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Abstract: This article is to study a three-point boundary value problem of Hadamard fractional
p-Laplacian differential equation. When our nonlinearity grows (p − 1)-superlinearly and
(p− 1)-sublinearly, the existence of positive solutions is obtained via fixed point index. Moreover,
using an increasing operator fixed-point theorem, the uniqueness of positive solutions and uniform
convergence sequences are also established.
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1. Introduction

In this paper, we study the existence and uniqueness of positive solutions for the Hadamard
fractional p-Laplacian three-point boundary value problem{

Dα(ϕp(Dβu(t))) = f (t, u(t)), t ∈ (1, e),

Dβu(1) = Dβu(e) = 0, u(1) = u′(1) = 0, u(e) = au(ξ),
(1)

where α ∈ (1, 2], β ∈ (2, 3], and Dα, Dβ are respectively the Hadamard fractional derivatives of
orders α, β; ξ ∈ (1, e), and a ≥ 0 with a(log ξ)β−1 ∈ [0, 1); note ϕp(s) = |s|p−2s is the p-Laplacian for
p > 1, s ∈ R.

Arafa et al. [1] introduced a fractional-order HIV-1 infection of CD4+T cells dynamics model and
then used the generalised Euler method to find a numerical solution of the HIV-1 infection fractional
order model: the model is 

Dα1(T) = s− KVT − dT + bI,

Dα2(I) = KVT − (b + δ)I,

Dα3(V) = NδI − cV,

where Dαi (i = 1, 2, 3) are fractional-order derivatives. Nonlinear analysis methods (such as
fixed-point theorems, Leray–Schauder alternative, subsolution and supersolution methods and
iterative techniques) are used to study various kinds of fractional-order equations (most of these
results involve the Riemann–Liouville and Caputo-type fractional derivatives); see [2–52] and the
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references therein. In [2], the authors used a double iterative technique to study the unique solution of
the p-Laplacian fractional boundary value problem{

−Dα
x(ϕp(−Dγ

x z))(x) = f (x, z(x)), 0 < x < 1,

z(0) = 0, Dγ
x z(0) = Dγ

x z(1) = 0, z(1) =
∫ 1

0 z(x)dχ(x),
(2)

where Dα
x , Dγ

x are the standard Riemann–Liouville derivatives. For the unique solution, they constructed
uniform converged sequences, and provided estimates on the error and the convergence rate. In [3],
the authors adopted some fixed-point theorems on cones to study the unique solution for the fractional
p-Laplacian boundary value problem{

Dβ
0+ϕp(Dα

0+u(t)) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = Dα
0+u(0) = 0,

(3)

where Dα
0+, Dβ

0+ are the Caputo fractional derivatives and they presented iterative schemes for the
unique solution when f doesn’t satisfy a Lipschitz condition. When nonlinearities satisfy a Lipschitz
condition, we refer the reader to [4–9]. For example, the authors in [4] used Banach’s contraction
mapping principle to study the unique solution for the fractional Dirichlet boundary value problem{

Dα
0+u(t) + f (t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(4)

where Dα
0+ denotes the Riemann–Liouville fractional derivative. Positive solutions [16–35] and

nontrivial solutions [36–52] were also studied for fractional-order equations. For example, the authors
in [16] used the Guo–Krasnoselskii’s fixed-point theorem and the Leggett–Williams fixed-point theorem
to study the existence and multiplicity of positive solutions for the fractional boundary-value problem{

Dα(ϕp(Dαu(t))) = f (t, u(t)), t ∈ [0, 1]T ,

u(0) = u(σ(1)) = Dαu(0) = Dαu(σ(1)) = 0,
(5)

where Dα is the conformable fractional derivative on time scales. In [17], the authors studied positive
solutions for the fractional system

Dβ1
0+(ϕp(Dα1

0+u(t))) + λ1 f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

Dβ2
0+(ϕp(Dα2

0+u(t))) + λ2 f2(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, ϕp(Dα1
0+u(0)) = (ϕp(Dα1

0+u(1)))′ = 0,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, ϕp(Dα2
0+v(0)) = (ϕp(Dα2

0+v(1)))′ = 0,

u(1) = µ1
∫ 1

0 g1(s)v(s)dA1(s), v(1) = µ2
∫ 1

0 g2(s)u(s)dA2(s)

(6)

and obtained existence and nonexistence of positive solutions, and considered the impact of
parameters on solutions. In [36], the authors used the Kuratowski noncompactness measure and
the Sadovskii fixed-point theorem to study the impulsive fractional differential equations with the
p-Laplacian operator

Dβ
0+(ϕp(Dα

0+x))(t) = f (t, x(t), x′(t)), t ∈ (0, 1),

∆x(t)|t=tk = Ik(x(tk)), ∆x′(t)|t=tk = Jk(x(tk)),

Dα
0+x(0) = 0, x(0) = x′(0) =

∫ 1
0 a1(x(s))ds, x(1) = x′(1) =

∫ 1
0 a2(x(s))ds.

(7)
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Hadamard fractional-order problems were briefly discussed in the literature; see [53–72] and the
references therein. Yang in [53] used the comparison principle and the monotone iterative technique
combined with the subsolution and supersolution method to study the existence of extremal solutions
for Hadamard fractional differential equations with Cauchy initial value conditions{

(Dα
a+x)(t) = f (t, x(t), y(t)), (J1−α

a+ x)(a+) = x∗0 , α ∈ (0, 1], t ∈ (a, b],

(Dα
a+y)(t) = g(t, x(t), y(t)), (J1−α

a+ y)(a+) = y∗0 , α ∈ (0, 1], t ∈ (a, b],
(8)

where Dα
a+, Jα

a+ are the left-sided Hadamard fractional derivative and integral of order α, respectively.
In [54], the authors used fixed point methods to study the existence of positive solutions for Hadamard
fractional integral boundary value problems{

Dβ(ϕp(Dαu(t))) = f (t, u(t)), t ∈ (1, e),

u(1) = Dαu(1) = u′(1) = u′(e) = 0, ϕp(Dαu(e)) = µ
∫ e

1 ϕp(Dαu(t)) dt
t .

(9)

In this paper, we study the existence of positive solutions for the Hadamard fractional p-Laplacian
three-point boundary value problem (1). Note: (i) we establish some relations from the corresponding
problem without the p-Laplacian operator, and use some (p− 1)-superlinearly and (p− 1)-sublinearly
conditions for the nonlinearity to obtain positive solutions for (1); (ii) using an increasing operator
fixed-point theorem, we obtain the unique solution for (1), and establish uniformconverged sequences
for this solution.

2. Preliminaries

In this paper, we only provide the definition for the Hadamard fractional derivative; for more
details about Hadamard fractional calculus, see the book [73].

Definition 1. The Hadamard derivative of fractional order q for a function g : [1, ∞)→ R is defined as

Dqg(t) =
1

Γ(n− q)

(
t

d
dt

)n ∫ t

1
(log t− log s)n−q−1 g(s)

ds
s

, n− 1 < q < n,

where n = [q] + 1, [q] denotes the integer part of the real number q and log(·) = loge(·).

In what follows, we calculate the Green’s functions associated with (1). We let ϕp(Dβu(t)) = −v(t)
for t ∈ [1, e]. Then, from (1) we obtain{

−Dαv(t) = f (t, u(t)), t ∈ (1, e),

v(1) = v(e) = 0.
(10)

Lemma 1. The boundary value problem (10) takes the form

v(t) =
∫ e

1
Gα(t, s) f (s, u(s))

ds
s

, (11)

where

Gα(t, s) =
1

Γ(α)

{
(log t)α−1(1− log s)α−1 − (log t− log s)α−1, 1 ≤ s ≤ t ≤ e,

(log t)α−1(1− log s)α−1, 1 ≤ t ≤ s ≤ e.

Proof. We use ideas in Lemma 2 of [59]. For some ci ∈ R(i = 1, 2), we have

v(t) = c1(log t)α−1 + c2(log t)α−2 − 1
Γ(α)

∫ t

1
(log t− log s)α−1 f (s, u(s))

ds
s

.
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From the condition v(1) = 0, we have c2 = 0. Hence,

v(t) = c1(log t)α−1 − 1
Γ(α)

∫ t

1
(log t− log s)α−1 f (s, u(s))

ds
s

.

Substituting e into the above equation, and using u(e) = 0, we obtain

v(e) = c1 −
1

Γ(α)

∫ e

1
(1− log s)α−1 f (s, u(s))

ds
s

= 0.

Then,

c1 =
1

Γ(α)

∫ e

1
(1− log s)α−1 f (s, u(s))

ds
s

= 0.

Consequently, we have

v(t) =
1

Γ(α)

∫ e

1
(log t)α−1(1− log s)α−1 f (s, u(s))

ds
s
− 1

Γ(α)

∫ t

1
(log t− log s)α−1 f (s, u(s))

ds
s

=
∫ e

1
Gα(t, s) f (s, u(s))

ds
s

.

This completes the proof.

Note that ϕp(Dβu(t)) = −v(t). Then, ϕp(−Dβu(t)) = v(t) and −Dβu(t) = ϕq(v(t)), where q is
a constant with q−1 + p−1 = 1. Then, from (1), we have{

−Dβu(t) = ϕq(v(t)), t ∈ (1, e),

u(1) = u′(1) = 0, u(e) = au(ξ).
(12)

Lemma 2. The boundary value problem (12) is equivalent to the integral equation

u(t) =
∫ e

1
Gβ(t, s)ϕq (v(s))

ds
s

, (13)

where

G1β(t, s) =
1

Γ(β)

{
(log t)β−1(1− log s)β−1 − (log t− log s)β−1, 1 ≤ s ≤ t ≤ e,

(log t)β−1(1− log s)β−1, 1 ≤ t ≤ s ≤ e,

Gβ(t, s) = G1β(t, s) +
a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
G1β(ξ, s).

(14)

Proof. We follow the ideas in Lemma 1. For some ci ∈ R(i = 1, 2, 3), we have

u(t) = c1(log t)β−1 + c2(log t)β−2 + c3(log t)β−3 − 1
Γ(β)

∫ t

1
(log t− log s)β−1 ϕq (v(s))

ds
s

.

Then, u(1) = u′(1) = 0 implies c2 = c3 = 0. Consequently, we have

u(t) = c1(log t)β−1 − 1
Γ(β)

∫ t

1
(log t− log s)β−1 ϕq (v(s))

ds
s

.

Substituting e, ξ into the above equation, and using u(e) = au(ξ), we obtain

c1 −
1

Γ(β)

∫ e

1
(1− log s)β−1 ϕq (v(s))

ds
s

= ac1(log ξ)β−1 − a
Γ(β)

∫ ξ

1
(log ξ − log s)β−1 ϕq (v(s))

ds
s

.

Solving this equation, we have
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c1 =
1

(1− a(log ξ)β−1)Γ(β)

∫ e

1
(1− log s)β−1 ϕq (v(s))

ds
s
− a

(1− a(log ξ)β−1)Γ(β)

∫ ξ

1

(log ξ − log s)β−1 ϕq (v(s))
ds
s

.

As a result, we obtain

u(t) =
(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ e

1
(1− log s)β−1 ϕq (v(s))

ds
s
− a(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ ξ

1

(log ξ − log s)β−1 ϕq (v(s))
ds
s
− 1

Γ(β)

∫ t

1
(log t− log s)β−1 ϕq (v(s))

ds
s

=
(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ e

1
(1− log s)β−1 ϕq (v(s))

ds
s
− a(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ ξ

1

(log ξ − log s)β−1 ϕq (v(s))
ds
s
− 1

Γ(β)

∫ t

1
(log t− log s)β−1 ϕq (v(s))

ds
s
+

1
Γ(β)

∫ e

1
(log t)β−1

(1− log s)β−1 ϕq (v(s))
ds
s
− 1

Γ(β)

∫ e

1
(log t)β−1(1− log s)β−1 ϕq (v(s))

ds
s

=
∫ e

1
G1β(t, s)ϕq (v(s))

ds
s
+

a(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ e

1
(log ξ)β−1(1− log s)β−1 ϕq (v(s))

ds
s

− a(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ ξ

1
(log ξ − log s)β−1 ϕq (v(s))

ds
s

=
∫ e

1
G1β(t, s)ϕq (v(s))

ds
s
+

a(log t)β−1

(1− a(log ξ)β−1)Γ(β)

∫ e

1
G1β(ξ, s)ϕq (v(s))

ds
s

=
∫ e

1
Gβ(t, s)ϕq (v(s))

ds
s

.

This completes the proof.

Note v(t) =
∫ e

1 Gα(t, s) f (s, u(s)) ds
s , t ∈ [1, e], and we have that (1) is equivalent to the

Hammerstein type integral equation

u(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

. (15)

Let E := C[1, e], ‖u‖ := maxt∈[1,e] |u(t)|, P := {u ∈ E : u(t) ≥ 0, ∀t ∈ [1, e]}. Then, (E, ‖ · ‖) is a
real Banach space and P a cone on E. From (15), we define an operator A : E→ E as follows:

(Au)(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

, u ∈ E. (16)

Note that our functions Gα, Gβ, f are continuous, so the operator A is a completely continuous
operator. Moreover, if there is a u ∈ E is a fixed point of A, then from Lemmas 1–2, we have that u
is a solution for (1). Therefore, in what follows, we turn to study the existence of fixed points of the
operator A.

Lemma 3 (see [21] (Lemma 3.2). Let β ∈ (n− 1, n], and n ≥ 3. Then, the function G has the properties:
(R1) G(t, s) = G(1− s, 1− t), for t, s ∈ [0, 1],
(R2) tβ−1(1− t)s(1− s)β−1 ≤ Γ(β)G(t, s) ≤ (β− 1)s(1− s)β−1, for t, s ∈ [0, 1],
(R3) tβ−1(1− t)s(1− s)β−1 ≤ Γ(β)G(t, s) ≤ (β− 1)tβ−1(1− t), for t, s ∈ [0, 1], where

G(t, s) =
1

Γ(β)

{
tβ−1(1− s)β−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,

tβ−1(1− s)β−1, 0 ≤ t ≤ s ≤ 1.
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Lemma 4. Let φ(t) = (log t)β−1(1−log t)
Γ(β)

, η(s) = log s(1−log s)β−1

Γ(β)
, for t, s ∈ [1, e]. Then, the functions Gα, Gβ

have the properties:
(I1) Gα ∈ C([1, e]× [1, e],R+) and Γ(α)Gα(t, s) ≤ 1, for t, s ∈ [1, e],

(I2) φ(t)η(s) (1−a(log ξ)β−1+aφ(ξ))Γ(β)

1−a(log ξ)β−1 ≤ Gβ(t, s) ≤ (a+(1−a(log ξ)β−1)Γ(β))(β−1)
(1−a(log ξ)β−1)Γ(β)

η(s), for t, s ∈ [1, e],

(I3) Gβ(t, s) ≤ (1−a(log ξ)β−1+aφ(ξ))(β−1)(log t)β−1

(1−a(log ξ)β−1)Γ(β)
, for t, s ∈ [1, e].

Proof. From the definition of Gα, we easily have (I1). From Lemma 3, in G(t, s), using log t, log s to
replace t, s, we have

Γ(β)φ(t)η(s) ≤ G1β(t, s) ≤ (β− 1)η(s), for t, s ∈ [1, e], (17)

and
G1β(t, s) ≤ (β− 1)φ(t), for t, s ∈ [1, e]. (18)

Consequently, from (17), we have

Gβ(t, s) = G1β(t, s) +
a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
G1β(ξ, s)

≤ (β− 1)η(s) +
a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
(β− 1)η(s)

=
(a + (1− a(log ξ)β−1)Γ(β))(β− 1)

(1− a(log ξ)β−1)Γ(β)
η(s), for t, s ∈ [1, e],

and

Gβ(t, s) = G1β(t, s) +
a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
G1β(ξ, s)

≥ Γ(β)φ(t)η(s) +
a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
Γ(β)φ(ξ)η(s)

≥ Γ(β)φ(t)η(s) +
a(log t)β−1(1− log t)
(1− a(log ξ)β−1)Γ(β)

Γ(β)φ(ξ)η(s)

= Γ(β)φ(t)η(s) +
a

1− a(log ξ)β−1 Γ(β)φ(t)φ(ξ)η(s)

= Γ(β)φ(t)η(s)
1− a(log ξ)β−1 + aφ(ξ)

1− a(log ξ)β−1 , for t, s ∈ [1, e].

This implies that (I2) holds. Finally, from (18), we obtain

Gβ(t, s) = G1β(t, s) +
a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
G1β(ξ, s)

≤ (β− 1)
(log t)β−1(1− log t)

Γ(β)
+

a(log t)β−1

(1− a(log ξ)β−1)Γ(β)
(β− 1)φ(ξ)

≤ (β− 1)(log t)β−1

Γ(β)

(
1 +

aφ(ξ)

1− a(log ξ)β−1

)
=

(1− a(log ξ)β−1 + aφ(ξ))(β− 1)(log t)β−1

(1− a(log ξ)β−1)Γ(β)
, for t, s ∈ [1, e].

Thus, (I3) holds. This completes the proof.
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For convenience, we define three positive constants

κ1 =
(1− a(log ξ)β−1 + aφ(ξ))Γ(β)

1− a(log ξ)β−1 , κ2 =
(a + (1− a(log ξ)β−1)Γ(β))(β− 1)

(1− a(log ξ)β−1)Γ(β)
,

κ3 =
(1− a(log ξ)β−1 + aφ(ξ))(β− 1)

(1− a(log ξ)β−1)Γ(β)
.

Lemma 5. Let z ∈ P and µ(τ) =
∫ e

1 η(s)Gα(s, τ) ds
s , for τ ∈ [1, e]. Then, we have the following two

integral inequalities∫ e

1
Gβ(t, s)

∫ e

1
Gα(s, τ)z(τ)

dτ

τ

ds
s
≥ κ1φ(t)

∫ e

1
z(τ)µ(τ)

dτ

τ
, for t ∈ [1, e], (19)

and ∫ e

1
Gβ(t, s)

∫ e

1
Gα(s, τ)z(τ)

dτ

τ

ds
s
≤ κ2

∫ e

1
z(τ)µ(τ)

dτ

τ
, for t ∈ [1, e]. (20)

This is a direct result from Lemma 4(I2), so we omit the details.

Lemma 6 (see [74] (Lemma 2.6)). Let θ > 0 and ϕ ∈ P. Then,(∫ 1

0
ϕ(t)dt

)θ

≤
∫ 1

0
ϕθ(t)dt, if θ ≥ 1, and

(∫ 1

0
ϕ(t)dt

)θ

≥
∫ 1

0
ϕθ(t)dt, if 0 < θ ≤ 1.

Lemma 7 (see [75]). Let E be a real Banach space and P a cone on E. Suppose that Ω ⊂ E is a bounded open
set and that A : Ω ∩ P→ P is a continuous compact operator. If there exists a ω0 ∈ P\{0} such that

ω− Aω 6= λω0, ∀λ ≥ 0, ω ∈ ∂Ω ∩ P,

then i(A, Ω ∩ P, P) = 0, where i denotes the fixed point index on P.

Lemma 8 (see [75]). Let E be a real Banach space and P a cone on E. Suppose that Ω ⊂ E is a bounded open
set with 0 ∈ Ω and that A : Ω ∩ P→ P is a continuous compact operator. If

ω− λAω 6= 0, ∀λ ∈ [0, 1], ω ∈ ∂Ω ∩ P,

then i(A, Ω ∩ P, P) = 1.

Lemma 9 (see [75]). Let E be a partially ordered Banach space, and x0, y0 ∈ E with x0 ≤ y0, D = [x0, y0].
Suppose that A : D → E satisfies the following conditions:

(i) A is an increasing operator;
(ii) x0 ≤ Ax0, y0 ≥ Ay0, i.e., x0 and y0 is a subsolution and a supersolution of A;
(iii) A is a completely continuous operator.
Then, A has the smallest fixed point x∗ and the largest fixed point y∗ in [x0, y0], respectively. Moreover,

x∗ = limn→∞ Anx0 and y∗ = limn→∞ Any0.

3. Positive Solutions for (1)

For convenience, let

κ3 = κ1

∫ e

1
µ(t)φ(t)

dt
t

, κ4 = κ2

∫ e

1
µ(t)

dt
t

.

First, we list assumptions for our nonlinearity f :
(H1) f ∈ C([0, 1]×R+,R+),
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(H2) there exist c1 > 0, a1 >

{
κ

1−p
3 , 1 < p ≤ 2,

κ
1−p
3 Γ2−p(α), p ≥ 2,

such that

f (t, z) ≥ a1zp−1 − c1, ∀(t, z) ∈ [1, e]×R+,

(H3) there exist r1 > 0, a2 ∈
{
(0, κ

1−p
4 Γ2−p(α)), 1 < p ≤ 2,

(0, κ−1
4 κ

2−p
3 ), p ≥ 2,

such that

f (t, z) ≤ a2zp−1, ∀(t, z) ∈ [1, e]× [0, r1],

(H4) there exist r2 > 0, a3 >

{
κ

1−p
3 , 1 < p ≤ 2,

κ
1−p
3 Γ2−p(α), p ≥ 2,

such that

f (t, z) ≥ a3zp−1, ∀(t, z) ∈ [1, e]× [0, r2],

(H5) there exist c2 > 0, a4 ∈
{
(0, κ

1−p
4 2p−2Γ2−p(α)), 1 < p ≤ 2,

(0, κ−1
4 κ

2−p
3 ), p ≥ 2,

such that

f (t, z) ≤ a4zp−1 + c2, ∀(t, z) ∈ [1, e]×R+,

(H6) there exists k ∈ (0, 1) such that f (t, λu) ≥ λk(p−1) f (t, u), ∀λ ∈ [0, 1], t ∈ [1, e].
(H7) f (t, u) is increasing with respect to u, i.e., f (t, u1) ≤ f (t, u2) if u1 ≤ u2, and f (t, 0) 6≡ 0,

∀t ∈ [1, e].
Let

P0 =

{
z ∈ P : z(t) ≥ (1− a(log ξ)β−1 + aφ(ξ))Γ2(β)

(a + (1− a(log ξ)β−1)Γ(β))(β− 1)
φ(t)‖z‖, ∀t ∈ [1, e]

}
=

{
z ∈ P : z(t) ≥ κ1

κ2
φ(t)‖z‖, ∀t ∈ [1, e]

}
.

Then, we have the following lemma.

Lemma 10. Suppose that (H1) holds. Then, A(P) ⊂ P0.

Proof. From Lemma 4(I2), for u ∈ P, we have

(Au)(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

≤
∫ e

1

(a + (1− a(log ξ)β−1)Γ(β))(β− 1)
(1− a(log ξ)β−1)Γ(β)

η(s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

,

and

(Au)(t) ≥
∫ e

1
Γ(β)φ(t)η(s)

1− a(log ξ)β−1 + aφ(ξ)

1− a(log ξ)β−1 ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

=
(1− a(log ξ)β−1 + aφ(ξ))Γ2(β)

(a + (1− a(log ξ)β−1)Γ(β))(β− 1)
φ(t)

∫ e

1

(a + (1− a(log ξ)β−1)Γ(β))(β− 1)
(1− a(log ξ)β−1)Γ(β)

η(s)

· ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

≥ (1− a(log ξ)β−1 + aφ(ξ))Γ2(β)

(a + (1− a(log ξ)β−1)Γ(β))(β− 1)
φ(t)‖Au‖, for t ∈ [1, e].
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Therefore, (Au)(t) ≥ (1−a(log ξ)β−1+aφ(ξ))Γ2(β)

(a+(1−a(log ξ)β−1)Γ(β))(β−1)
φ(t)‖Au‖, for t ∈ [1, e]. This completes

the proof.

Let Bρ = {u ∈ P : ‖u‖ < ρ}, for ρ > 0.

Theorem 1. Suppose that (H1)–(H3) hold. Then, (1) has at least one positive solution.

Proof. Let S1 = {u ∈ P : u = Au + λψ, ∀λ ≥ 0}, where ψ ∈ P0 is a fixed element. We prove that S1

is bounded in P. If u ∈ S1, then, from Lemma 10, we have u ∈ P0, and u(t) ≥ (Au)(t) for t ∈ [1, e].
Now, we consider two cases.

Case 1. Let p ≥ 2. Then, we have 1
p−1 ∈ (0, 1]. From (H2), we have

f
1

p−1 (t, z) + c
1

p−1
1 ≥ ( f (t, z) + c1)

1
p−1 ≥ (a1zp−1)

1
p−1 = a

1
p−1
1 z, for (t, z) ∈ [1, e]×R+.

Consequently, from (19) and Lemma 6, we obtain

u(t) ≥
∫ e

1
Gβ(t, s)

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

) 1
p−1 ds

s

= Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

(∫ e

1
Γ(α)Gα(s, τ) f (τ, u(τ))

dτ

τ

) 1
p−1 ds

s

= Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

(∫ e

1
Γ(α)Gα(s, τ) f (τ, u(τ))d log τ

) 1
p−1 ds

s

= Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

(∫ 1

0
Γ(α)Gα(s, ex) f (ex, u(ex))dx

) 1
p−1 ds

s

≥ Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

∫ 1

0
(Γ(α)Gα(s, ex))

1
p−1 f

1
p−1 (ex, u(ex))dx

ds
s

≥ Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

∫ 1

0
(Γ(α)Gα(s, ex)) f

1
p−1 (ex, u(ex))dx

ds
s

= Γ
p−2
p−1 (α)

∫ e

1
Gβ(t, s)

∫ e

1
Gα(s, τ) f

1
p−1 (τ, u(τ))

dτ

τ

ds
s

≥ κ1φ(t)Γ
p−2
p−1 (α)

∫ e

1
µ(τ) f

1
p−1 (τ, u(τ))

dτ

τ

≥ κ1φ(t)Γ
p−2
p−1 (α)

∫ e

1
µ(τ)

(
a

1
p−1
1 u(τ)− c

1
p−1
1

)
dτ

τ
.

(21)

Multiplying by µ(t) on both sides of (21) and integrating over [1, e], we obtain

∫ e

1
u(t)µ(t)

dt
t
≥ κ1Γ

p−2
p−1 (α)

∫ e

1
µ(t)φ(t)

dt
t

∫ e

1
µ(t)

(
a

1
p−1
1 u(t)− c

1
p−1
1

)
dt
t

= κ3Γ
p−2
p−1 (α)

∫ e

1
µ(t)

(
a

1
p−1
1 u(t)− c

1
p−1
1

)
dt
t

.

Solving this inequality, we have

∫ e

1
u(t)µ(t)

dt
t
≤

κ3c
1

p−1
1 Γ

p−2
p−1 (α)

∫ e
1 µ(t) dt

t

κ3a
1

p−1
1 Γ

p−2
p−1 (α)− 1

.
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Note that, for u ∈ P0, we get

∫ e

1

κ1

κ2
φ(t)‖u‖µ(t)dt

t
≤

κ3c
1

p−1
1 Γ

p−2
p−1 (α)

∫ e
1 µ(t) dt

t

κ3a
1

p−1
1 Γ

p−2
p−1 (α)− 1

, and ‖u‖ ≤
κ4c

1
p−1
1 Γ

p−2
p−1 (α)

κ3a
1

p−1
1 Γ

p−2
p−1 (α)− 1

.

Case 2. Let p ∈ (1, 2]. Then, we have p− 1 ∈ (0, 1]. Note that
Gβ(t,s)

κ3
≤ 1, for t, s ∈ [1, e], by (H2),

(19) and Lemma 6 we have

up−1(t) ≥
(∫ e

1
Gβ(t, s)

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

) 1
p−1 ds

s

)p−1

= κ
p−1
3

(∫ e

1

Gβ(t, s)
κ3

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

) 1
p−1

d log s

)p−1

= κ
p−1
3

(∫ 1

0

Gβ(t, ex)

κ3

(∫ e

1
Gα(ex, τ) f (τ, u(τ))

dτ

τ

) 1
p−1

dx

)p−1

≥ κ
p−1
3

∫ 1

0

(Gβ(t, ex)

κ3

)p−1 ∫ e

1
Gα(ex, τ) f (τ, u(τ))

dτ

τ
dx

≥ κ
p−2
3

∫ e

1
Gβ(t, s)

∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

ds
s

≥ κ1κ
p−2
3 φ(t)

∫ e

1
µ(τ) f (τ, u(τ))

dτ

τ

≥ κ1κ
p−2
3 φ(t)

∫ e

1
µ(τ)(a1up−1(τ)− c1)

dτ

τ
.

(22)

Multiplying by µ(t) on both sides of (22) and integrating over [1, e], we conclude that∫ e

1
µ(t)up−1(t)

dt
t
≥ κ1κ

p−2
3

∫ e

1
µ(t)φ(t)

dt
t

∫ e

1
µ(t)(a1up−1(t)− c1)

dt
t

.

Solving this inequality, we have

∫ e

1
µ(t)up−1(t)

dt
t
≤

κ
p−1
3 c1

∫ e
1 µ(t) dt

t

κ
p−1
3 a1 − 1

.

Noting that u ∈ P0, we have

‖u‖p−1 ≤
κ

p−1
3 κ

p−2
2 κ

1−p
1 c1κ4

κ
p−1
3 a1 − 1

(∫ e

1
µ(t)φp−1(t)

dt
t

)−1
.

The above two cases imply that S1 is bounded in P. Then, we can choose

R1 >


p−1

√
κ

p−1
3 κ

p−2
2 κ

1−p
1 c1κ4

κ
p−1
3 a1−1

(∫ e
1 µ(t)φp−1(t) dt

t

)−1
, 1 < p ≤ 2,

κ4c
1

p−1
1 Γ

p−2
p−1 (α)

κ3a
1

p−1
1 Γ

p−2
p−1 (α)−1

, p ≥ 2,

such that
u 6= Au + λψ, for u ∈ ∂BR1 ∩ P, ∀λ ≥ 0.
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As a result, Lemma 7 implies that

i(A, BR1 ∩ P, P) = 0. (23)

For r1 in (H3), we now prove that

u 6= λAu, for u ∈ ∂Br1 ∩ P, ∀λ ∈ [0, 1]. (24)

If this claim isn’t true, then there exist u ∈ ∂Br1 ∩ P and λ ∈ [0, 1] such that u = λAu, and u(t) ≤
(Au)(t), for t ∈ [1, e]. Now, we consider two cases.

Case 1. Let p ≥ 2. Then, we have p− 1 ≥ 1. From (20), (H3) and Lemma 6, we get

up−1(t) ≤
(∫ e

1
Gβ(t, s)

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

) 1
p−1 ds

s

)p−1

= κ
p−1
3

(∫ 1

0

Gβ(t, ex)

κ3

(∫ e

1
Gα(ex, τ) f (τ, u(τ))

dτ

τ

) 1
p−1

dx

)p−1

≤ κ
p−2
3

∫ 1

0
Gβ(t, ex)

∫ e

1
Gα(ex, τ) f (τ, u(τ))

dτ

τ
dx

= κ
p−2
3

∫ e

1
Gβ(t, s)

∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

ds
s

≤ κ
p−2
3 κ2

∫ e

1
µ(τ)a2up−1(τ)

dτ

τ
.

(25)

Multiplying by µ(t) on both sides of (25) and integrating over [1, e], we find∫ e

1
µ(t)up−1(t)

dt
t
≤ κ

p−2
3 a2κ4

∫ e

1
µ(t)up−1(t)

dt
t

.

This implies that ∫ e

1
µ(t)up−1(t)

dt
t
= 0, and u(t) ≡ 0, for t ∈ [1, e],

since µ(t) 6≡ 0, for t ∈ [1, e]. This contradicts u ∈ ∂Br1 ∩ P, r1 > 0.
Case 2. Let p ∈ (1, 2]. Then, we have 1

p−1 ≥ 1. From (20), (H3) and Lemma 6, we obtain

u(t) ≤
∫ e

1
Gβ(t, s)

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

) 1
p−1 ds

s

= Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

(∫ 1

0
Γ(α)Gα(s, ex) f (ex, u(ex))dx

) 1
p−1 ds

s

≤ Γ−
1

p−1 (α)
∫ e

1
Gβ(t, s)

∫ 1

0
(Γ(α)Gα(s, ex))

1
p−1 f

1
p−1 (ex, u(ex))dx

ds
s

≤ Γ
p−2
p−1 (α)

∫ e

1
Gβ(t, s)

∫ e

1
Gα(s, τ) f

1
p−1 (τ, u(τ))

dτ

τ

ds
s

≤ Γ
p−2
p−1 (α)κ2

∫ e

1
µ(τ)a

1
p−1
2 u(τ)

dτ

τ
.

(26)

Multiplying by µ(t) on both sides of the preceding inequalities and integrating over [1, e], we find

∫ e

1
µ(t)u(t)

dt
t
≤ Γ

p−2
p−1 (α)κ4a

1
p−1
2

∫ e

1
µ(t)u(t)

dt
t

.
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Note that µ(t) 6≡ 0, for t ∈ [1, e], and this implies that∫ e

1
µ(t)up−1(t)

dt
t
= 0, and u(t) ≡ 0, for t ∈ [1, e].

This contradicts u ∈ ∂Br1 ∩ P, r1 > 0.
Combining the above two cases, we have that (24) holds. Then, from Lemma 8, we obtain

i(A, Br1 ∩ P, P) = 1. (27)

Note that we can also take R1 > r1 such that (23) is still true. Thus, from (23) and (27), we have

i(A, (BR1\Br1) ∩ P, P) = i(A, BR1 ∩ P, P)− i(A, Br1 ∩ P, P) = −1,

and hence A has at least one fixed point in (BR1\Br1) ∩ P, i.e., (1) has at least one positive solution.
This completes the proof.

Theorem 2. Suppose that (H1), and (H4)–(H5) hold. Then, (1) has at least one positive solution.

Proof. We can use similar methods as in Theorem 1 to provide the proof. We first prove that

u 6= Au + λψ̃, for u ∈ ∂Br2 ∩ P, ∀λ ≥ 0, (28)

where ψ̃ ∈ P is a given element, and r2 is defined in (H4). Otherwise, there exist u ∈ ∂Br2 ∩ P and
λ ≥ 0 such that u = Au + λψ̃, and thus u(t) ≥ (Au)(t), for t ∈ [1, e]. Now, we consider two cases.

Case 1. Let p ≥ 2. Then, we have 1
p−1 ∈ (0, 1]. Using (21) and (H4), we conclude

u(t) ≥ κ1φ(t)Γ
p−2
p−1 (α)

∫ e

1
µ(τ) f

1
p−1 (τ, u(τ))

dτ

τ
≥ κ1φ(t)Γ

p−2
p−1 (α)

∫ e

1
µ(τ)a

1
p−1
3 u(τ)

dτ

τ
.

Multiplying by µ(t) on both sides of the preceding inequalities and integrating over [1, e], we find

∫ e

1
µ(t)u(t)

dt
t
≥ a

1
p−1
3 κ1Γ

p−2
p−1 (α)

∫ e

1
φ(t)µ(t)

dt
t

∫ e

1
µ(t)u(t)

dt
t

.

This implies that ∫ e

1
µ(t)u(t)

dt
t
= 0, and u(t) ≡ 0, for t ∈ [1, e],

since µ(t) 6≡ 0, for t ∈ [1, e]. This contradicts u ∈ ∂Br2 ∩ P, r2 > 0.
Case 2. Let p ∈ (1, 2]. Then, we have p− 1 ∈ (0, 1]. Using (22) and (H4), we obtain

up−1(t) ≥ κ1κ
p−2
3 φ(t)

∫ e

1
µ(τ) f (τ, u(τ))

dτ

τ
≥ κ1κ

p−2
3 φ(t)

∫ e

1
µ(τ)a3up−1(τ)

dτ

τ
.

Multiplying by µ(t) on both sides of the preceding inequalities and integrating over [1, e], we find∫ e

1
µ(t)up−1(t)

dt
t
≥ a3κ1κ

p−2
3

∫ e

1
φ(t)µ(t)

dt
t

∫ e

1
µ(t)up−1(t)

dt
t

.

This implies that ∫ e

1
µ(t)up−1(t)

dt
t
= 0, and u(t) ≡ 0, for t ∈ [1, e],

since µ(t) 6≡ 0, for t ∈ [1, e]. This contradicts u ∈ ∂Br2 ∩ P, r2 > 0.
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As a result, we have that (28) holds, and Lemma 7 implies that

i(A, Br2 ∩ P, P) = 0. (29)

Let S2 = {u ∈ P : u = λAu, ∀λ ∈ [0, 1]}. Then, we claim that S2 is bounded in P. Indeed,
if u ∈ S2, then from Lemma 10 we have u ∈ P0, and u(t) ≤ (Au)(t), for t ∈ [1, e]. Now, we consider
two cases.

Case 1. Let p ≥ 2. Then, we have p− 1 ≥ 1. Using (25) and (H5), we have

up−1(t) ≤ κ
p−2
3 κ2

∫ e

1
µ(τ)(a4up−1(τ) + c2)

dτ

τ
.

Multiplying by µ(t) on both sides of the preceding inequalities and integrating over [1, e], we find∫ e

1
µ(t)up−1(t)

dt
t
≤ κ

p−2
3 κ4

∫ e

1
µ(t)(a4up−1(t) + c2)

dt
t

.

Solving this inequality, we have

∫ e

1
µ(t)up−1(t)

dt
t
≤

κ
p−2
3 c2κ4

∫ e
1 µ(t) dt

t

1− κ
p−2
3 a4κ4

.

Note that u ∈ P0, and we have

‖u‖p−1 ≤
κ

p−2
3 κ

p−2
2 κ

1−p
1 c2κ2

4

1− κ
p−2
3 a4κ4

(∫ e

1
µ(t)φp−1(t)

dt
t

)−1
.

Case 2. Let p ∈ (1, 2]. Then, we have 1
p−1 ≥ 1. Using (26) and (H5), we obtain

u(t) ≤ Γ
p−2
p−1 (α)κ2

∫ e

1
µ(τ)(a4up−1(τ) + c2)

1
p−1

dτ

τ
≤ Γ

p−2
p−1 (α)2

2−p
p−1 κ2

∫ e

1
µ(t)(a

1
p−1
4 u(t) + c

1
p−1
2 )

dt
t

.

Multiplying by µ(t) on both sides of the preceding inequalities and integrating over [1, e], we find

∫ e

1
µ(t)u(t)

dt
t
≤ Γ

p−2
p−1 (α)2

2−p
p−1 κ4

∫ e

1
µ(t)(a

1
p−1
4 u(t) + c

1
p−1
2 )

dt
t

.

Solving this inequality, we have

∫ e

1
µ(t)u(t)

dt
t
≤

Γ
p−2
p−1 (α)2

2−p
p−1 c

1
p−1
2 κ2

4

κ2(1− Γ
p−2
p−1 (α)2

2−p
p−1 a

1
p−1
4 κ4)

.

Noting that u ∈ P0, we have

‖u‖ ≤
Γ

p−2
p−1 (α)2

2−p
p−1 c

1
p−1
2 κ2

4

κ3(1− Γ
p−2
p−1 (α)2

2−p
p−1 a

1
p−1
4 κ4)

.
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Combining the above two cases, we have proved that S2 is bounded in P. Then, we can choose
R2 > r2 and

R2 >


Γ

p−2
p−1 (α)2

2−p
p−1 c

1
p−1

2 κ2
4

κ3(1−Γ
p−2
p−1 (α)2

2−p
p−1 a

1
p−1

4 κ4)

, 1 < p ≤ 2,

p−1

√
κ

p−2
3 κ

p−2
2 κ

1−p
1 c2κ2

4

1−κ
p−2
3 a4κ4

(∫ e
1 µ(t)φp−1(t) dt

t

)−1
, p ≥ 2,

such that
u 6= λAu, for u ∈ ∂BR2 ∩ P, ∀λ ∈ [0, 1]. (30)

Then, from Lemma 8, we have
i(A, BR2 ∩ P, P) = 1. (31)

Thus, from (29) and (31), we have

i(A, (BR2\Br2) ∩ P, P) = i(A, BR2 ∩ P, P)− i(A, Br2 ∩ P, P) = 1,

and hence A has at least one fixed point in (BR2\Br2) ∩ P, i.e., (1) has at least one positive solution.
This completes the proof.

In what follows, we consider the uniqueness of positive solutions for (1) with the boundary
conditions Dβu(1) = Dβu(e) = 0, u(1) = u′(1) = u(e) = 0. This problem is equivalent to the
Hammerstein type integral equation

u(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u(τ))

dτ

τ

)
ds
s

, (32)

where Gβ(t, s) = G1β(t, s) for t, s ∈ [1, e]. Note that here we still use the operator A as in (16).

Lemma 11. Let w0(t) =
∫ e

1 Gβ(t, s) ds
s for t ∈ [1, e]. Then, for all nonnegative functions w ∈ C[1, e]( 6≡ 0),

there exist two positive aw, bw(aw ≤ bw) such that

aww0(t) ≤
∫ e

1
Gβ(t, s)w(s)

ds
s
≤ bww0(t), for t ∈ [1, e]. (33)

Proof. We first calculate w0. From (14), we have∫ e

1
Gβ(t, s)

ds
s

=
1

Γ(β)

∫ t

1

[
(log t)β−1(1− log s)β−1 − (log t− log s)β−1

] ds
s

+
1

Γ(β)

∫ e

t
(log t)β−1(1− log s)β−1 ds

s

=
1

Γ(β)

∫ e

1
(log t)β−1(1− log s)β−1 ds

s
− 1

Γ(β)

∫ t

1
(log t− log s)β−1 ds

s

=
(log t)β−1(1− log t)

βΓ(β)
.

Using (17) and (18), we have∫ e

1
Γ(β)φ(t)η(s)w(s)

ds
s
≤
∫ e

1
Gβ(t, s)w(s)

ds
s
≤
∫ e

1
(β− 1)φ(t)w(s)

ds
s

.

Therefore, let aw = βΓ(β)
∫ e

1 η(s)w(s) ds
s , and bw = β(β− 1)

∫ e
1 w(s) ds

s ; then, we have that (33)
holds. This completes the proof.

Theorem 3. Suppose that (H1), (H6)–(H7) hold. Then, (1) has a unique positive solution.
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Proof. Note that (H7) implies that A is an increasing operator, and 0 isn’t a fixed point for A.
Next, we shall prove that A has a subsolution and a supersolution. Let

ξ(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, ρ(τ))

dτ

τ

)
ds
s

,

where

ρ(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)

dτ

τ

)
ds
s

, for t ∈ [1, e].

From Lemma 11, there exist aρ > 0, bρ > 0 such that

aρρ(t) ≤ ξ(t) ≤ bρρ(t), for t ∈ [1, e].

Take ξ1(t) = δ1ξ(t), ξ2(t) = δ2ξ(t), where 0 < δ1 < min
{

1
bρ

, a
k

1−k
ρ

}
, δ2 > max

{
1
aρ

, b
k

1−k
ρ

}
. Then,

we have

(Aξ1)(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, ξ1(τ))

dτ

τ

)
ds
s

=
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, δ1ξ(τ))

dτ

τ

)
ds
s

=
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f

(
τ,

δ1ξ(τ)

ρ(τ)
ρ(τ)

)
dτ

τ

)
ds
s

≥
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)

(
δ1ξ(τ)

ρ(τ)

)k(p−1)

f (τ, ρ(τ))
dτ

τ

)
ds
s

≥
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)

(
δ1aρ

)k(p−1) f (τ, ρ(τ))
dτ

τ

)
ds
s

=
(
δ1aρ

)k
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, ρ(τ))

dτ

τ

)
ds
s

≥ δ1ξ(t),

and
Aξ1 ≥ ξ1, i.e., ξ1 is a subsolution of A.

In addition, we have

(Aξ2)(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, ξ2(τ))

dτ

τ

)
ds
s

=
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)δ

p−1
2 δ

1−p
2 f (τ, ξ2(τ))

dτ

τ

)
ds
s

≤
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)δ

p−1
2

(
1

δ2bρ

)k(p−1)
f (τ, ξ2(τ))

dτ

τ

)
ds
s

≤
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)δ

p−1
2

(
ρ(τ)

δ2ξ(τ)

)k(p−1)

f (τ, ξ2(τ))
dτ

τ

)
ds
s

≤
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)δ

p−1
2 f

(
τ,

ρ(τ)

δ2ξ(τ)
ξ2(τ)

)
dτ

τ

)
ds
s

= δ2

∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, ρ(τ))

dτ

τ

)
ds
s

,

and
Aξ2 ≤ ξ2, i.e., ξ2 is a supersolution of A.
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As a result, from Lemma 9, A has the smallest fixed point u∗ and the largest fixed point u∗ in
[ξ1, ξ2], respectively. Moreover, u∗ = limn→∞ Anξ1 and u∗ = limn→∞ Anξ2.

Next, we claim that u∗(t) = u∗(t), for t ∈ [1, e]. We only prove that u∗(t) ≥ u∗(t). Note that they
are fixed points for A, so

u∗(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u∗(τ))

dτ

τ

)
ds
s

,

u∗(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u∗(τ))

dτ

τ

)
ds
s

.

Then, from Lemma 11, there exists bi ≥ ai(i = 1, 2) such that

a1w0 ≤ u∗ ≤ b1w0, a2w0 ≤ u∗ ≤ b2w0.

Hence, u∗ ≥ a1
b2

u∗. Let µ0 := sup{µ > 0 : u∗ ≥ µu∗}. Then, µ0 > 0, and u∗ ≥ µ0u∗. Next, we
claim that µ0 ≥ 1. If it is not true, then µ0 ∈ (0, 1). Using (H6), (H7), we have

u∗(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u∗(τ))

dτ

τ

)
ds
s

≥
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, µ0u∗(τ))

dτ

τ

)
ds
s

≥
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ)µ

k(p−1)
0 f (τ, u∗(τ))

dτ

τ

)
ds
s

= µk
0

∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u∗(τ))

dτ

τ

)
ds
s

.

Let

g(t) = ϕq

(∫ e

1
Gα(s, τ) f (τ, µ0u∗(τ))

dτ

τ

)
− µk

0 ϕq

(∫ e

1
Gα(s, τ) f (τ, u∗(τ))

dτ

τ

)
.

Then, from (H6) and Lemma 11, we have

a3w0(t) ≤
∫ e

1
Gβ(t, s)g(s)

ds
s
≤ b3w0(t).

Consequently,

u∗(t) ≥
∫ e

1
Gβ(t, s)g(s)

ds
s
+ µk

0

∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, u∗(τ))

dτ

τ

)
ds
s

≥ a3

b2
u∗(t) + µk

0u∗(t)

≥
(

a3

b2
+ µ0

)
u∗(t).

This contradicts the definition of µ0, and u∗(t) ≥ µ0u∗(t) ≥ u∗(t). Therefore, A has a unique
positive fixed point in [ξ1, ξ2], and (1) has also a unique positive solution in [ξ1, ξ2]. This completes
the proof.

Theorem 4. Suppose all the assumptions in Theorem 3 hold. Let ũ is a unique positive solution in [ξ1, ξ2].
Then, for any u0 ∈ [ξ1, ξ2] with f (t, u0(t)) 6≡ 0, the sequence

un(t) =
∫ e

1
Gβ(t, s)ϕq

(∫ e

1
Gα(s, τ) f (τ, un−1(τ))

dτ

τ

)
ds
s

, n = 1, 2, ...,
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uniformly converges to ũ(t), for t ∈ [1, e].

Proof. From Theorem 3, we have ũ = limn→∞ Anξ1 = limn→∞ Anξ2. Note that A is increasing,
so, if u0 ∈ [ξ1, ξ2], we have

Anξ1 ≤ Anu0 ≤ Anξ2, ∀n ∈ N+.

This implies that Anu0 → ũ as n→ ∞. From the definition of A, we have un(t) = (Aun−1)(t) =
A(Aun−2)(t) = (A2un−2)(t) = · · · = (Anu0)(t), and thus un(t) → ũ(t) uniformly on t ∈ [1, e].
This completes the proof.

4. Conclusions

In this paper we investigate the existence and uniqueness of positive solutions for the Hadamard
fractional p-Laplacian three-point boundary value problem (1). We first establish some relations from
the corresponding problem without the p-Laplacian operator, and use some (p− 1)−superlinearly
and (p− 1)−sublinearly conditions for the nonlinearity to obtain positive solutions to problem (1).
After, using an increasing operator fixed-point theorem, we obtain the unique solution to problem (1),
and establish uniform converged sequences for this solution.
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