q(S)dS—COSh (t\//\p )G)nmpq
smh( VA ) tsinh (\/Apq(t—s)) ¢
W nmpq /0 m ®nmpq( )dS (Pp,q(x;y)

+ (u - PSN,M”) (x,y,t).

Proof. According to Lemma 4, we can present the Fourier coefficients:

_ S
Spq = Snmpg — Onmp,qr

and

_ h
hp,q - hﬂ,m;r%q ®n m;p.q-
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In addition, Lemma 6 gives us

]'—pq(t> = }—n,m;p,q(t) - ®1J;L:m;p,q<t)'

Moreover, from (5), the projection of u into subspace Sy )1 can be written as

N M
PSN,Mu: Z Z PQ(PP’J X, y
p: :

where uy, is defined in (8). Substituting gy4, hpq and Fpy(t) into up,, and since u(x,y,t) =
PSN’Mu(x, yt)+ (u - PSN’Mu> (x,y,t), so the proof is completed. [J

4. The I11-Posedness of the Problem

Based on above fundamental, we can now consider the ill-posedness of our problem.
We investigate a model with concrete data and prove the instability of the solution in the case of
random noise data. We divide our task into two parts.

Part 1. Small change in the data: If 7 (x,y,t) =0, g(x,y) = 0, and h(x,y) = 0 then problem (1) has
the unique solution u(x,y, t) = 0. Let us take the following random observation data:

1 . 1 A 1
= —=0Bi(t), &j=——=0Cij hij= ——Nij

i=1,...,nj=1,...,m

ii

N (0 1) and xl] N(0,1). Next, we consider the mean

square error between g and its estimation, ¢ 7 M (see Lemma 9), which is characterized by E|| g,ﬂ\] M_

g||?. Firstly, the Paserval’s identity give us

where B;;(t) are Brownian motions, &;; ~

N M 2 n o m 2
||§111\]n11w 8”%2(0) = Z Z <nm 2 2 m@zﬂ’pq(%#ﬂ) . (24)
p: :

Secondly, since ¢;; ESBN (0,1), we have E¢;;¢;x = 0 for all i # [ or j # k. Hence, taking expectation
both sides of (24), we obtain

N M n
Ellgui’ = 8llizn) = 1 1 <n2m2 >y nmEé]qqu(xuy]))
p: :

i=1j=1
On the other hand E§ = 1and from (13) give us .- Y 4 ij 1 gopq(xl,y]) =. Thus
N M 2
AN, M 2 7’NM
]E”gnm gHLZ(Q pzlqzl 2m2  n2m?

Finally, if we set N =n —1and M = m — 1, then

2 (n—1)(m—1)

n—1,m—1 2 _ 1 —
wim Elgnm ™ = &lliz0) = Hm 2m? =0
Doing the same manner as above, we also have
2
fntme1_ g2 _ g m=1(m—=1)
Jm B i = i T <
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and

2 _ _
lim En}-rrzlmlm 1 }-H%2(0) — lim 7T t(Vl 1)(’” 1)

=00 n e nZm? =0

Part 2. Large change in the solution: We shall construct the solution of problem (1) with respect to
the random data. Noting that /"~ 1"~ is a trigonometric polynomial with order less than n (with
respect to the variable x) and less than m (with respect to the variable y). Using (31) with N =n — 1,

M = m — 1, and we have
— Lz inh (t\/Apg) ~
un 1,m— 1 x y, — Z Z [COSh (t / )gﬁ m]/pmq 1 + sin (A p,q) hz;nl,,prtzq_l
p=1g=1 P4

t sinh (\/Apq(t—s)) L1
- f” m d 7 4
+/0 \/m n,m;p,q () 5 (Pp,q(x ?/)

we deduce

inh (t\/A—1m-1) »
||un71,m71||%2(0) 2 lcosh (t\/m) n—1,m—1 +Sln ( /\” 1,m 1)hn71,m71

gn mn—1,m—1 \/ﬁ nmn—1,m—1
n—1,m—

2

t sinh (\/Ap 11 (t

+ [ = (V-1 S))f;jmlnmllm (s)ds| =t (K + Ko+ Ka)?.
0 \//\n—l,m—l

Since 2(a + b)? > a*> — 2b? for all a,b € R, we deduce

20U ) 2 2 (K + Ko+ Ka)?

> K3 —2(Ky+ Ks)?
> K2 — 4K3 — 4.

Therefore, we get the inequality expectation
2B (U2 ) = BT — 4EKS — 4EKS. (25)

Here, we need to estimate the terms ]EIC%, EK3 and EK3. By using the Parseval’s identity, we first

see that
K% = {cosh (t\/)\nfl,m71> S 1}2
2
= coshz (tg/)\n_llm_l) l:m i ﬁ \/i—mgijq)n—l,m—l(xi/ yj)‘| .

Since the noises ¢;; are mutually independent and identically distributed &;; N (0,1), we obtain

(Q’Uglk) =0foralli # ! orj # k. In addition, from (13) given that

i}i [nm% 1m— 1(x,,y])} -2

-
i=1 T
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Hence

1
[nmEéizjq)il,ml (xi, yj)}

Il
_
=

7.[4 5 n o m 1 )
= nzmz cosh (t An—l,m—l) ZE nimq)n—l,m—l(xi/]/j) (26)

2

T 2
= 2 cosh (tw/)ln—l,m—l) .

Next, we estimate EX3. Applying similar transform as in the previous step, we get

. 2
/C%:lsmh(t A”*mel)flnfl,mfl ]

\/m nmn—1,m—1
sinh (t An—1, _1) 2 noo1
—_ [ n—i,m 2 Z =

)\n—l,m—l nm i=1j=1

mXijGanl,mfl(xi/yj) ,

and we also have

72 sinh® (t/An—1,m—1) < 72 cosh? (t/Au—1m—1)

EK3 =
2 >
n2m? An—1,m—1 n2m? An—1m—1

(27)

Finally, the Parseval’s identity implies that

]Cz B l/t sinh (\/)\n—l,m—l(t — S)) ﬁg:nlif'}fl(s)ds
J0 v )\n—l,m—l Y

z2=
B tsinh(\/m(t_s)) q2omom ) o 2
B l/o VA tma 1.21]; MBZJ(”‘PMM/])(S)ds] :

and using the Holder’s inequality, we obtain

2
Slnh A1 m— 1(t—s)) 2 onm

© / / nm Bij(s)ppq(xi,y;) | ds

T l VAn—1m-1 nml;];m §(8)@pq(xi, yj)

72T sinh? (t/Ap_1mo1) [t OL 1 2
Snzmz Eo /o zxmgij(s)¢Pq(xi/yj) ds.

From the properties of Brownian motion, we known that E (Bi]-(s)l’j’lk(s)) =0foralli # [ orj# kand
E (Bzzj(s)) =5, thus

72T sinh? (Fv/Ay1m1) [t BT 1
E/C§§ ( n—1,m )/0 ZZ{WB%(S)(p%q(xi,yj)} ds

n2m? An—1,m-1

T3 cosh? (tv/An—1m-1)
=~ n?m? A—1,m-1 '

(28)
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Substituting (26)—(28) into (25), we have

2 2 2
w1 - ) 272 cosh® (£\/Ay_1m—1)
2|t 20y 2 22 Cosh (tm) - nZm? Ap—1,m-1

27 cosh® (/A 1m1)
n2m? An—1,m-1

7

and then

2 2 3
n—1,m—12 2 o 4 _ 4T
20U R 1200 Z cosh (8 An1.-1) {nzmz ey Sy W

As n,m tend to infinity, it shows that

lim B (|85 = gl + ™™ = 1220y + |1 B = Fl22()) =0,

n,m—o0

whereas

lim E[um1m=1 |

2 _
oo c(lo,T],L2(q)) — &

From the above proposition, we see that a small change in the data leads to a significant change in
the solution of the problem. Thus, we can conclude that the problem (1) is ill-posed in the Hadamard
sense. Hence, a regularization is in order.

5. Regularization and Error Estimate

5.1. Nonparametric Estimate for Functional Data

In this section, we consider a nonparametric regression model which are developed when the
predictor is a function valued random variable ﬁj; i=1,...,n,j=1,...m, based on a representation
of the unknown regression function f(x, y) by the model

fij = f(xi,y) + Xij,

where (x;,y;) are as in the introduction, X;; are independent and identically distributed random
variables with distribution N (0, 1). Our goal in this section is to find an estimated function for f(x,y)
from random data ﬁj at grid points (x;, ;).

The finite dimensional subspace Sy ;1,0 < N < 1,0 < M < n of L2(Q)) is closed [8] (page 362).
Moreover, the projection Theorem [9] (page 130) leads to the following Corollary.

Corollary 1. Let Sy p be a closed subspace of the Hilbert space L*(Q)). For each f € L?(Q) there is unique
closest function f,ﬁ\]mM € SN, such that

_ANM| L s _ )
If = fusm N2 gg;g}Mllf Zllp

In the statistic sense, the function f is unknown, we only know its observed values, fi]-, at discrete
points (x;, y;). The estimate function for f in subspace Sy, v is

il = arg gﬁgin Y ) (fz] - C(Xi,]/j)>2- (29)

EONM =1 j=1

The Lemma below gives us a result of the function fN'M = & which satisfies (29).
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Lemma 9. Problem (29) has a unique solution
AN,M -
wit = e X\ s Zfz]%, (xi,9)) | Ppa-
= =1 ]
Proof. Since ¢ € Sy 1, its Fourier expansion has a form

N M

y)= 2 Y Cpa@palxy),

p=1g9=1

then Equation (29) becomes
N M 2
s, mm Z Z fii = 2 X Gpappa(xiyy) | -
SNM = 1j= p=1g=1

Let the n x m variables function

n o m N M 2
E(C)—Taf—tm) = 21 ). ( Z Z Cpa®pa(Xi ) :
= : p: :

Here, our goal is to find & such that E(&,_1,,_
sufficient condition to get that point is

—-) has the minimum value. A necessary and

d n o m . N M
5 2 Tk-tm) = —2 1 Z fi— ¥ Y Eoapa(xiyy) | @uilxiy;) =0,
Lk i=1j=1 p=1g=1
foralll =1,...,N,k=1,..., M. Based on (13), we obtain
7'(2 n o m
Sk = p— Y Y f fii@re(xi,yj)-

i=1j=1
Hence, the estimate function for f is
N M g2 o
- p;q; <nmi_1]l§ ii9Ppa (XY ) Ppas
as desired. O

5.2. Regularized Solution

In reality, we only have n x m observation values (g;;, hl], Fij) of the functions (g, h, ) at grid
points (x;, y]-) instead of known (g, 11, F). Using Lemma 9, the estlmatlon of g, h, Fis

N.M( U 2 &
Som (xy) =Y Zgnmp,q(ppq x,y), where ¢N: m,pq - Y ) Givpq(xiy)),
p=1q=1 i—1j=1
AN,M N M ANM A,
hn,’m (x/y) = Z Z hn,;n;p,qqop,q(x/]/)/ where hnmp,q = % Z Zh]q)]ﬂq xlr]//
p=1g=1 i=1j=1
P ( FNM here FNM (1) = _ Py
x yt) = Z nm,pq (PPq(x y), where nmpq nm ZZ ijPpq xz/]/]>-
p=1g9=1 i=1j=1
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Choosing two integer numbers N, M in such a way that1 < N < n,1 < M < m, we will find a
solution UN'M of the problem on the subspace Sy y such that

UPM L uUNM UM = ENMxy, 8, (nyt) € Qx(0,T),
UNM(x,y,0) = Gun' (x,1), (xy) € Q (30)
UNM(x,y,0) = Il (xy), (xy) € 0O

Using Lemma 8, we deduce that the system (30) has a unique solution

N M sinh (ty/A, 4)
UN’M (x,y,t) Z Z lcosh (t./ )gﬁ’%q + (qup'q) hnN,;%p,q

p=lgq=1

tSinh(m(t_s)) N,M
Jr/o VA ]:nmpq( s)ds | @pq(x,y).

(31)

5.3. Convergence Estimate

The main result in this section is to study the convergence rate of the estimator. We recall the
regularized solution of the problem (1) as shown above:

N M sinh (¢
) = 3 e (/) i+ )

p=14=1 )\Prq

tsinh (y/Ap,q(t—s)
+/0 ( i )fzi\]ml\/;q( )dS qu,q(X,y),

(32)

A p4a

which is constructed from the observation data §i,]-,fzi ],}'l j at grid points (xl-,yj), i=1,...,nm
j=1,...,mof unknown functions g, i1, 7, respectively. The theorem below will show that a suitable
choosing regularization parameter is necessary.

Theorem 1 (Convergence estimate for the regularized solution). Let E > 0a, > 1,0 < N < n,
0<M<mandg e C Q) NS (Q), heCHQ) NS 4(Q), F € C([0, T CHA) NS 4(€V)). Assume

that problem (1) has unique solution u € C ([0, T]; L*(Q2)) N C ([0, T); Sfﬁ(Q)) For n,m large enough,

1 1\? _ 1
(n”‘ + mﬂ) < p— (33)
there is a constant ¥ such that
1 2\ /A on —
E[uN-M — “||2C([0,T],-L2(o)) <Y NMe WANM 4 3p=20g=2PE, (34)

Remark 2. Let us consider the equality e*V NiwtMim = pomb, 0 < a,b < 1. By choosing the integer
number Ny m = My, such that

Nuym = Mym = {2\[ In (n“mb)J ,

where | x| is integer number which is a truncation of a real number x. The mean squared error, I ||TNnmMum —
u|\%2(0) is of order n® " 'mbP=1,
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Proof. We have

N M

Z/{NM —Uu = Z Z cosh (t )tp,q) (gf;{"ﬁw gnmpq) q)]ﬂ,q(x ]/)
p=1g=1
N M sinh (t,/A -

s Zsm (A pa) ( rI:]n]quq—hnmw) Ppa(x,y)
p=1g=1 I
N M1 et sinh (/A (t—3)) /.4

+ Z Z |:/0 (\/? ) (Fé\]m]v;q(s) ]—'nmpq(s)) dS] qopq(X,y)
p=1g=1 pAa
N M N M sinh (t,/Ap,)

— cosh (t/Apg) ©F g @pa(x,y) — P @) Ppaq(x,y)
p;q; ( pq) paPra p;m; e nm;pq Ppa
N M t sinh (y/Ap,q(t—9)

-y Y (/ ( ;q )@)fmpq(s)dS) Ppqa(x,y)
p=1g=1 0 1

- (M - PSN,MM) (X,y,i’) =Y1+Yo+Y3—-Ys—Y5—Ys— Y7

Here, we find the upper bounds for EYy, EY;, EY3 and Y4 to Y7 by six steps below. We first proceed
to step 1.

Step 1. Estimate E||Y; || Usmg the fact that
N M "
Y = Z Z cosh (t Ap, q) (gnmpq gn,m;p,q) Ppaq(x,y)
p=1g=1
N M 7_[2 n.om
= Z Z COSh( Ap ) (nm Z Z [gzj xz,yj)] (p(xi/yj)> Ppq(x,y)
i=1j=1

N

L X cosh (12
Lt

the Parseval’s identity implies that

M:
Ms

Ozjﬁijqo(xi/yj)) Ppa(x,y),

I
-
I
—

j

i=1j=1

N M , v om 2
’Y1HL2(Q Z Z cosh (t AP@)( ZZ 1]61]4) xu]/;) .

Since the noises ¢;; are mutually independent and identically distributed &;; N (0,1), we obtain

E (&;;&ix) = 0 foralli # [ or j # k. Hence

E|Yi /220 pﬁl%coshz(ﬁ ) (nz ZZZ xz,y»)

g=1 i=1j=1

In addition, we also have

n m 1 1
Y [W¢il,ml(xi/yj):| =—
j=1

~ 2’
i=17=

and < ij < Vo,max- Thus

E[[ Y112 <v3maxn zzcosh (ty/Ap0) < - mxzzeﬂ

p=1g4=1 p=1q=1 (35)

72

0' max
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Step 2. Estimate E[|Y; |7, Applymg a similar manner as in Step 1, we have
N M sinh (t\/Apg)
Yo = hNM — hmipg ) Ppg(x,y)

S
N M sinh (t\/Ap,) (712 noam

= e hij = h(xi,y;) | 9(xi,yj) | @pa(x,y)
p;q; pp p— ZZ%jZ%[ ij irYj } inYj) | Ppa
N M sinh (t\/Ay, 2

=Y X (/\ ra) (nm Z Zvl}Xllq)(x“y])> Ppa(x,Y),
p=1q=1 P4 i=1j=1

and the Parseval’s identity give us

N M sinh? (t,/A z
HYZH%Z(Q) = Zl 21<Prq) ( Z sz]XZ]q) XirYj ) .
p=14=

Ap,q i=1j=1

Because of mutually independent and identically properties of normal distribution, we have

N M ginh? (\//\
p=1q= ' i=1j=
N M ginh? (t,/A i
S lel /gpq qu) <n2m2 vmalezq) xlly] >
p=1q= ' i=1]
(36)
72 N M ginh? (t,/A ] N M 62t\//\NM
SngaxizZ /E Pﬂ) vmaxzz
nm p=1g=1 ] p=1g=1
2 Zt,//\N,M
< T y2  NmE .
' M1
Step 3. Estimate E||Y3|| :
N M tsmh((t—s) Apa) [ &
Y5 = / PAL (XM~ Fumipa) 9pa(%)
N M t sinh (( S) A ) (7_[2 n o m
P4 7
= — Fij = F(xi,yj,t) (p(xvy')> Ppa(X,y)
N M Cginh (t—s)/A 2 o
- Z Z/ ( . p,q) (mZZTBij(t)(p(xi,yj)> Ppq(x,Y).
p=1q=1y P4 i=1j=1

From the Parseval’s identity, we obtain

N M £ in —5 n o m 2
|Y3H Z Z [/s h((t APL\/T) (ﬁzerij(t)(p(x,‘,ij dS] ,

p=1g=1 0
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and using the Holder’s inequality, we get

N M tsi 2 _ 2 n om 2
DARNED 3 o B e (”22r6ij<t>¢<xi,yj>) ds
0 0 ’

2
N M 2/ Avm | t 2o m
< Z Z 1 /dS/ — Z ZTBl](t)q’(xu]/]) ds
p=1q=1 119 4 nm =
2
N M €2t\/m t 7-[2 n o m
=Ll T/ — )Y Bi(t)e(xiy;) | ds
p=1g=1 11 g \nm 55

From the properties of Brownian motion, we know that E (Bij(s)B,k(s)) =O0foralli #lorj# kand
E (Blzj(s)) = s. Hence

N M ZtW/ANM 4 n m
e , 7T
Y YT Y Y P (y)ds (37)
11— 1,1 n<m —_—
p=1g=1 ’ 0 i=1j=1
2t /AN M £ eZt\/ ANM

Step 4. Estimate ||Y4||%2 Q) and || Y5||? 12(00)" The Parseval’s identity implies that

NalBay = 3 3 cosh? (1y/4p) (O%5)’

p=14q=1

Moreover, Lemma 5 also give us the upper bound. We deduce
Yooy <€ (2 4 1) Ny 38
H 4||L2(Q) = ﬁ + W e . (38)

By a similar transform, as above, we get

N M sinh? (t,/A 2
||Y5||i2(0) =2 ) M (@)Z,m;rw)
(39)

Step 5. Estimate || Y, || q)- Applying the Parseval’s identity, we have

2
N M tsmh —s) A
Ye6llZ200) = D 2 [/ pq)@,fm;p,q(s)ds ,
0

p:l q:] p/q
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and using the Holder’s inequality, we have

Y6172 < i ﬁ /ds/sinhz ((t=5)\/Apq) (@)fmpq( )>2ds.
0 0

p=1g=1 /\P/q

The Lemma 7 give us the upper bound of ‘@n mipq(5) ‘ Hence

eZt AN,M

A

11
2 2 2
Ysll720) <€ < + mﬁ> T2NM

Step 6. Estimate ||Y7||%2(Q):

[e9)

N 00
Y720y = X Z (,0pa)® + 1 Z”(PM + Z Z (1, pg)?

p=1g=M+ p=N+1g=1 p=N+1g=M+1
<3p~ q_25E.

If the condition (33) holds, then by combining six steps above, we obtain

1 s Y
E|juNM — u”%([O,T];LZ(Q)) SY%NMEB ANy 3p= 2P,
where
2 V2 T3 T c? C2T12
"P: 2V2 v,max Cz ha
7o max A1 * A * +/\11 * A1

This completes the proof. [
6. Numerical Example

6.1. The Ill-Posedness of the Problem

17 of 20

(40)

(41)

In this subsection, we implement the numerical experiment to illustrate the ill-posedness of
the problem which presented in Section 4. For convenience, let us assign the change in the data

as following

D(t) == E (I gh" — 8l + 1A = B2 0 + 101 = Fl22(qy))

the change in the solution
S(t) = EUNM(, 1) —u(, 17

In this situation, wesett =1/4, N =n —1, M = m — 1 and n = m. Observation value of F, g, h

follow the random models, see Figure 1,

NN 1 S

Bij(t), &ij= G i = i

i=1,...,mj=1,...
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Figure b

Figure 1. The exact data g(x,y) = h(x,y) = F(x,y,t) and their observation value at time t = 1/4.

The value of D(t) and S(t) are given in Table 1. Through this result, we clearly see that the smaller
D(1/4), the larger S(1/4) will be, when n = m increases from 5 to 50.

Table 1. A small change in the data result in a large change in the solution.

n=m=5 n=m=10 n=m=20 n=m =50

D(1/4) 0.5685 0.1799 0.0501 0.0085
S(1/4) 0.5800 1.7333 x 10> 1.9078 x 1010  1.7587 x 103

6.2. Convergence Behavior of the Reqularized Solution

In this section, we present an example in order to illustrate the efficiency of the proposed methods.
We consider following Cauchy problem:

Upy +txy +uyy = F(x,y,t), (x,y,t) € Qx(0,1),
u(x,y,0) = gxy), (xvy) € Q
ur(x,y,0) = h(xy), (vy) € Q
where F(x,y,t) = —2tsinxsiny, ¢(x,y) = 0 and h(x,y) = sinxsiny. This system has the exact

solution u(x,y,t) = tsinxsiny.
The observation data at grid points (x;,y;) = (7‘[25;1,77%» i=1...,mj=1,...,mof

functions F, h, g are

Fj(t) = Flxi,yj ) +aBy(t), a=1and By(t) % N(0,1),

N .. ddd
gij = g(xi,yj) + cT,-]-CZ-,]-, 0'1']' =0.1and CZ] T N(O,l),
~ j.i.d
hij = h(x;,y;) + vijxij, vij=0.1and x; ~ N(0,1),

foralli=1,...,n;j =1,...,m. For fixed t, the matrix form of the regularized solution will be

uN,M(xlrylrt) uN,M(xlrer t) o uN’M(xllymr t)

NM _ UNM(xp,y1,t) UNM(xp,y0,t) -+ UNM(xp,ym, t)

Z/{N,M(xn/ ]/1/ t) Z/{N,M(xn/ ]/2/ t) e Z/{N,M (xi’l/ ]/m/ t)
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the elements of /N'M are computed as
N M sinh (t A ) A
UNM (i, y,t) = Y ) [cosh (£y/Apa) &t g + —— LD
1 Jjs pa ) Snmp, nnp,
Pl pA Ra pA

tsinh (gt =5)) 2w
' FNM (s)d AN
Jr/o \/m "/mrprq@) 5 4’19»7(351 y])

The errors are esimated by

i=1j=1

1 n m
ErrnN,;’ﬁA(t) = \l o 2 Z [UNM (x;, yj,t) — u(xi,}/j,t)]z-

Exact solution Regularized solution

o
o)

e

'3

E 0.6 % 0.6
\;i 0.4 %
g 02 Y il -
2 //// ; WA NN 2
B AN NN 5
oL &
2
ll/ll'z’;g:“:‘:s:\\\“‘ 2

y 0 0 z

Figure 2. 3D graphs of exact solution at time t = 1/4, and the regularized solution for the regularization
parameters of N = M = 3 and n = m = 1000.

In this numerical example, we keep the fixed value of regularization parameters with N = M = 3.
We carried out the numerical calculations for two cases with different observation points; the first one
for n = m = 500, and another one for n = m = 1000. From Table 2, it shows that the error is reduced
once the spatial observation points are increased; on the other hand the convergence rate has been
increased once time t tends to 0. This reflects the behavior of the rate of convergence in Theorem 1.
For a more intuitive look, in Figure 2, we show the 3D graphs of the exact solution and regularized
solution at t = 1/4, where we chose N = M = 3 and n = m = 1000.

Table 2. Numerical errors

Erri M (1) t=1/4 t=1/2 t=3/4 t=1

n=m=>500 792x10% 151x10"3 3.60x 1073 1.27 x 1072
n=m=1000 491x107*% 775x107% 150x 1073 3.31x 1073

7. Conclusions

In this work, we considered the problem of finding the solution for the 2-D inhomogeneous
elliptic equation with initial data and source pertubed by random noise. We first estimate the initial
functions and source function using the nonparametric least square regression method in statistic
manner. Then we approximated Fourier coefficients f, 4 by fu m;p,q which is the function of the data
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set. This problem is ill-posed, hence a regularization is needed. Eventually, we have carried out the
numerical example, and validated the regularized solution against the exact solution, it shows the
numerical errors have been reduced once the number of spatial observation points is increased; on the
other hand the convergence rate is increased once t tends to zero.
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