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Abstract: We establish the existence of positive solutions for systems of second–order differential
equations with discontinuous nonlinear terms. To this aim, we give a multivalued vector version of
Krasnosel’skiı̆’s fixed point theorem in cones which we apply to a regularization of the discontinuous
integral operator associated to the differential system. We include several examples to illustrate
our theory.
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1. Introduction

We study the existence and localization of positive solutions for the system{
u′′1 (t) + g1(t) f1(t, u1(t), u2(t)) = 0,
u′′2 (t) + g2(t) f2(t, u1(t), u2(t)) = 0,

subject to the Sturm–Liouville boundary conditions (7).
The novelties in this paper are in two directions. On the one hand, we allow the functions

fi (i = 1, 2) to be discontinuous with respect to the unknown over some time-dependent sets, see
Definitions 1 and 2. On the other hand, in order to localize the solutions of the system, we shall
establish a multivalued vector version of Krasnosel’skiı̆’s fixed point theorem which allows different
asymptotic behaviors in the nonlinearities f1 and f2, see Remark 3.

The existence of discontinuities in the functions f1 or f2 makes impossible to apply directly the
standard fixed point theorems in cones for compact operators since the integral operator corresponding
to the differential problem is not necessarily continuous. In order to avoid this difficulty, we regularize
the possibly discontinuous operator obtaining an upper semicontinuous multivalued one. Then we
look for fixed points of this multivalued mapping that are proved to be Carathéodory solutions for the
differential system. In the case of scalar problems, similar ideas appear in the papers [1–3].

This approach of using set-valued analysis in the study of discontinuous problems is a classical
one, see [4]. Nevertheless, the regularization is usually made in the nonlinearities transforming the
problem into a differential inclusion and the solutions are often given in the sense of the set-valued
analysis (Krasovskij and Filippov solutions [5,6]), see e.g., [7,8]. Similar ideas are also used in
the papers [5,9] where there are provided some sufficient conditions for the Krasovskij solutions
to be Carathéodory solutions. Recently, second-order scalar discontinuous problems have been
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investigated by using variational methods [10–12]. However, in these papers there are not considered
time-dependent discontinuity sets. Observe also that a lot of existence results for discontinuous
differential problems are based on monotonicity hypotheses on their nonlinear parts, see [13], but such
assumptions are not necessary in our approach.

Going from scalar discontinuous problems to systems of discontinuous equations is not trivial
and it makes possible to consider two different notions for the discontinuity sets. The first approach
(see Definition 1 and Theorem 3) allows to study the discontinuities in each variable independently.
For instance, it guarantees the existence of a positive solution for the following particular system{

−x′′(t) = x2 + x2y2H(1− x)H(1− y),
−y′′(t) =

√
x +
√

y + H(x− 1)H(y− 1),

subject to the Sturm–Liouville boundary conditions, where H : R→ R is the Heaviside step function
given by

H(x) =

{
0, if x ≤ 0,
1, if x > 0,

see Example 1. Notice that the nonlinearities in this example are discontinuous at x = 1 for each
y ∈ R+ and at y = 1 for every x ∈ R+. Moreover, the first nonlinearity has a superlinear behavior
and the second one has a sublinear one. Our second approach allows to study functions which are
discontinuous over time-dependent curves in R2

+ and the conditions imposed to these curves are local,
see Definition 2 and Theorem 4. In particular, we establish the existence of a positive solution for
the system {

−x′′(t) = (xy)1/3,

−y′′(t) =
(

1 + (xy)1/3
)

H(x2 + y2),

subject to the Sturm–Liouville boundary conditions.
As mentioned above, our results rely on fixed point theory for multivalued operators in cones.

We finish this introductory part by recalling the version of Krasnosel’skiı̆’s fixed point theorem for
set-valued maps given by Fitzpatrick–Petryshyn [14].

Theorem 1. Let X be a Fréchet space with a cone K ⊂ X. Let d be a metric on X and let r1, r2 ∈ (0, ∞),
r = min {r1, r2}, R = max {r1, r2} and F : BR(0) ∩ K −→ 2K usc and condensing. Suppose there exists a
continuous seminorm p such that (I − F)

(
Br1(0) ∩ K

)
is p-bounded. Moreover, suppose that F satisfies:

1. There is some w ∈ K with p(w) 6= 0 and such that x 6∈ F(x) + tw for any t > 0 and x ∈ ∂KBr1(0);
2. λx 6∈ F(x) for any λ > 1 and x ∈ ∂KBr2(0).

Then F has a fixed point x0 with r ≤ d(x0, 0) ≤ R.

In the case of a Banach space (X, ‖·‖X) and of an operator F = (F1, F2) : K ⊂ X2 → 2K under the
hypotheses of the previous theorem, we obtain the existence of a fixed point x = (x1, x2) for F such
that r ≤ ‖x‖ ≤ R, where ‖·‖ denotes a norm in X2, for example, ‖(x1, x2)‖ = ‖x1‖X + ‖x2‖X. Then
0 ≤ ‖x1‖X ≤ R and 0 ≤ ‖x2‖X ≤ R, but it is not possible to obtain a lower bound for the norm of every
component. This fact motivates the use of a vector version of Krasnosel’skiı̆’s fixed point theorem.
Such a version was introduced in [15] for single-valued operators. Another advantage of the vector
approach is that it allows different behaviors in each component of the system.
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2. Multivalued Vector Version of Krasnosel’skiı̆’s Fixed Point Theorem

In the sequel, let (X, ‖·‖) be a Banach space, K1, K2 ⊂ X two cones and K := K1 × K2 the
corresponding cone of X2 = X× X. For r, R ∈ R2

+, r = (r1, r2), R = (R1, R2), we denote

(Ki)ri ,Ri := {u ∈ Ki : ri ≤ ‖u‖ ≤ Ri} (i = 1, 2),

Kr,R := {u ∈ K : ri ≤ ‖ui‖ ≤ Ri for i = 1, 2} .

The following fixed point theorem is an extension of the vector version of Krasnosel’skiı̆’s
fixed point theorem given in [15,16] to the class of upper semicontinuous (usc, for short)
multivalued mappings.

Theorem 2. Let αi, βi > 0 with αi 6= βi, ri = min{αi, βi} and Ri = max {αi, βi} for i = 1, 2. Assume that
N : Kr,R → 2K, N = (N1, N2), is an usc map with nonempty closed and convex values such that N(Kr,R)

is compact, and there exist hi ∈ Ki \ {0}, i = 1, 2, such that for each i ∈ {1, 2} the following conditions
are satisfied:

λui 6∈ Niu for any u ∈ Kr,R with ‖ui‖ = αi and any λ > 1; (1)

ui 6∈ Niu + µhi for any u ∈ Kr,R with ‖ui‖ = βi and any µ > 0. (2)

Then N has a fixed point u = (u1, u2) in K, that is, u ∈ Nu, with ri ≤ ‖ui‖ ≤ Ri for i = 1, 2.

Proof. We shall consider the four possible combinations of compression-expansion conditions for N1

and N2.

1. Assume first that βi < αi for both i = 1, 2 (compression for N1 and N2). Then ri = βi and Ri = αi
for i = 1, 2. Denote h = (h1, h2) and define the map Ñ : K → K given, for u ∈ K, by

Ñu = min
{
‖u1‖

r1
,
‖u2‖

r2
, 1
}

N
(

δ1(u1)
u1

‖u1‖
, δ2(u2)

u2

‖u2‖

)
+

(
1−min

{
‖u1‖

r1
,
‖u2‖

r2
, 1
})

h,

where δi(ui) = max{min{ui, Ri}, ri} for i = 1, 2.

The map Ñ is usc (the composition of usc maps is usc, see [17], Theorem 17.23) and Ñ(K) is
relatively compact since its values belong to the compact set co (N(Kr,R) ∪ {h}). Then Kakutani’s
fixed point theorem implies that there exists u ∈ K such that u ∈ Ñu.

It remains to prove that u ∈ Kr,R. It is clear that ‖ui‖ > 0 since hi 6= 0 for i = 1, 2. Assume 0 <

‖u1‖ < r1 and 0 < ‖u2‖ < r2. If min
{
‖u1‖

r1
, ‖u2‖

r2

}
= ‖u1‖

r1
, then

u ∈ ‖u1‖
r1

N
(

r1

‖u1‖
u1,

r2

‖u2‖
u2

)
+

(
1− ‖u1‖

r1

)
h,

so
r1

‖u1‖
u1 ∈ N1

(
r1

‖u1‖
u1,

r2

‖u2‖
u2

)
+

r1

‖u1‖

(
1− ‖u1‖

r1

)
h1,

what contradicts (2) for i = 1. Analogously, we can obtain contradictions for any other point
u 6∈ Kr,R, as done in [15,16] for single-valued maps.
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2. Assume that β1 < α1 (compression for N1) and β2 > α2 (expansion for N2). Let N∗i : Kr,R → Ki
(i = 1, 2) be given by

N∗1 u = N1

(
u1,
(

R2

‖u2‖
+

r2

‖u2‖
− 1
)

u2

)
,

N∗2 u =

(
R2

‖u2‖
+

r2

‖u2‖
− 1
)−1

N2

(
u1,
(

R2

‖u2‖
+

r2

‖u2‖
− 1
)

u2

)
. (3)

Notice that the map N∗ = (N∗1 , N∗2 ) is in case 1, and thus N∗ has a fixed point v ∈ Kr,R. Further,

the point u defined as u1 = v1 and u2 =
(

R2
‖v2‖

+ r2
‖v2‖
− 1
)

v2 is a fixed point of the operator N.

3. The case β1 > α1 (expansion for N1) and β2 < α2 (compression for N2) is similar to the previous
one by taking the map N∗ = (N∗1 , N∗2 ) defined as

N∗1 u =

(
R1

‖u1‖
+

r1

‖u1‖
− 1
)−1

N1

((
R1

‖u1‖
+

r1

‖u1‖
− 1
)

u1, u2

)
, (4)

N∗2 u = N2

((
R1

‖u1‖
+

r1

‖u1‖
− 1
)

u1, u2

)
.

4. The case βi > αi for i = 1, 2 (expansion for N1 and N2) reduces to case 1, if we consider the map
N∗ = (N∗1 , N∗2 ) where N∗1 is defined by (4) and N∗2 , by (3).

Therefore, the proof is over.

Remark 1 (Multiplicity). Although we are interested in fixed points for the operator N satisfying that both
components are nonzero, if we replace conditions (1) and (2) in Theorem 2 by the following ones:

λui 6∈ Niu for ‖ui‖ = αi,
∥∥uj
∥∥ ≤ Rj (j 6= i) and λ ≥ 1;

ui 6∈ Niu + µhi for ‖ui‖ = βi,
∥∥uj
∥∥ ≤ Rj (j 6= i) and µ ≥ 0,

then we can achieve multiplicity results.
Indeed, if βi > αi for i = 1 or i = 2, then the operator N has one additional fixed point v = (v1, v2) such

that ‖vi‖ < ri and rj <
∥∥vj
∥∥ < Rj with j 6= i. Furthermore, if βi > αi for i = 1, 2, then N has three nontrivial

fixed points. Such cases are considered in the paper [18] in connection with (p, q)-Laplacian systems.

Our purpose is to apply Theorem 2 to a multivalued regularization of a discontinuous system
of single-valued operators associated to a system of differential equations with discontinuous
nonlinearities. Our aim is to obtain new existence and localization results for such kind of problems.

In order to do that, we need the following definitions and results.
Let U be a relatively open subset of the cone K := K1 × K2 and T : U → K, T = (T1, T2), an

operator not necessarily continuous. We associate to the operator T the following multivalued map
T : U → 2K given by

T = (T1,T2), Tiu =
⋂
ε>0

co Ti
(

Bε(u) ∩U
)

for every u ∈ U (i = 1, 2), (5)

where Bε(u) :=
{

v ∈ X2 : ‖ui − vi‖ ≤ ε for i = 1, 2
}

, U denotes the closure of the set U with the
relative topology of K and co means closed convex hull. The map Ti is called the closed-convex
envelope of Ti and it satisfies the following properties, see [2].

Proposition 1. Let T be the closed-convex envelope of an operator T : U −→ K. The following properties
are satisfied:

1. If T maps bounded sets into relatively compact sets, then T assumes compact values and it is usc;
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2. If T U is relatively compact, then TU is relatively compact too.

Remark 2. The following two statements are equivalent:

(a) y ∈ Ti(u) (i = 1, 2);
(b) for every ε > 0 and every ρ > 0 there exist m ∈ N and a finite family of vectors xj ∈ Bε(u) ∩U and

coefficients λj ∈ [0, 1] (j = 1, 2, . . . , m) such that ∑ λj = 1 and∥∥∥∥∥y−
m

∑
j=1

λj Tixj

∥∥∥∥∥ < ρ.

3. Positive Solutions of Discontinuous Systems

We study the existence and localization of positive solutions for the following second-order
coupled differential system {

u′′1 (t) + g1(t) f1(t, u1(t), u2(t)) = 0,
u′′2 (t) + g2(t) f2(t, u1(t), u2(t)) = 0,

(6)

for t ∈ I = [0, 1], with the following boundary conditions

aiui(0)− biu′i(0) = 0, ciui(1) + diu′i(1) = 0, (7)

for i = 1, 2, where ai, bi, ci, di ∈ R+ ≡ [0, ∞) and ρi := bici + aici + aidi > 0 for i = 1, 2. Assume that,
for i = 1, 2,

(H1) gi ∈ L1(I), gi(t) ≥ 0 for a.e. t ∈ I and
∫ 3/4

1/4 g(s) ds > 0;
(H2) fi : I ×R2

+ → R+ satisfies that

(i) fi(·, u1(·), u2(·)) are measurable whenever (u1, u2) ∈ C(I)2;
(ii) for each ρ > 0 there exists Ri,ρ > 0 such that

fi(t, u1, u2) ≤ Ri,r for u1, u2 ∈ [0, ρ] and a.e. t ∈ I.

Notice that condition (H2) (i) is satisfied if fi(·, u1, u2) is measurable for all constants u1, u2, and
if fi(t, ·, ·) is continuous for a.a. t, which is not necessarily the case in this paper.

Let X = C(I) be the space of continuous functions defined on I endowed with the usual norm
‖v‖ := ‖v‖∞ = maxt∈I |v(t)| and let P be the cone of all nonnegative functions of X. A positive
solution to (6)–(7) is a function u = (u1, u2) with ui ∈ P ∩W2,1(I), ui 6≡ 0 (i = 1, 2) such that u satisfies
(6) for a.a. t ∈ I and the boundary conditions (7). The existence of positive solutions to problems
(6)–(7) is equivalent to the existence of fixed points of the integral operator T : P2 → P2, T = (T1, T2),
given by

(Tiu)(t) =
∫ 1

0
Gi(t, s)gi(s) fi(s, u1(s), u2(s)) ds, i = 1, 2, (8)

where Gi(t, s) are the corresponding Green’s functions which are explicitly given by

Gi(t, s) =
1
ρi

{
(ci + di − cit)(bi + ais), if 0 ≤ s ≤ t ≤ 1,
(bi + ait)(ci + di − cis), if 0 ≤ t ≤ s ≤ 1.

Denote

Mi := min
{

ci + 4di
4(ci + di)

,
ai + 4bi

4(ai + bi)

}
,
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then it is possible to check the following inequalities:

Gi(t, s) ≤ Gi(s, s) for t, s ∈ I,
MiGi(s, s) ≤ Gi(t, s) for t ∈ [1/4, 3/4], s ∈ I.

Consider in X the cones K1 and K2 defined as

Ki = {v ∈ P : v(t) ≥ Mi ‖v‖∞ for all t ∈ [1/4, 3/4]} ,

and the corresponding cone K := K1 × K2 in X2. Then, T(K) ⊂ K. Indeed, for u ∈ K and i = 1, 2,

Mi ‖Tiu‖ = Mi max
t∈[0,1]

∫ 1

0
Gi(t, s)gi(s) fi(s, u1(s), u2(s)) ds

≤ Mi

∫ 1

0
Gi(s, s)gi(s) fi(s, u1(s), u2(s)) ds ≤ min

t∈[1/4,3/4]
Tiu(t).

Hence, Tiu ∈ Ki for every u ∈ K and i = 1, 2.
Therefore, it must be clear that we intend to apply Theorem 2 in a subset of K to the multivalued

operator T associated to the discontinuous operator T. Later, we shall provide conditions about the
functions fi (i = 1, 2) which guarantee that Fix(T) ⊂ Fix(T), where Fix(S) stands for the set of fixed
points of the mapping S. As a consequence, we obtain some results concerning the existence of positive
solutions for system (6)–(7).

Let us introduce some notations. For αi, βi > 0 with αi 6= βi and ε > 0, we let ri = min{αi, βi},
Ri = max{αi, βi} (i = 1, 2) and

f β,ε
1 := inf{ f1(t, u1, u2) : t ∈ [1/4, 3/4], M1(β1 − ε) ≤ u1 ≤ β1 + ε, M2r2 ≤ u2 ≤ R2},

f β,ε
2 := inf{ f2(t, u1, u2) : t ∈ [1/4, 3/4], M1r1 ≤ u1 ≤ R1, M2(β2 − ε) ≤ u2 ≤ β2 + ε},

f α,ε
1 := sup{ f1(t, u1, u2) : t ∈ [0, 1], 0 ≤ u1 ≤ α1 + ε, 0 ≤ u2 ≤ R2},

f α,ε
2 := sup{ f2(t, u1, u2) : t ∈ [0, 1], 0 ≤ u1 ≤ R1, 0 ≤ u2 ≤ α2 + ε}.

Also, denote

Ai := inf
t∈[1/4,3/4]

∫ 3/4

1/4
Gi(t, s)gi(s) ds, Bi := sup

t∈[0,1]

∫ 1

0
Gi(t, s)gi(s) ds

for i = 1, 2.

Lemma 1. Assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, and ε > 0 such that

Bi f α,ε
i < αi, Ai f β,ε

i > βi for i = 1, 2. (9)

Then, for each i ∈ {1, 2}, the following conditions are satisfied:

λui 6∈ Tiu for any u ∈ Kr,R with ‖ui‖∞ = αi and any λ > 1; (10)

ui 6∈ Tiu + µhi for any u ∈ Kr,R with ‖ui‖∞ = βi and any µ > 0, (11)

where h1 and h2 are constant functions equal to 1.
Moreover, the map T defined as in (5) has at least one fixed point in Kr,R.
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Proof. First, observe that if v ∈ Kr,R, then

Miri ≤ vi(t) ≤ Ri for all t ∈
[

1
4

,
3
4

]
(i = 1, 2),

and if v ∈ Bε(u) ∩ Kr,R for some u ∈ Kr,R, and ‖u1‖∞ = α1, then v1(t) ≤ α1 + ε for all t ∈ [0, 1] and

M1(α1 − ε) ≤ v1(t) ≤ α1 + ε for all t ∈
[

1
4

,
3
4

]
.

Now we prove (10) for i = 1. Assume that ‖u1‖∞ = α1 and let us see that λu1 6∈ T1u for λ > 1.
First, we shall show that given a family of vectors vk ∈ Bε(u) ∩ Kr,R and numbers λk ∈ [0, 1] such that
∑ λk = 1 (k = 1, . . . , m), then

λu1 6=
m

∑
k=1

λk T1vk,

what implies that λu1 6∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

. Indeed, if not, taking the supremum for t ∈ [0, 1],

λα1 ≤ sup
t∈[0,1]

m

∑
k=1

λk

∫ 1

0
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds

≤
m

∑
k=1

λk sup
t∈[0,1]

∫ 1

0
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds

≤
m

∑
k=1

λk f α,ε
1 B1 = f α,ε

1 B1 < α1,

a contradiction. Notice that if λu1 ∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

, then it is the limit of a sequence of functions
satisfying the previous inequality and thus, as a limit, it satisfies λ α1 ≤ α1 which is also a contradiction
since λ > 1. Therefore, λu1 6∈ T1u for λ > 1.

In order to prove (11) for i = 1, assume that ‖u1‖∞ = β1 and u1 = ∑m
k=1 λk T1vk + µ for some

family of vectors vk ∈ Bε(u)∩ Kr,R and numbers λk ∈ [0, 1] such that ∑ λk = 1 (k = 1, . . . , m) and some
µ > 0. Then for t ∈ [1/4, 3/4], we have

u1(t) =
m

∑
k=1

λk

∫ 1

0
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds + µ

≥
m

∑
k=1

λk

∫ 3/4

1/4
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds + µ

≥
m

∑
k=1

λk f β,ε
1

∫ 3/4

1/4
G1(t, s)g1(s) ds + µ

≥ f β,ε
1 A1 + µ > β1 + µ,

so β1 > β1 + µ, a contradiction. Hence, u1 6∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

+ µh1. As before,

u1 6∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

+ µh1

because in that case we arrive to the inequality β1 ≥ β1 + µ for µ > 0. Therefore, u1 6∈ T1(u) + µh1.
Similarly, it is possible to prove conditions (10) and (11) for i = 2.
To finish, the conclusion is obtained by applying Theorem 2 to the operator T.

Remark 3 (Asymptotic conditions). The existence of αi, βi > 0 with αi 6= βi, i = 1, 2, and ε > 0 satisfying
(9) is guaranteed, in the autonomous case, by the following sufficient conditions:
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(a) f1 has a superlinear behavior and f2, a sublinear one, that is,

lim
x→∞

f1(x, y)
x

= +∞ for all y > 0, lim
x→0

f1(x, y)
x

= 0 for all y ≥ 0;

lim
y→∞

f2(x, y)
y

= 0 for all x ≥ 0, lim
y→0

f2(x, y)
y

= +∞ for all x > 0.

(b) Both f1 and f2 have a superlinear behavior, that is,

lim
x→∞

f1(x, y)
x

= +∞ for all y > 0, lim
x→0

f1(x, y)
x

= 0 for all y ≥ 0;

lim
y→∞

f2(x, y)
y

= +∞ for all x > 0, lim
y→0

f2(x, y)
y

= 0 for all x ≥ 0.

(c) Both f1 and f2 have a sublinear behavior, that is,

lim
x→∞

f1(x, y)
x

= 0 for all y ≥ 0, lim
x→0

f1(x, y)
x

= +∞ for all y > 0;

lim
y→∞

f2(x, y)
y

= 0 for all x ≥ 0, lim
y→0

f2(x, y)
y

= +∞ for all x > 0.

Remark 4. If f1 and f2 are monotone in both variables, it is possible to specify the numbers f α,ε
i and f β,ε

i
(i = 1, 2), so in this case, conditions (9) only depend on the behavior of the functions at four points in R2

+,
see [15,16].

Note that Lemma 1 gives us sufficient conditions for the existence of a fixed point in Kr,R of
the multivalued operator T. Hence, it remains to provide hypothesis on the functions fi (i = 1, 2)
which imply Fix(T) ⊂ Fix(T) in order to obtain a solution for the system (6)–(7). Observe also that no
continuity hypotheses were required to the functions fi until now.

The following definition introduces some curves where we allow the functions fi to be
discontinuous in each variable. The idea of using such curves can be found in some recent papers
for second-order discontinuous scalar problems [1–3] and, in some sense, it recalls the notion of
time-depending discontinuity sets from [9].

Definition 1. We say that Γ1 : [a1, b1] ⊂ I = [0, 1] → R+, Γ1 ∈ W2,1(a1, b1), is an inviable discontinuity
curve with respect to the first variable u1 if there exist ε > 0 and ψ1 ∈ L1(a1, b1), ψ1(t) > 0 for a.e. t ∈ [a1, b1]

such that either

Γ′′1 (t) + ψ1(t) < −g1(t) f1(t, y, z) for a.e. t ∈ [a1, b1], all y ∈ [Γ1(t)− ε, Γ1(t) + ε] and all z ∈ R+, (12)

or

Γ′′1 (t)− ψ1(t) > −g1(t) f1(t, y, z) for a.e. t ∈ [a1, b1], all y ∈ [Γ1(t)− ε, Γ1(t) + ε] and all z ∈ R+. (13)

Similarly, we say that Γ2 : [a2, b2] ⊂ I = [0, 1] → R+, Γ2 ∈ W2,1(a2, b2), is an inviable discontinuity
curve with respect to the second variable u2 if there exist ε > 0 and ψ2 ∈ L1(a2, b2), ψ2(t) > 0 for a.e.
t ∈ [a2, b2] such that either

Γ′′2 (t) + ψ2(t) < −g2(t) f2(t, y, z) for a.e. t ∈ [a2, b2], all y ∈ R+ and all z ∈ [Γ2(t)− ε, Γ2(t) + ε] ,

or

Γ′′2 (t)− ψ2(t) > −g2(t) f2(t, y, z) for a.e. t ∈ [a2, b2], all y ∈ R+ and all z ∈ [Γ2(t)− ε, Γ2(t) + ε] .



Mathematics 2019, 7, 451 9 of 15

Now we state some technical results that we need in the proof of the condition Fix(T) ⊂ Fix(T).
Their proofs can be found in [3]. In the sequel, m denotes the Lebesgue measure in R.

Lemma 2 ([3], Lemma 4.1). Let a, b ∈ R, a < b, and let g, h ∈ L1(a, b), g ≥ 0 a.e., and h > 0 a.e. in (a, b).
For every measurable set J ⊂ (a, b) with m(J) > 0 there is a measurable set J0 ⊂ J with m(J \ J0) = 0 such
that for every τ0 ∈ J0 we have

lim
t→τ+0

∫
[τ0,t]\J g(s) ds∫ t

τ0
h(s) ds

= 0 = lim
t→τ−0

∫
[t,τ0]\J g(s) ds∫ τ0

t h(s) ds
.

Corollary 1 ([3], Corollary 4.2). Let a, b ∈ R, a < b, and let h ∈ L1(a, b) be such that h > 0 a.e. in (a, b).
For every measurable set J ⊂ (a, b) with m(J) > 0 there is a measurable set J0 ⊂ J with m(J \ J0) = 0 such
that for all τ0 ∈ J0 we have

lim
t→τ+0

∫
[τ0,t]∩J h(s) ds∫ t

τ0
h(s) ds

= 1 = lim
t→τ−0

∫
[t,τ0]∩J h(s) ds∫ τ0

t h(s) ds
.

We shall also need the following lemma, see [2], Lemma 3.11.

Lemma 3. If M ∈ L1(0, 1), M ≥ 0 almost everywhere, then the set

Q =

{
u ∈ C1([0, 1]) :

∣∣u′(t)− u′(s)
∣∣ ≤ ∫ t

s
M(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
is closed in C([0, 1]) endowed with the maximum norm topology.

Moreover, if un ∈ Q for all n ∈ N and un → u uniformly in [0, 1], then there exists a subsequence {unk}
which tends to u in the C1 norm.

Now we are ready to present the following existence and localization result for the differential
system (6)–(7).

Theorem 3. Suppose that the functions fi and gi (i = 1, 2) satisfy conditions (H1), (H2) and

(H3) There exist inviable discontinuity curves Γ1,n : I1,n := [a1,n, b1,n] ⊂ I → R+ with respect to the
first variable, n ∈ N, and inviable discontinuity curves Γ2,n : I2,n := [a2,n, b2,n] ⊂ I → R+ with
respect to the second variable, n ∈ N, such that for each i ∈ {1, 2} and for a.e. t ∈ I the function
(u1, u2) 7→ fi(t, u1, u2) is continuous onR+ \

⋃
{n:t∈I1,n}

{Γ1,n(t)}

×
R+ \

⋃
{n:t∈I2,n}

{Γ2,n(t)}

 .

Moreover, assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, and ε > 0 such that

Bi f α,ε
i < αi, Ai f β,ε

i > βi for i = 1, 2.

Then system (6)–(7) has at least one solution in Kr,R.

Proof. The operator T : Kr,R → K, T = (T1, T2), given by (8) is well-defined and the hypotheses
(H1) and (H2) imply that T(Kr,R) is relatively compact as an immediate consequence of the
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Ascoli–Arzelá theorem. Moreover, by (H1) and (H2), there exist functions ηi ∈ L1(I) (i = 1, 2)
such that

gi(t) fi(t, u1, u2) ≤ ηi(t) for a.e. t ∈ I and all u1 ∈ [0, R1], u2 ∈ [0, R2]. (14)

Therefore, T(Kr,R) ⊂ Q1 ×Q2, where

Qi =

{
u ∈ C1([0, 1]) :

∣∣u′(t)− u′(s)
∣∣ ≤ ∫ t

s
ηi(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
,

for i = 1, 2, which by virtue of Lemma 3 is a closed and convex subset of X = C(I). Then, by
‘convexification’, T(Kr,R) ⊂ Q1 ×Q2, where T is the multivalued map associated to T defined as in (5).

By Lemma 1, the multivalued map T has a fixed point in Kr,R. Hence, if we show that all the fixed
points of the operator T are fixed points of T, the conclusion is obtained. To do so, we fix an arbitrary
function u ∈ Kr,R ∩ (Q1 ×Q2) and we consider three different cases.

Case 1: m({t ∈ I1,n : u1(t) = Γ1,n(t)} ∪ {t ∈ I2,n : u2(t) = Γ2,n(t)}) = 0 for all n ∈ N. Let us
prove that T is continuous at u, which implies that Tu = {Tu}, and therefore the relation u ∈ Tu gives
that u = Tu.

The assumption implies that for a.a. t ∈ I the mappings f1(t, ·) and f2(t, ·) are continuous at
u(t) = (u1(t), u2(t)). Hence if uk → u in Kr,R then

fi(t, uk(t))→ fi(t, u(t)) for a.a. t ∈ I and for i = 1, 2,

which, along with (14), yield Tuk → Tu in C(I)2, so T is continuous at u.

Case 2: m({t ∈ I1,n : u1(t) = Γ1,n(t)}) > 0 for some n ∈ N. In this case we can prove that
u1 6∈ T1u, and thus u 6∈ Tu.

To this aim, first, we fix some notation. Let us assume that for some n ∈ N we have m({t ∈ I1,n :
u1(t) = Γ1,n(t)}) > 0 and there exist ε > 0 and ψ ∈ L1(I1,n), ψ(t) > 0 for a.a. t ∈ I1,n, such that (13)
holds with Γ1 replaced by Γ1,n. (The proof is similar if we assume (12) instead of (13), so we omit it.)

We denote J = {t ∈ I1,n : u1(t) = Γ1,n(t)}, and we deduce from Lemma 2 that there is a
measurable set J0 ⊂ J with m(J0) = m(J) > 0 such that for all τ0 ∈ J0 we have

lim
t→τ+0

2
∫
[τ0,t]\J η1(s) ds

(1/4)
∫ t

τ0
ψ(s) ds

= 0 = lim
t→τ−0

2
∫
[t,τ0]\J η1(s) ds

(1/4)
∫ τ0

t ψ(s) ds
. (15)

By Corollary 1 there exists J1 ⊂ J0 with m(J0 \ J1) = 0 such that for all τ0 ∈ J1 we have

lim
t→τ+0

∫
[τ0,t]∩J0

ψ(s) ds∫ t
τ0

ψ(s) ds
= 1 = lim

t→τ−0

∫
[t,τ0]∩J0

ψ(s) ds∫ τ0
t ψ(s) ds

. (16)

Let us now fix a point τ0 ∈ J1. From (15) and (16) we deduce that there exist t− < t̃− < τ0

and t+ > t̃+ > τ0, t± sufficiently close to τ0 so that the following inequalities are satisfied for all
t ∈ [t̃+, t+]:

2
∫
[τ0,t]\J

η1(s) ds <
1
4

∫ t

τ0

ψ(s) ds, (17)∫
[τ0,t]∩J

ψ(s) ds ≥
∫
[τ0,t]∩J0

ψ(s) ds >
1
2

∫ t

τ0

ψ(s) ds, (18)
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and for all t ∈ [t−, t̃−]:

2
∫
[t,τ0]\J

η1(s) ds <
1
4

∫ τ0

t
ψ(s) ds, (19)∫

[t,τ0]∩J
ψ(s) ds >

1
2

∫ τ0

t
ψ(s) ds. (20)

Finally, we define a positive number

ρ̃ = min
{

1
4

∫ τ0

t̃−
ψ(s) ds,

1
4

∫ t̃+

τ0

ψ(s) ds
}

, (21)

and we are ready to prove that u1 6∈ T1u. It suffices to prove the following claim:

Claim: let ε > 0 be given by our assumptions over Γ1,n as Definition 1 shows, and let ρ =
ρ̃

2
min {t̃− − t−, t+ − t̃+}, where ρ̃ is as in (21). For every finite family xj ∈ Bε(u) ∩ Kr,R and λj ∈ [0, 1]

(j = 1, 2, . . . , m), with ∑ λj = 1, we have ‖u1 −∑ λjT1xj‖∞ ≥ ρ.

Let xj and λj be as in the Claim and, for simplicity, denote y = ∑ λjT1xj. For a.a. t ∈ J = {t ∈
I1,n : u1(t) = Γ1,n(t)} we have

y′′(t) =
m

∑
j=1

λj(T1xj)
′′(t) = −

m

∑
j=1

λj g1(t) f1(t, xj,1(t), xj,2(t)). (22)

On the other hand, for every j ∈ {1, 2, . . . , m} and every t ∈ J we have

|xj,1(t)− Γ1,n(t)| = |xj,1(t)− u1(t)| < ε,

and then the assumptions on Γ1,n ensure that for a.a. t ∈ J we have

y′′(t) = −
m

∑
j=1

λj g1(t) f1(t, xj,1(t), xj,2(t)) <
m

∑
j=1

λj (Γ′′1,n(t)− ψ(t)) = u′′1 (t)− ψ(t). (23)

Now for t ∈ [t−, t̃−] we compute

y′(τ0)− y′(t) =
∫ τ0

t
y′′(s) ds =

∫
[t,τ0]∩J

y′′(s) ds +
∫
[t,τ0]\J

y′′(s) ds

<
∫
[t,τ0]∩J

u′′1 (s) ds−
∫
[t,τ0]∩J

ψ(s) ds

+
∫
[t,τ0]\J

η1(s) ds (by (23), (22) and (14))

= u′1(τ0)− u′1(t)−
∫
[t,τ0]\J

u′′1 (s) ds−
∫
[t,τ0]∩J

ψ(s) ds +
∫
[t,τ0]\J

η1(s) ds

≤ u′1(τ0)− u′1(t)−
∫
[t,τ0]∩J

ψ(s) ds + 2
∫
[t,τ0]\J

η1(s) ds

< u′1(τ0)− u′1(t)−
1
4

∫ τ0

t
ψ(s) ds (by (19) and (20)),

hence y′(t)− u′1(t) ≥ ρ̃ provided that y′(τ0) ≥ u′1(τ0). Therefore, by integration we obtain

y(t̃−)− u1(t̃−) = y(t−)− u1(t−) +
∫ t̃−

t−
(y′(t)− u′1(t)) dt ≥ y(t−)− u1(t−) + ρ̃(t̃− − t−).
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So, if y(t−)− u1(t−) ≤ −ρ, then ‖y− u1‖∞ ≥ ρ. Otherwise, if y(t−)− u1(t−) > −ρ, then we have
y(t̃−)− u1(t̃−) > ρ and thus ‖y− u1‖∞ ≥ ρ, too.

Similar computations in the interval [t̃+, t+] instead of [t−, t̃−] show that if y′(τ0) ≤ u′1(τ0) then
we have u′1(t)− y′(t) ≥ ρ̃ for all t ∈ [t̃+, t+] and this also implies ‖y− u1‖ ≥ ρ. The claim is proven.

Case 3: m({t ∈ I2,n : u2(t) = Γ2,n(t)}) > 0 for some n ∈ N. In this case it is possible to prove that
u2 6∈ T2u. The details are similar to those in Case 2, with obvious changes, so we omit them.

Remark 5. Observe that Definition 1 allows to study the discontinuities of the functions fi independently in
each variable u1 and u2, as shown in condition (H3).

In addition, a continuum set of discontinuity points is possible: for instance, the function f1 may be
discontinuous at the point u1 = 1 for all u2 ∈ R+ provided that the constant function Γ1 ≡ 1 is an inviable
discontinuity curve with respect to the first variable. This fact improves the ideas given in [5] for first-order
autonomous systems where “only” a countable set of discontinuity points are allowed.

Remark 6. Notice that conditions (12) and (13) are not local in the last variable. However, the condition

inf
t∈I,x,y∈R+

f1(t, x, y) > 0

implies that any constant function stands for an inviable discontinuity curve with respect to the first variable
(since condition (13) holds). Moreover, any function with strictly positive second derivative is always an inviable
discontinuity curve with respect to the variable u1 without any additional condition on f1.

Now we illustrate our existence result by some examples.

Example 1. Consider the coupled system{
−x′′(t) = x2 + x2y2H(a− x)H(b− y),
−y′′(t) =

√
x +
√

y + H(x− c)H(y− d),
(24)

subject to the boundary conditions (7) (replacing u1 and u2 by x and y, respectively) where a, b, c, d > 0 and H
denotes the Heaviside function.

The existence of numbers αi and βi in the conditions of (9) is guaranteed by Remark 3 (a) since f1(x, y) =
x2 + x2y2H(a− x)H(b− y) is a superlinear function and f2(x, y) =

√
x +
√

y + H(x− c)H(y− d) is a
sublinear function.

On the other hand, the function (x, y) 7→ f1(x, y) is continuous on (R+ \ {a})× (R+ \ {b}) and the
constant function Γ1 ≡ a stands for an inviable curve with respect to the first variable. Indeed,

−Γ′′1 (t) +
a2

8
=

a2

8
< f1(y, z) for a.a. t ∈ [0, 1] and for all y ∈

[
a
2

,
3a
2

]
and z ∈ R+,

hence (13) holds with ψ1 ≡ a2/8.
Moreover, the constant function Γ2 ≡ b is an inviable curve with respect to the second variable, according

to Remark 6 since
inf

x,y∈R+

f2(x, y) > 0.

Similarly, the function f2(x, y) =
√

x +
√

y + H(x − c)H(y − d) satisfies the hypothesis (H3) in
Theorem 3, so the system (7)–(24) has at least one positive solution.

Example 2. Consider the system{
−x′′(t) = x2 + x2y2H(a + t2 − x)H(b + mt− y),
−y′′(t) =

√
x +
√

y + H(x− c)H(y− d),
(25)
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subject to the boundary conditions (7), where a, b, c, d > 0 and m ∈ R.
Now, for a.a. t ∈ I, the function (x, y) 7→ f1(t, x, y), where

f1(t, x, y) = x2 + x2y2H(a + t2 − x)H(b + mt− y),

is continuous on
(
R+ \ {a + t2}

)
× (R+ \ {b + mt}) and the curve Γ1(t) = a + t2 is inviable with respect to

the first variable. Indeed, (13) is satisfied with ψ1 ≡ 1, since

−Γ′′1 (t) + 1 = −1 < f1(t, y, z) for a.a. t ∈ [0, 1] and for all y, z ∈ R+.

On the other hand, the curve Γ2(t) = b + mt is inviable with respect to the variable y, according to Remark
6, since Γ′′2 (t) ≡ 0 and infx,y∈R+

f2(x, y) > 0.
Therefore, Theorem 3 ensures the existence of one positive solution for problem (7)–(25).

Nevertheless, the conditions of Definition 1 are too strong for functions f1 which are discontinuous
at a single isolated point (x0, y0) or, more generally, over a curve (γ1(t), γ2(t)) for t ∈ Ī ⊂ I. This
is the motivation for another definition of the notion of discontinuity curves. This notion will be a
generalization of the admissible curves presented in [2] for one equation.

Definition 2. We say that γ = (γ1, γ2) : [a, b] ⊂ I = [0, 1] → R2
+, γi ∈ W2,1(a, b) (i = 1, 2), is

an admissible discontinuity curve for the differential equation u′′1 = −g1(t) f1(t, u1(t), u2(t)) if one of the
following conditions holds:

(a) γ′′1 (t) = −g1(t) f1(t, γ1(t), γ2(t)) for a.e. t ∈ [a, b] (then we say γ is viable for the differential equation),
(b) There exist ε > 0 and ψ ∈ L1(a, b), ψ(t) > 0 for a.e. t ∈ [a, b] such that either

γ′′1 (t) + ψ(t) < −g1(t) f1(t, y, z) for a.e. t ∈ [a, b] all y ∈ [γ1(t)− ε, γ1(t) + ε]

and all z ∈ [γ2(t)− ε, γ2(t) + ε] ,

or

γ′′1 (t)− ψ(t) > −g1(t) f1(t, y, z) for a.e. t ∈ [a, b] all y ∈ [γ1(t)− ε, γ1(t) + ε]

and all z ∈ [γ2(t)− ε, γ2(t) + ε] .

In this case we say that γ is inviable.

Similarly, we can define admissible discontinuity curves for u′′2 = −g2(t) f2(t, u1(t), u2(t)).

Theorem 4. Suppose that the functions fi and gi (i = 1, 2) satisfy conditions (H1), (H2) and

(H∗3 ) There exist admissible discontinuity curves for the first differential equation γn : In := [an, bn]→ R2
+,

n ∈ N, such that for a.e. t ∈ I the function (u1, u2) 7→ f1(t, u1, u2) is continuous on R2
+ \⋃

{n:t∈In} {(γn,1(t), γn,2(t))};
(H∗4 ) There exist admissible discontinuity curves for the second differential equation γ̃n : Ĩn := [ãn, b̃n]→

R2
+, n ∈ N, such that for a.e. t ∈ I the function (u1, u2) 7→ f2(t, u1, u2) is continuous on R2

+ \⋃
{n:t∈ Ĩn} {(γ̃n,1(t), γ̃n,2(t))}.

Moreover, assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, and ε > 0 such that

Bi f α,ε
i < αi, Ai f β,ε

i > βi for i = 1, 2.

Then the differential system (6)–(7) has at least one solution in Kr,R.
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Proof. Notice that in virtue of Lemma 1 it is sufficient to show that Fix(T) ⊂ Fix(T). Reasoning as
in the proof of Theorem 3, if we fix a function u ∈ Kr,R ∩ (Q1 × Q2), we have to consider three
different cases.

Case 1: m({t ∈ In : u(t) = γn(t)} ∪ {t ∈ Ĩn : u(t) = γ̃n(t)}) = 0 for all n ∈ N. Then T is
continuous at u.

Case 2: m({t ∈ In : u(t) = γn(t)}) > 0 or m({t ∈ Ĩn : u(t) = γ̃n(t)}) > 0 for some γn or
γ̃n inviable. Then u 6∈ Tu. The proof follows the ideas from Case 2 in Theorem 3.

Case 3: m({t ∈ In : u(t) = γn(t)}) > 0 or m({t ∈ Ĩn : u(t) = γ̃n(t)}) > 0 only for viable curves.
Then the relation u ∈ Tu implies u = Tu. In this case the idea is to show that u is a solution of the
differential system. The proof is analogus to that of the equivalent case in [2], Theorem 3.12 or [3],
Theorem 4.4, so we omit it here.

Remark 7. Notice that, in the case of a function (u1, u2) 7→ f1(t, u1, u2) which is discontinuous at a single
point (x0, y0), Definition 2 requires that one of the following two conditions holds:

(i) f1(t, x0, y0) = 0 for a.e. t ∈ [0, 1];
(ii) there exist ε > 0 and ψ ∈ L1(0, 1), ψ(t) > 0 for a.e. t ∈ I such that

0 < ψ(t) < g1(t) f1(t, x, y) for a.e. t ∈ I, all x ∈ [x0 − ε, x0 + ε] and all y ∈ [y0 − ε, y0 + ε].

In particular, for (ii), it suffices that there exist ε, δ > 0 such that

0 < δ < f1(t, x, y) for a.e. t ∈ I, all x ∈ [x0 − ε, x0 + ε] and all y ∈ [y0 − ε, y0 + ε].

To finish, we present two simple examples which fall outside of the applicability of Theorem 3,
but which can be studied by means of Theorem 4.

Example 3. Consider the problem{
−x′′(t) = f1(x, y) = (xy)1/3 (2− cos

(
1/((x− 1)2 + (y− 1)2)

)
H
(
(x− 1)2 + (y− 1)2)) ,

−y′′(t) = f2(x, y) = (xy)1/3,
(26)

subject to the boundary conditions (7).
It is clear that f1 and f2 have a sublinear behavior, see Remark 3.
The function (x, y) 7→ f1(x, y) is continuous on R2

+ \ {(1, 1)} and the constant function γ(t) =

(γ1(t), γ2(t)) ≡ (1, 1) is an inviable admissible discontinuity curve for the differential equation −x′′(t) =
f1(x, y) since 0 < 1/ 3

√
4 ≤ f1(x, y) for all x ∈ [1/2, 3/2] and all y ∈ [1/2, 3/2]; and γ′′1 (t) = 0.

Therefore, Theorem 4 guarantees the existence of a positive solution for problem (7)–(26).

Example 4. Consider the following system{
−x′′(t) = f1(x, y) = (xy)1/3,

−y′′(t) = f2(x, y) =
(

1 + (xy)1/3
)

H(x2 + y2),
(27)

subject to the boundary conditions (7).
The nonlinearities of the system have again a sublinear behavior. Now, the function (x, y) 7→ f2(x, y) is

continuous on R2
+ \ {(0, 0)} and the constant function γ(t) = (γ1(t), γ2(t)) ≡ (0, 0) is a viable admissible

discontinuity curve for the differential equation.
Hence, by application of Theorem 4, one obtains that the system (7)–(27) has at least one positive solution.

Author Contributions: The authors contributed equally to this work.



Mathematics 2019, 7, 451 15 of 15

Funding: R. López Pouso was partially supported by Ministerio de Economía y Competitividad, Spain,
and FEDER, Project MTM2016-75140-P, and Xunta de Galicia ED341D R2016/022 and GRC2015/004. Jorge
Rodríguez-López was partially supported by Xunta de Galicia Scholarship ED481A-2017/178.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Figueroa, R.; Infante, G. A Schauder–type theorem for discontinuous operators with applications to
second-order BVPs. Fixed Point Theory Appl. 2016, 2016, 53. [CrossRef]

2. Figueroa, R.; Pouso, R.L.; Rodríguez-López, J. A version of Krasnosel’skiı̆’s compression-expansion fixed
point theorem in cones for discontinuous operators with applications. Topol. Methods Nonlinear Anal. 2018,
51, 493–510. [CrossRef]

3. López Pouso, R. Schauder’s fixed–point theorem: New applications and a new version for discontinuous
operators. Bound. Value Probl. 2012, 2012, 92. [CrossRef]

4. Filippov, A.F. Differential Equations with Discontinuous Righthand Sides; Kluwer Academic: Dordrecht,
The Netherlands, 1988.

5. Hu, S. Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl. 1991, 154, 377–390.
[CrossRef]

6. Spraker, J.S.; Biles, D. A comparison of the Carathéodory and Filippov solution sets. J. Math. Anal. Appl.
1996, 198, 571–580. [CrossRef]
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