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Abstract: Some new inertial forward-backward projection iterative algorithms are designed in a real
Hilbert space. Under mild assumptions, some strong convergence theorems for common zero points
of the sum of two kinds of infinitely many accretive mappings are proved. New projection sets are
constructed which provide multiple choices of the iterative sequences. Some already existing iterative
algorithms are demonstrated to be special cases of ours. Some inequalities of metric projection and
real number sequences are widely used in the proof of the main results. The iterative algorithms have
also been modified and extended from pure discussion on the sum of accretive mappings or pure
study on variational inequalities to that for both, which complements the previous work. Moreover,
the applications of the abstract results on nonlinear capillarity systems are exemplified.

Keywords: m-accretive mapping; strongly positive mapping; µ-inversely strongly accretive mapping;
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1. Introduction and Preliminaries

Suppose H is a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉. Let K be the non-empty
closed and convex subset of H. We use → and ⇀ to denote the strong and weak convergence in
H, respectively.

We know that Hilbert space H satisfies Opial’s condition in the sense that limin fn→∞‖xn − z‖ <
limin fn→∞‖xn − y‖ for {xn} ⊂ H with xn ⇀ z and y 6= z (see [1]).

The inclusion problem for finding u ∈ H such that

0 ∈ Su + Tu (1)

is studied intensively, where S : H → H is a mapping and T : H → 2H is a multi-valued mapping.
This is mainly because many problems appear in convex programming, variational inequalities, split
feasibility problems, minimization problem, inverse problem and image processing can be modeled
by (1).

A mapping T : D(T) ⊂ H → 2H is said to be an accretive mapping (see [2]) if for each x, y ∈ D(T),
there exist u ∈ Tx and v ∈ Ty such that 〈x− y, u− v〉 ≥ 0. An accretive mapping T : D(T) ⊂ H → 2H

is said to be m-accretive if R(I + kT) = H, for k > 0.
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A mapping S : D(S) ⊂ H → H is said to be µ-inversely strongly accretive mapping (see [3]) if for
each x, y ∈ D(S) and µ > 0, 〈x− y, Sx− Sy〉 ≥ µ‖Sx− Sy‖2.

For a mapping W : D(W) ⊂ H → H, a point x ∈ D(W) is called a zero point of W if Wx = 0.
The set of zero points of W is denoted by W−10. If x ∈ D(W) ⊂ H satisfies that Wx = x, then x is
called a fixed point of W. The set of fixed points of W is denoted by Fix(W).

The study of the special case of inclusion problem (1), where T is accretive and S is µ-inversely
strongly accretive, has been a hot topic during the past few years. In particular, the constructions of
the iterative algorithms for approximating the zero point of the sum of T and S are focused, see [3–12]
and the references therein. The inertial forward-backward splitting method is one of the important
iterative algorithms studied by some authors, see [7–9,13,14].

In 2015, Lorenz and Pock [9] proposed the following inertial forward-backward algorithm for
approximating zero points of T + S, where T : H → 2H is m-accretive and S : H → H is µ-inversely
strongly accretive: 

u0, u1 ∈ H chosen arbitrarily,

vn = un + θn(un − un−1),

un+1 = (I + rnT)−1(vn − rnSvn), n ∈ N.

(2)

In addition, the result that un ⇀ p ∈ (T + S)−10, as n→ ∞, is proved under some conditions.
To get strong convergence, Dong et al. proposed the following inertial forward-backward

projection algorithm in Hilbert spaces in [14]:

u0, u1 ∈ H chosen arbitrarily,

vn = un + αn(un − un−1),

wn = (I + rnT)−1(vn − rnSvn),

Cn = {p ∈ H : ‖wn − p‖2 ≤ ‖un − p‖2 − 2αn〈un − p, un−1 − un〉
+ α2

n‖un−1 − un‖2},
Qn = {p ∈ H : 〈un − p, un − u0〉 ≤ 0},
un+1 = PCn

⋂
Qn(u0), n ∈ N,

(3)

where T and S are the same as those in (2) and PCn
⋂

Qn is the metric projection whose meaning can be
seen in Definition 1. The projection sets Cn and Qn play an important role in the iterative construction
to ensure the strong convergence. The result that un → P(T+S)−10(u0), as n → ∞, is proved under
some conditions.

In 2018, Khan et al. proposed the following one in which the projection set Qn is deleted (see [7]):

u0, u1 ∈ H chosen arbitrarily,

vn = un + θn(un − un−1),

wn = αnun + (1− αn)(I + rnT)−1(vn − rnSvn),

C1 := H,

Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ ‖un − p‖2

− 2θn(1− αn)〈un − p, un−1 − un〉+ 2θ2
n‖un−1 − un‖2},

un+1 = PCn+1(u0), n ∈ N,

(4)

where T and S are the same as those in (3). The strong convergence that un → P(T+S)−10(u0), as n→ ∞,
is also obtained under some conditions.

On the other hand, the inclusion problem (1) is extended to the system of inclusion problems:

0 ∈ Siu + Tiu, (5)
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where Ti is m-accretive and Si is µi-inversely strongly accretive for i ∈ {1, 2, · · · , m} or i ∈ N.
In addition, some iterative algorithms for approximating common zero points of Ti + Si are constructed
in [3,15–17]. In particular, Wei et al. proposed the following implicit mid-point forward-backward
projection algorithm in [17]:

u1 ∈ H chosen arbitrarily,

wn = αnη f (un) + (I − αnF)un,

vn = βnwn + δn ∑∞
i=1 cn,i(I + rn,iTi)

−1[wn+vn
2 − rn,iSi(

wn+vn
2 )] + λnen,

C1 = H,

Cn+1 = {p ∈ Cn : ‖vn − p‖2 ≤ 1+βn−λn
2−δn

‖wn − p‖2 + 2λn
2−δn
‖en − p‖2},

un+1 = PCn+1(u1), n ∈ N,

(6)

where f : H → H is a contraction, F : H → H is strongly positive linear bounded mapping, en is the
computational error, Ti is m-accretive and Si is µi-inversely strongly accretive for i ∈ N. The result that
un → P⋂∞

i=1(Ti+Si)−10(u1), as n→ ∞, is proved under some conditions.
Recall that f : H → H is called a contraction (see [17]) if there exists a constant l ∈ (0, 1) such that

‖ f (x)− f (y)‖ ≤ l‖x− y‖ for x, y ∈ H.
A mapping F : H → H is called strongly positive (see [17]) if there exists ξ > 0 such that

〈x, Fx〉 ≥ ξ‖x‖2 for x ∈ H. In this case,

‖aI − bF‖ = sup‖x‖≤1|〈(aI − bF)x, x〉|,

where I is the identity mapping, a ∈ [0, 1] and b ∈ [−1, 1].
A mapping U : H → H is said to be non-expansive (see [17]) if for each x, y ∈ H, ‖Ux−Uy‖ ≤

‖x− y‖.
In 2018, Wei et al. proposed some new hybrid iterative algorithms to approximate the common

element of the set of zero points of infinitely many m-accretive mappings Ti : H → H and the set of
fixed points of infinitely many non-expansive mappings Bi : H → H. A special case (see Corollary 3.6
in [18]) is presented as follows:

u1 ∈ H chosen arbitrarily,

yn = αnun + (1− αn)∑∞
i=1 cn,i(I + rn,iTi)

−1(un + en),

zn = βnun + (1− βn)∑∞
i=1 biBiyn,

C1 = H = Q1,

Cn+1 = {p ∈ Cn : ‖yn − p‖2 ≤ αn‖un − p‖2 + (1− αn)‖un + en − p‖2,

‖zn − p‖2 ≤ βn‖un − p‖2 + (1− βn)‖yn − p‖2},
Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖u1 − PCn+1(u1)‖2 + λn+1},
un+1 ∈ Qn+1, n ∈ N.

(7)

The result that un → P⋂∞
m=1 Cm(u1) ∈ (

⋂∞
i=1 T−1

i 0)
⋂
(
⋂∞

i=1 Fix(Bi)), as n → ∞, is proved under
some conditions. We may notice that infinite choices of {un} can be made, which is totally different
from traditional projection iterative algorithms, e.g., (3).
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In 2016, Wei et al. proposed an implicit forward-backward mid-point iterative algorithm for
approximating common zero points of Ti + Si, where Ti is m-accretive and Si is µi-inversely strongly
accretive, for i ∈ N. A special case in [19] in the frame of Hilbert space is presented as follows:

u1 ∈ K ⊂ H chosen arbitrarily,

yn = PK[(1− αn)(un + e′n)],

zn = δnyn + βn ∑∞
i=1 ai(I + rn,iTi)

−1[( yn+zn
2 − rn,iSi(

yn+zn
2 )] + ξne′′n ,

un+1 = γnη f (un) + (I − γnF)zn + e′′′n , n ∈ N,

(8)

where f and F are the same as those in (6), {e′n}, {e′′n} and {e′′′n } are the error sequences. Under some
conditions, {un} is proved to be convergent strongly to u0 ∈

⋂∞
i=1(Ti + Si)

−10, which also satisfies the
following variational inequality:

〈Fu0 − η f (u0), u0 − z〉 ≤ 0, ∀z ∈
∞⋂

i=1

(Ti + Si)
−10. (9)

We may notice that the connection between the common element of (Ti + Si)
−10 for i ∈ N and

the solution of one kind variational inequality is set up in [19].
In this paper, our main purpose is formulated as follows: (1) obtain strong convergence theorems

instead of weak ones; (2) construct new projection sets, which ensure that infinitely many iterative
sequences can be generated compared to traditional projection iterative algorithms (3), (4) and (6); (3)
inject the idea of inertial forward-backward algorithm into the iterative construction, compared to
iterative algorithms (6)–(8); (4) set up the connection between the common zero point of the sum of two
kinds of infinitely many accretive mappings and the solution of one kind variational inequality, which
complements the corresponding work since rare studies of the projection iterative algorithms (e.g.,
(3)–(7)) have mentioned that; (5) provide the application of the abstract result to capillarity systems.

To begin our study, we need some preliminaries.

Definition 1. (see [2]) For the Hilbert space H and its non-empty closed and convex subset K, there exists a
unique point x0 ∈ K such that ‖x− x0‖ = in f {‖x− y‖ : y ∈ K}, for each x ∈ H. In this case, the metric
projection mapping PK : H → K is defined by PKx = x0, for ∀x ∈ H.

Definition 2. (see [20]) Let {Kn} be a sequence of non-empty closed and convex subsets of H. Then

(1) the strong lower limit of {Kn}, s− limin f Kn, is defined as the set of all x ∈ H such that there exists
xn ∈ Kn for almost all n and it tends to x as n→ ∞ in the norm;

(2) the weak upper limit of {Kn}, w− limsupKn, is defined as the set of all x ∈ H such that there exists
a subsequence {Knm} of {Kn} and xnm ∈ Knm for every nm and it tends to x as nm → ∞ in the weak
topology;

(3) the limit of {Kn}, limKn, is the common value when s− limin f Kn = w− limsupKn.

Lemma 1. (see [20]) Let {Kn} be a decreasing sequence of closed and convex subsets of H, i.e., Kn ⊂ Km if
n ≥ m. Then {Kn} converges in H and limKn =

⋂∞
n=1 Kn.

Lemma 2. (see [21]) Suppose H is a real Hilbert space. If limKn exists and is not empty, then PKn x → PlimKn x
for every x ∈ H, as n→ ∞.

Lemma 3. (see [2,19]) If B : H → H is accretive, then (I + rB)−1 : H → H is non-expansive.
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Lemma 4. (see [22]) If H is a real Hilbert space with K its non-empty closed and convex subset, Ti : K →
K is non-expansive for i ∈ N and ∑∞

i=1 ai = 1 for {ai} ⊂ (0, 1), then ∑∞
i=1 aiTi is non-expansive with

Fix(∑∞
i=1 aiTi) =

⋂∞
i=1 Fix(Ti) under the assumption that

⋂∞
i=1 Fix(Ti) 6= ∅.

Lemma 5. (see [19]) If H is a real Hilbert space with K its non-empty closed and convex subset, S : K → H is
a single-valued mapping and T : H → 2H is an m-accretive mapping, then

Fix((I + rT)−1(I − rS)) = (T + S)−10,

for ∀r > 0.

Lemma 6. (see [23]) Let H be a real Hilbert space and r ∈ (0,+∞). Then there exists a continuous,
strictly increasing and convex function g : [0, 2r] → [0,+∞) with g(0) = 0 such that ‖kx + (1− k)y‖2 ≤
k‖x‖2 + (1− k)‖y‖2 − k(1− k)g(‖x− y‖), for k ∈ [0, 1], x, y ∈ H with ‖x‖ ≤ r and ‖y‖ ≤ r.

Lemma 7. (see [24]) Let K be the non-empty closed and convex subset of Hilbert space H and PK : H → K be
the metric projection. Then

(1) for ∀x ∈ H and ∀y ∈ K, ‖PKx− y‖2 + ‖PKx− x‖2 ≤ ‖y− x‖2.
(2) y = PKx if and only if there holds the following inequality 〈x− y, y− z〉 ≥ 0, for ∀z ∈ K.

Lemma 8. (see [25]) If f : H → H is a contraction, then there is a unique element x ∈ H such that f (x) = x.

2. Some Inertial Forward-Backward Algorithms

In this section, unless otherwise stated, we always assume that:

(1) H is a real Hilbert space;
(2) Ai : H → H is µi-inversely strongly accretive and Bi : H → H is m-accretive, for each i ∈ N. In

addition,
⋂∞

i=1(Ai + Bi)
−10 6= ∅;

(3) {en} ⊂ H is the computational error;
(4) {σn}, {sn,i} and {µi} are three real number sequences in (0,+∞) for i, n ∈ N;
(5) {αn}, {βn} and {γn} are three real number sequences in (0, 1) with αn + βn + γn ≡ 1, for n ∈ N;
(6) {ωn,i} is a real number sequence in (0, 1) with ∑∞

i=1 ωn,i = 1, for n ∈ N;
(7) {kn} is a real number sequence in [0, k] for some k ∈ [0, 1).

2.1. New Inertial Forward-Backward Projection Algorithms

Theorem 1. Let {un} be generated by the following iterative algorithm:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
vn = un + kn(un − un−1),
wn = αnun + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)vn + γnen,

C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ (1− γn)‖un − p‖2 + γn‖en − p‖2

+ k2
n‖un − un−1‖2 − 2βnkn〈un − p, un−1 − un〉},

Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(10)

Under the assumptions that: (i) sn,i ≤ µi for i, n ∈ N; (ii) σn → 0, γn → 0, as n → ∞; (iii)
0 < in fnβn < 1; (iv) there exists M > 0 such that ‖en‖ ≤ M, for n ∈ N, we have: un → P⋂∞

m=1 Cm(u1) =

P⋂∞
i=1(Ai+Bi)−10(u1) ∈

⋂∞
i=1(Ai + Bi)

−10, as n→ ∞.

Proof. We split the proof into nine steps.
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Step 1. ∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai) : H → H is non-expansive, for n ∈ N.
The proof of Step 1 is essentially from that of Step 1 in Theorem 2.1 of [17]. For the sake of

completeness, we present it as follows.
Since sn,i ≤ 2µi, then for each x, y ∈ H,

‖(I − sn,i Ai)x− (I − sn,i Ai)y‖2 = ‖(x− y)− sn,i(Aix− Aiy)‖2

= ‖x− y‖2 − 2sn,i〈x− y, Aix− Aiy〉+ s2
n,i‖Aix− Aiy‖2

≤ ‖x− y‖2 + sn,i(sn,i − 2µi)‖Aix− Aiy‖2 ≤ ‖x− y‖2.

Thus, (I − sn,i Ai) : H → H is non-expansive, for i, n ∈ N. It then follows from Lemmas 3 and 4
that ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I− sn,i Ai) : H → H is non-expansive, for n ∈ N. Combining with Lemma 5,⋂∞

i=1 Fix((I + sn,iBi)
−1(I − sn,i Ai)) =

⋂∞
i=1(Ai + Bi)

−10.
Step 2.

⋂∞
i=1(Ai + Bi)

−10 ⊂ Cn, for n ∈ N.
If n = 1, it is obvious that

⋂∞
i=1(Ai + Bi)

−10 ⊂ C1.
Now, ∀q ∈ ⋂∞

i=1(Ai + Bi)
−10, suppose the result is true for n = m+ 1, then if n = m+ 2, it follows

from (10) that

‖vm+1 − q‖2

= ‖um+1 − q‖2 + 2km+1〈um+1 − q, um+1 − um〉+ k2
m+1‖um+1 − um‖2.

(11)

Using Step 1, we have:

‖wm+1 − q‖2

≤ αm+1‖um+1 − q‖2 + βm+1‖vm+1 − q‖2 + γm+1‖em+1 − q‖2.
(12)

Combining (11) and (12),

‖wm+1 − q‖2 ≤ (αm+1 + βm+1)‖um+1 − q‖2

+γm+1‖em+1 − q‖2 + k2
m+1‖um+1 − um‖2 − 2km+1βm+1〈um+1 − q, um − um+1〉,

which ensures that q ∈ Cm+2. Then by induction, q ∈ Cn, for n ∈ N.
Step 3. Cn is a closed and convex subset of H, for each n ∈ N.
It is not difficult to see that

‖wn − p‖2 ≤ (1− γn)‖un − p‖2 + γn‖en − p‖2

+k2
n‖un − un−1‖2 − 2βnkn〈un − p, un−1 − un〉

⇐⇒ ‖wn‖2 − (1− γn)‖un‖2 − γn‖en‖2 − k2
n‖un − un−1‖2 + 2βnkn〈un, un−1 − un〉

≤ 2〈p, wn〉 − 2(1− γn)〈p, un〉 − 2γn〈p, en〉+ 2βnkn〈p, un−1 − un〉.

Then Cn is a closed and convex subset of H, for each n ∈ N.
Step 4. Qn is non-empty for each n ∈ N, which ensures that {un} is well-defined.
From Step 3 and the definition of metric projection, for σn+1, there exists δn+1 ∈ Cn+1 such that

‖u1 − δn+1‖2 ≤ (in fz∈Cn+1‖u1 − z‖)2 + σn+1 = ‖PCn+1(u1)− u1‖2 + σn+1. Thus, Qn+1 6= ∅, for n ∈ N.
And then {un} is well-defined.

Step 5. PCn+1(u1)→ P⋂∞
m=1 Cm(u1), as n→ ∞.

The proof of Step 5 is similar to Step 2 of Theorem 3.1 in [18]. It follows from Lemma 1 that limCn

exists and limCn =
⋂∞

n=1 Cn 6= ∅. Then Lemma 2 implies that PCn+1(u1)→ P⋂∞
m=1 Cm(u1), as n→ ∞.

Step 6. un → P⋂∞
m=1 Cm(u1), as n→ ∞.

Since un+1 ∈ Qn+1 ⊂ Cn+1 and Cn is a convex subset of H, then for ∀t ∈ (0, 1), tPCn+1(u1) + (1−
t)un+1 ∈ Cn+1, which implies that

‖PCn+1(u1)− u1‖ ≤ ‖tPCn+1(x1) + (1− t)un+1 − u1‖. (13)
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Using Lemma 6, we have

‖tPCn+1(u1) + (1− t)un+1 − u1‖2 = ‖t(PCn+1(u1)− u1) + (1− t)(un+1 − u1)‖2

≤ t‖PCn+1(u1)− u1‖2 + (1− t)‖un+1 − u1‖2 − t(1− t)g(‖PCn+1(u1)− un+1‖).
(14)

Then (13) and (14) ensure that tg(‖PCn+1(u1)− un+1‖) ≤ ‖un+1 − u1‖2 − ‖PCn+1(u1)− u1‖2 ≤
σn+1. Letting t→ 1 first and then n→ ∞, we know that PCn+1(u1)− un+1 → 0 as n→ ∞. From Step 5,
un → P⋂∞

m=1 Cm(u1), as n→ ∞.
Step 7. vn → P⋂∞

m=1 Cm(u1) and wn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Since un+1 − un → 0 and un+1 ∈ Qn+1 ⊂ Cn+1, then from (10), ‖un+1 − vn+1‖ = kn+1‖un+1 −
un‖ → 0, as n→ ∞. Thus, vn → P⋂∞

m=1 Cm(u1), as n→ ∞. Since un+1 ∈ Qn+1 ⊂ Cn+1, then

‖wn − un+1‖2 ≤ (1− γn)‖un+1 − un‖2 + γn‖en − un+1‖2

+k2
n‖un − un−1‖2 − 2βnkn〈un − un+1, un−1 − un〉

≤ (1− γn)‖un+1 − un‖2 + γn‖en − un+1‖2 + k2
n‖un − un−1‖2 + 2‖un+1 − un‖‖un−1 − un‖ → 0,

as n→ ∞. Thus, wn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Step 8. P⋂∞
m=1 Cm(u1) ∈

⋂∞
i=1(Ai + Bi)

−10.
In fact, if, otherwise, P⋂∞

m=1 Cm(u1)∈
⋂∞

i=1(Ai + Bi)
−10. Then P⋂∞

m=1 Cm(u1) 6= ∑∞
i=1 ωn,i(I +

sn,iBi)
−1(I − sn,i Ai)P⋂∞

m=1 Cm(u1).
Since wn = αnun + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)vn + γnen, then βn[∑∞

i=1 ωn,i(I +

sn,iBi)
−1(I − sn,i Ai)vn − wn] = αn(wn − un) + γn(wn − en)→ 0, as n→ ∞.

Since in fnβn > 0, then there exists a subsequence of {n}, which is still denoted by {n} such that
∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)vn − wn → 0, as n→ ∞.

Thus, ∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)vn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Since H satisfies Opial’s condition, then

limin fn→∞‖vn − P⋂∞
m=1 Cm(u1)‖

< limin fn→∞‖vn −∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)P⋂∞
m=1 Cm(u1)‖

≤ limin fn→∞‖vn −∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)vn‖
+limin fn→∞‖vn − P⋂∞

m=1 Cm(u1)‖
≤ limin fn→∞‖vn − P⋂∞

m=1 Cm(u1)‖,

which makes a contradiction! Thus, P⋂∞
m=1 Cm(u1) ∈

⋂∞
i=1(Ai + Bi)

−10.
Step 9. P⋂∞

m=1 Cm(u1) = P⋂∞
i=1(Ai+Bi)−10(u1).

From Step 8, ‖P⋂∞
i=1(Ai+Bi)−10(u1)− u1‖ ≤ ‖P⋂∞

m=1 Cm(u1)− u1‖.
On the other hand, since

⋂∞
i=1(Ai + Bi)

−10 ⊂ ⋂∞
m=1 Cm, then ‖P⋂∞

m=1 Cm(u1) − u1‖ ≤
‖P⋂∞

i=1(Ai+Bi)−10(u1)− u1‖. Thus,

‖P⋂∞
i=1(Ai+Bi)−10(u1)− u1‖ = ‖P⋂∞

m=1 Cm(u1)− u1‖.

Using Lemma 7, we have

‖P⋂∞
i=1(Ai+Bi)−10(u1)− P⋂∞

m=1 Cm(u1)‖2 + ‖P⋂∞
m=1 Cm(u1)− u1‖2

≤ ‖P⋂∞
i=1(Ai+Bi)−10(u1)− u1‖2 = ‖P⋂∞

m=1 Cm(u1)− u1‖2,

which implies that P⋂∞
i=1(Ai+Bi)−10(u1) = P⋂∞

m=1 Cm(u1).

Remark 1. Compared to (3) and (4), infinitely many m-accretive mappings and infinitely many µi-inversely
strongly accretive mappings are considered in (10). Compared to (6), the idea of inertial forward-backward
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algorithm is embodied in (10). Compared to (3), (4) and (6), infinite choices of the iterative sequences {un} are
defined.

Remark 2. The traditional idea for choosing the unique iterative element un+1 as the metric projection of the
initial element in iterative algorithms (3), (4) and (6) is contained in the ideas of (10) in our paper.

In fact, if take un+1 = PCn+1(u1), we can easily see that

‖un+1 − u1‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1.

Thus, un+1 = PCn+1(u1) ∈ Qn+1, which means that this un+1 is a kind of choice of (10).

Corollary 1. If kn ≡ 0, then (10) in Theorem 1 becomes to the traditional forward-backward iterative algorithm:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
wn = αnun + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)un + γnen,

C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ (1− γn)‖un − p‖2 + γn‖en − p‖2},
Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

Corollary 2. If i ≡ 1, then (10) in Theorem 1 becomes to the following iterative algorithm:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
vn = un + kn(un − un−1),
wn = αnun + βn(I + snB)−1(I − sn A)vn + γnen,
C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ (1− γn)‖un − p‖2 + γn‖en − p‖2

+ k2
n‖un − un−1‖2 − 2βnkn〈un − p, un−1 − un〉},

Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(15)

Remark 3. Let en ≡ 0, αn + βn ≡ 1, for n ∈ N. After taking un+1 = PCn+1(u1) in (15), we may see that
Qn+1 can be deleted which implies that (15) reduces to (4). However, the strong assumption that ∑∞

n=1 kn‖un −
un−1‖ < +∞ in [7] is no longer needed in our paper.

2.2. New Mid-Point Inertial Forward-Backward Projection Algorithms

Theorem 2. Suppose f : H → H is a contraction with k ∈ (0, 1) and F : H → H is a strongly positive linear
bounded operator with coefficient ξ > 0. Let {un} be generated by the following iterative algorithm:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
z0 = u0,
zn = δnλ f (un) + (I − δnF)un,
vn = zn + kn(zn − zn−1),
wn = αnvn + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

vn+wn
2 ) + γnen,

C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ 2αn+βn

2−βn
‖zn − p‖2 + 2γn

2−βn
‖en − p‖2

+ 2αn+βn
2−βn

k2
n‖zn − zn−1‖2 − 2kn

2αn+βn
2−βn

〈zn − p, zn−1 − zn〉},
Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(16)
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Under the assumptions of (i)− (iv) in Theorem 1 and (v) λ > 0 and (vi) δn → 0, as n→ ∞, we have:
un → P⋂∞

m=1 Cm(u1) = P⋂∞
i=1(Ai+Bi)−10(u1) ∈

⋂∞
i=1(Ai + Bi)

−10, as n→ ∞.

Proof. We split the proof into ten steps.
Step 1. ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai) : H → H is non-expansive, for n ∈ N.

Copy Step 1 in Theorem 1.
Step 2. {wn} is well-defined.
Define U : H → H by

Ux = ty + sT(
x + y

2
) + (1− t− s)v,

where T : H → H is non-expansive and t, s ∈ (0, 1).
It is easy to check that U is a contraction since

‖Ux−Uz‖ ≤ s‖ x+y
2 −

z+y
2 ‖ =

s
2‖x− z‖ < ‖x− z‖,

for ∀x, z ∈ H.
In view of Lemma 8, there exists a unique element x ∈ H such that x = Ux. Combining with the

result of Step 1, {wn} is well-defined.
Step 3.

⋂∞
i=1(Ai + Bi)

−10 ⊂ Cn, for n ∈ N.
If n = 1, it is obvious that

⋂∞
i=1(Ai + Bi)

−10 ⊂ C1.
Now, ∀q ∈ ⋂∞

i=1(Ai + Bi)
−10, suppose the result is true for n = m + 1, then if n = m + 2, in view

of Lemma 4, we have:

‖wm+1 − q‖2 ≤ αm+1‖vm+1 − q‖2 + βm+1‖ vm+1+wm+1
2 − q‖2 + γm+1‖em+1 − q‖2,

which ensures that

‖wm+1 − q‖2 ≤ 2αm+1+βm+1
2−βm+1

‖vm+1 − q‖2 + 2γm+1
2−βm+1

‖em+1 − q‖2. (17)

It follows from (16) that

‖vm+1 − q‖2

= ‖zm+1 − q‖2 + 2km+1〈zm+1 − q, zm+1 − zm〉+ k2
m+1‖zm+1 − zm‖2.

(18)

Combining (17) and (18),

‖wm+1 − q‖2 ≤ 2αm+1+βm+1
2−βm+1

‖zm+1 − q‖2 + 2γm+1
2−βm+1

‖em+1 − q‖2

+ 2αm+1+βm+1
2−βm+1

k2
m+1‖zm+1 − zm‖2 − 2km+1

2αm+1+βm+1
2−βm+1

〈zm+1 − q, zm − zm+1〉.

Thus, q ∈ Cm+2. Then by induction, q ∈ Cn, for n ∈ N.
Step 4. Cn is a closed and convex subset of H, for each n ∈ N. It is not difficult to see that

‖wn − p‖2 ≤ 2αn+βn
2−βn

‖zn − p‖2 + 2γn
2−βn
‖en − p‖2

+k2
n

2αn+βn
2−βn

‖zn − zn−1‖2 − 2kn
2αn+βn

2−βn
〈zn − p, zn−1 − zn〉

⇐⇒ ‖wn‖2 − 2αn+βn
2−βn

‖zn‖2 − 2γn
2−βn
‖en‖2 − k2

n
2αn+βn

2−βn
‖zn − zn−1‖2 + 2kn

2αn+βn
2−βn

〈zn, zn−1 − zn〉
≤ 2〈p, wn〉 − 2 2αn+βn

2−βn
〈p, zn〉 − 4γn

2−βn
〈p, en〉+ 2kn

2αn+βn
2−βn

〈p, zn−1 − zn〉.

Then Cn is a closed and convex subset of H, for each n ∈ N.
Step 5. Qn is non-empty for each n ∈ N, which ensures that {un} is well-defined.
Copy Step 4 in Theorem 1.
Step 6. PCn+1(u1)→ P⋂∞

m=1 Cm(u1), as n→ ∞.
Copy Step 5 in Theorem 1.



Mathematics 2019, 7, 466 10 of 19

Step 7. un → P⋂∞
m=1 Cm(u1), as n→ ∞.

Copy Step 6 in Theorem 1.
Step 8. zn → P⋂∞

m=1 Cm(u1), vn → P⋂∞
m=1 Cm(u1) and wn → P⋂∞

m=1 Cm(u1), as n→ ∞.
Since zn − un = δn(λ f (un)− Fun) and δn → 0, then it is easy to see that zn → P⋂∞

m=1 Cm(u1), as
n→ ∞.

Since vn = zn + kn(zn − zn−1), then vn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Since un+1 − un → 0 and un+1 ∈ Qn+1 ⊂ Cn+1, then

‖wn − un+1‖2 ≤ 2αn+βn
2−βn

‖zn − un+1‖2 + 2γn
2−βn
‖en − un+1‖2

+k2
n

2αn+βn
2−βn

‖zn − zn−1‖2 − 2kn
2αn+βn

2−βn
〈zn − un+1, zn−1 − zn〉

≤ ‖zn − un+1‖2 + 2γn‖en − zn+1‖2 + k2
n‖zn − zn−1‖2 + 2‖un+1 − zn‖‖zn−1 − zn‖ → 0.

Thus, wn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Step 9. P⋂∞
m=1 Cm(u1) ∈

⋂∞
i=1(Ai + Bi)

−10.
In fact, if, otherwise, P⋂∞

m=1 Cm(u1)∈
⋂∞

i=1(Ai + Bi)
−10. Then P⋂∞

m=1 Cm(u1) 6= ∑∞
i=1 ωn,i(I +

sn,iBi)
−1(I − sn,i Ai)P⋂∞

m=1 Cm(u1).
Since wn = αnvn + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

vn+wn
2 ) + γnen, then βn[∑∞

i=1 ωn,i(I +
sn,iBi)

−1(I − sn,i Ai)(
vn+wn

2 )− wn] = αn(wn − vn) + γn(wn − en)→ 0, as n→ ∞.
Since in fnβn > 0, then there exists a subsequence of {n}, which is still denoted by {n} such that

∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)(
vn+wn

2 )− wn → 0, as n→ ∞.
Thus, ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

vn+wn
2 )→ P⋂∞

m=1 Cm(u1), as n→ ∞.
Since H satisfies Opial’s condition, then

limin fn→∞‖ vn+wn
2 − P⋂∞

m=1 Cm(u1)‖
< limin fn→∞‖ vn+wn

2 −∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)P⋂∞
m=1 Cm(u1)‖

≤ limin fn→∞‖ vn+wn
2 −∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)

vn+wn
2 ‖

+limin fn→∞‖ vn+wn
2 − P⋂∞

m=1 Cm(u1)‖
≤ limin fn→∞‖ vn+wn

2 − P⋂∞
m=1 Cm(u1)‖,

which makes a contradiction. Thus, P⋂∞
m=1 Cm(u1) ∈

⋂∞
i=1(Ai + Bi)

−10.
Step 10. P⋂∞

m=1 Cm(u1) = P⋂∞
i=1(Ai+Bi)−10(u1).

From Step 9, ‖P⋂∞
i=1(Ai+Bi)−10(u1)− u1‖ ≤ ‖P⋂∞

m=1 Cm(u1)− u1‖.
On the other hand, since

⋂∞
i=1(Ai + Bi)

−10 ⊂ ⋂∞
m=1 Cm, then ‖P⋂∞

m=1 Cm(u1) − u1‖ ≤
‖P⋂∞

i=1(Ai+Bi)−10(u1)− u1‖. Thus,

‖P⋂∞
i=1(Ai+Bi)−10(u1)− u1‖ = ‖P⋂∞

m=1 Cm(u1)− u1‖.

Using Lemma 7, we have

‖P⋂∞
i=1(Ai+Bi)−10(u1)− P⋂∞

m=1 Cm(u1)‖2 + ‖P⋂∞
m=1 Cm(u1)− u1‖2

≤ ‖P⋂∞
i=1(Ai+Bi)−10(u1)− u1‖2 = ‖P⋂∞

m=1 Cm(u1)− u1‖2,

which implies that P⋂∞
i=1(Ai+Bi)−10(u1) = P⋂∞

m=1 Cm(u1).

Remark 4. Similar to Remark 2, un+1 = PCn+1(u1) is also a possible choice of un+1 ∈ Qn+1 in Theorem 2.
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Corollary 3. If δn ≡ 0, then (16) becomes to the following traditional mid-point inertial forward-backward
projection iterative algorithm:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
vn = un + kn(un − un−1),
wn = αnvn + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

vn+wn
2 ) + γnen,

C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ 2αn+βn

2−βn
‖un − p‖2 + 2γn

2−βn
‖en − p‖2

+ 2αn+βn
2−βn

k2
n‖un − un−1‖2 − 2kn

2αn+βn
2−βn

〈un − p, un−1 − un〉},
Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(19)

If, moreover, kn ≡ 0 in (19), then it becomes to the following traditional forward-backward mid-point
iterative algorithm:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
wn = αnun + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

un+wn
2 ) + γnen,

C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ 2αn+βn

2−βn
‖un − p‖2 + 2γn

2−βn
‖en − p‖2},

Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(20)

Corollary 4. If kn ≡ 0 in (15), then it becomes to the following one:

u0, u1 ∈ H chosen arbitrarily, e1 ∈ H,
zn = δnλ f (un) + (I − δnF)un,
wn = αnzn + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

wn+zn
2 ) + γnen,

C1 = H = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ 2αn+βn

2−βn
‖zn − p‖2 + 2γn

2−βn
‖en − p‖2},

Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(21)

If, moreover, take un+1 = PCn+1(u1) in (21), then it becomes to (6).

2.3. Relationship with Variational Inequalities

A lot work has been done on designing iterative algorithms to approximate solution of variational
inequalities due to their wide applications (e.g., [26,27]). A classical variational inequality is to find
u ∈ K such that for ∀v ∈ K,

〈v− u, Tu〉 ≥ 0, (22)

where T : K → H is a nonlinear mapping. The symbol VI(K, T) denotes the solution of the above
variational inequality.

2.3.1. The First Kind Iteration Theorems

Definition 3. Let H be a real Hilbert space with K being its non-empty closed and convex subset. T : K → H
is called a τ-Lipschitz continuous mapping if ‖Tx− Ty‖ ≤ τ‖x− y‖, for x, y ∈ K.
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Theorem 3. Let H be a real Hilbert space with K being its non-empty closed and convex subset. Suppose Ai :
K → H is µi-inversely strongly accretive and Bi : K → H is m-accretive, for each i ∈ N. Suppose T : K → H
is an accretive and τ-Lipschitz continuous mapping. Let {un} be generated by the following iterative algorithm:

u0 ∈ K, u1 ∈ K chosen arbitrarily, e1 ∈ H,
y0 = PK(u0 − λ0Tu0),
yn = PK(un − λnTun),
vn = yn + kn(yn − yn−1),
wn = αnvn + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)PK(un − λnTyn) + γnen,

C1 = K = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ αn‖yn − p‖2 + βn‖un − p‖2 + γn‖en − p‖2

+ k2
n‖yn − yn−1‖2 − 2αnkn〈yn − p, yn−1 − yn〉},

Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

(23)

Under the assumptions of (i)–(iv) in Theorem 1 and the additional assumptions (v) λn → 0, (vi)⋂∞
i=1(Ai + Bi)

−10
⋂

VI(K, T) 6= ∅, we have: un → P⋂∞
m=1 Cm(u1) = P⋂∞

i=1(Ai+Bi)−10
⋂

VI(K,T)(u1), as
n→ ∞.

Proof. We split the proof into nine steps.
Step 1. ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai) : K → K is non-expansive, for n ∈ N.

Copy the proof of Step 1 in Theorem 1.
Step 2.

⋂∞
i=1(Ai + Bi)

−10
⋂

VI(K, T) ⊂ Cn, for n ∈ N.
We first show that ∀q ∈ ⋂∞

i=1(Ai + Bi)
−10

⋂
VI(K, T),

‖PK(un − λnTyn)− q‖ ≤ ‖un − q‖. (24)

In fact, in view of Lemma 7, we have:

‖PK(un − λnTyn)− q‖2

≤ ‖un − q− λnTyn‖2 − ‖un − PK(un − λnTyn)− λnTyn‖2

= ‖un − q‖2 − ‖un − PK(un − λnTyn)‖2

+2λn[〈Tyn − Tq, q− yn〉+ 〈Tq, q− yn〉+ 〈Tyn, yn − PK(un − λnTyn)〉]
≤ ‖un − q‖2 − ‖un − PK(un − λnTyn)‖2 + 2λn〈Tyn, yn − PK(un − λnTyn)〉
= ‖un − q‖2 − (‖un − yn‖2 + ‖yn − PK(un − λnTyn)‖2) + 2λn〈Tun − Tyn, PK(un − λnTyn)− yn〉
+2〈un − yn − λnTun, PK(un − λnTyn)− yn〉
≤ ‖un − q‖2 − (‖un − yn‖2 + ‖yn − PK(un − λnTyn)‖2) + 2λnτ‖un − yn‖‖yn − PK(un − λnTyn)‖
≤ ‖un − q‖2 + (λ2

nτ2 − 1)‖un − yn‖2

≤ ‖un − q‖2,

which implies that (24) is true.
Next, we can easily check the following by noticing the result of Step 1 and (24):

‖wn − q‖2 ≤ αn‖vn − q‖2 + βn‖un − q‖2 + γn‖en − q‖2

≤ αn‖yn − q‖2 + βn‖un − q‖2 + γn‖en − q‖2 + k2
n‖yn − yn−1‖2 − 2αnkn〈yn − q, yn−1 − yn〉.

Thus, by induction as that in Theorem 1, q ∈ Cn, for n ∈ N.
Step 3. Cn is a closed and convex subset of H, for each n ∈ N.
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It is not difficult to see that

‖wn − p‖2 ≤ αn‖yn − p‖2 + βn‖un − p‖2 + γn‖en − p‖2

+k2
n‖yn − yn−1‖2 − 2αnkn〈yn − p, yn−1 − yn〉

⇐⇒ ‖wn‖2 − αn‖yn‖2 − βn‖un‖2 − γn‖en‖2 − k2
n‖yn − yn−1‖2 + 2αnkn〈yn, yn−1 − yn〉

≤ 2〈p, wn〉 − 2αn〈p, yn〉 − 2βn〈p, un〉 − 2γn〈p, en〉+ 2αnkn〈p, yn−1 − yn〉.

Then Cn is a closed and convex subset of H, for each n ∈ N.
Copy the results of Steps 4–6 in Theorem 1, we have:
Step 4. Qn is non-empty for each n ∈ N, which ensures that {un} is well-defined.
Step 5. PCn+1(u1)→ P⋂∞

m=1 Cm(u1), as n→ ∞.
Step 6. un → P⋂∞

m=1 Cm(u1), as n→ ∞.
Step 7. yn → P⋂∞

m=1 Cm(u1), vn → P⋂∞
m=1 Cm(u1) and wn → P⋂∞

m=1 Cm(u1), as n→ ∞.
It is easy to see that Qn is a closed subset of K. Then un+1 ∈ Qn+1 ⊂ K and un → P⋂∞

m=1 Cm(u1)

imply that P⋂∞
m=1 Cm(u1) ∈ K. Therefore,

‖yn − P⋂∞
m=1 Cm(u1)‖ ≤ ‖un − λnTun − P⋂∞

m=1 Cm(u1)‖
≤ ‖un − P⋂∞

m=1 Cm(u1)‖+ λn‖Tun‖ → 0,

as n→ ∞. Thus, yn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Since yn+1 − yn → 0 and vn = yn + kn(yn − yn−1), then vn → P⋂∞
m=1 Cm(u1), as n→ ∞.

Since un+1 ∈ Qn+1 ⊂ Cn+1, then from (23), ‖wn − un+1‖2 ≤ αn‖yn − un+1‖2 + βn‖un+1 −
un‖2 + γn‖en − un+1‖2 + k2

n‖yn − yn−1‖2 − 2αnkn〈yn − un+1, yn−1 − yn〉 → 0, as n→ ∞. Thus, wn →
P⋂∞

m=1 Cm(u1), as n→ ∞.
Step 8. P⋂∞

m=1 Cm(u1) ∈
⋂∞

i=1(Ai + Bi)
−10

⋂
VI(K, T).

We shall first show that P⋂∞
m=1 Cm(u1) ∈ VI(K, T).

For this , define

Bv =

{
Tv + NKv, i f v ∈ K,
∅, i f v∈K,

where NKv = {w ∈ H : 〈v− u, w〉 ≥ 0, ∀u ∈ K} is the normal cone to K at v ∈ K. It is well-known
that B : H → H is m-accretive and 0 ∈ Bv if and only if v ∈ VI(K, T) [28].

Let z ∈ Bv = Tv + NKv, then z− Tv ∈ NKv. From the definition of the normal cone, we have

〈v− yn, z− Tv〉 ≥ 0. (25)

From Lemma 7, we have:

〈un − λnTun − PK(un − λnTun), PK(un − λnTun)− v〉 ≥ 0, ∀v ∈ K,

which implies that

〈v− PK(un − λnTun),
PK(un − λnTun)− un

λn
+ Tun〉 ≥ 0, ∀v ∈ K. (26)
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In view of (25) and (26), we know that

〈v− yn, z〉 ≥ 〈v− yn, Tv〉
= 〈v− PK(un − λnTun), Tv〉
≥ 〈v− PK(un − λnTun), Tv〉 − 〈v− PK(un − λnTun),

PK(un−λnTun)−un
λn

+ Tun〉
= 〈v− PK(un − λnTun), Tv− TPK(un − λnTun)〉
+〈v− PK(un − λnTun), TPK(un − λnTun)− Tun〉
−〈v− PK(un − λnTun),

PK(un−λnTun)−un
λn

〉
≥ 〈v− PK(un − λnTun), TPK(un − λnTun)− Tun〉
−〈v− PK(un − λnTun),

PK(un−λnTun)−un
λn

〉
= 〈v− yn, Tyn − Tun〉 − 〈v− yn, yn−un

λn
〉.

Taking limit on both sides of the above inequality, we have: 〈v− P⋂∞
m=1 Cm(u1), z〉 ≥ 0, which

implies from the fact B is m-accretive that P⋂∞
m=1 Cm(u1) ∈ B−10, and then P⋂∞

m=1 Cm(u1) ∈ VI(K, T).
Next, we shall show that P⋂∞

m=1 Cm(u1) ∈
⋂∞

i=1(Ai + Bi)
−10.

In fact, if, otherwise, P⋂∞
m=1 Cm(u1)∈

⋂∞
i=1(Ai + Bi)

−10. Then P⋂∞
m=1 Cm(u1) 6= ∑∞

i=1 ωn,i(I +
sn,iBi)

−1(I − sn,i Ai)P⋂∞
m=1 Cm(u1).

Since wn = αnvn + βn ∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)PK(un − λnTyn) + γnen, then
βn[∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)PK(un − λnTyn) − wn] = αn(wn − vn) + γn(wn − en) → 0, as

n→ ∞.
Since in fnβn > 0, then there exists a subsequence of {n}, which is still denoted by {n} such that

∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)PK(un − λnTyn)− wn → 0, as n→ ∞.
Thus, ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)PK(un − λnTyn) → P⋂∞

m=1 Cm(u1), as n → ∞. From Step
1 and un − yn → 0, we can also know that ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)PK(un − λnTun) →

P⋂∞
m=1 Cm(u1), as n→ ∞.

Since H satisfies Opial’s condition, λn → 0 and P⋂∞
m=1 Cm(u1) ∈ K, then

limin fn→∞‖un − λnTun − P⋂∞
m=1 Cm(u1)‖

< limin fn→∞‖un − λnTun −∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)P⋂∞
m=1 Cm(u1)‖

≤ limin fn→∞‖un − λnTun −∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)PK(un − λnTun)‖
+limin fn→∞‖∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)PK(un − λnTun)

−∑∞
i=1 ωn,i(I + sn,iBi)

−1(I − sn,i Ai)P⋂∞
m=1 Cm(u1)‖

≤ limin fn→∞‖un − λnTun − P⋂∞
m=1 Cm(u1)‖,

which makes a contradiction! Thus, P⋂∞
m=1 Cm(u1) ∈

⋂∞
i=1(Ai + Bi)

−10.
Step 9. P⋂∞

m=1 Cm(u1) = P⋂∞
i=1(Ai+Bi)−10

⋂
VI(K,T)(u1).

From Step 8, ‖P⋂∞
i=1(Ai+Bi)−10

⋂
VI(K,T)(u1)− u1‖ ≤ ‖P⋂∞

m=1 Cm(u1)− u1‖.
On the other hand, since

⋂∞
i=1(Ai + Bi)

−10
⋂

VI(K, T) ⊂ ⋂∞
m=1 Cm, then

‖P⋂∞
m=1 Cm(u1)− u1‖ ≤ ‖P⋂∞

i=1(Ai+Bi)−10
⋂

VI(K,T)(u1)− u1‖.

Thus
‖P⋂∞

i=1(Ai+Bi)−10
⋂

VI(K,T)(u1)− u1‖ = ‖P⋂∞
m=1 Cm(u1)− u1‖.

Using Lemma 7, we have

‖P⋂∞
i=1(Ai+Bi)−10

⋂
VI(K,T)(u1)− P⋂∞

m=1 Cm(u1)‖2 + ‖P⋂∞
m=1 Cm(u1)− u1‖2

≤ ‖P⋂∞
i=1(Ai+Bi)−10

⋂
VI(K,T)(u1)− u1‖2 = ‖P⋂∞

m=1 Cm(u1)− u1‖2,

which implies that P⋂∞
i=1(Ai+Bi)−10

⋂
VI(K,T)(u1) = P⋂∞

m=1 Cm(u1).
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This completes the proof.

2.3.2. The Second Kind Iteration Theorems

The following result is a special result of Lemma 10 in [19]:

Theorem 4. Let H be a real Hilbert space and K be a non-empty closed and convex subset of H. Suppose f :
H → H is a contraction with k ∈ (0, 1), F : H → H is a strongly positive linear bounded operator with
coefficient ξ and U : H → H is non-expansive mapping. If 0 < λ < ξ

2k , then there exists xt which satisfies
xt = tλ f (xt) + (I − tF)Uxt, for 0 < t ≤ ‖F‖−1. Moreover, xt → p0 as t→ 0, and p0 satisfies the following
variational inequality: for ∀z ∈ Fix(U),

〈(F− λ f )p0, p0 − z〉 ≤ 0. (27)

In Lemma 10 of [19], we can also know that the solution of the variational inequality (27) is unique.

Theorem 5. Under the assumptions of Theorem 2, {un} generated by (16) converges strongly to
P⋂∞

i=1(Ai+Bi)−10(u1). Set x̃ = P⋂∞
i=1(Ai+Bi)−10(u1). If x̃ = P⋂∞

i=1(Ai+Bi)−10[λ f (x̃)− F(x̃) + x̃], then x̃ satisfies
the following variational inequality: ∀z ∈ ⋂∞

i=1(Ai + Bi)
−10,

〈(F− λ f )x̃, x̃− z〉 ≤ 0. (28)

Proof. It follows from Lemma 7 that 〈(F− λ f )x̃, x̃− z〉 ≤ 0, ∀z ∈ ⋂∞
i=1(Ai + Bi)

−10. Since Theorem 4
tells us that (28) has a unique solution, then we know that {un} generated by (16) converges strongly
to the unique solution of variational inequality (28).

Remark 5. The assumption that x̃ = P⋂∞
i=1(Ai+Bi)−10[λ f (x̃)− F(x̃) + x̃] is reasonable. For example, we may

take f (x) = x
2 and F(x) = λx

2 , for x ∈ H.

Remark 6. For projection iterative algorithms such as (16), rare work can be found to show that the limit of the
iterative sequences is also the solution of a kind of variational inequalities.

3. Applications

3.1. Preparation for Discussion of Capillarity Systems

To present some examples in this section, we need some basic definitions in Banach spaces.
Let E be a real Banach space with E∗ being its dual space and let 〈·, ·〉 denote the generalized

duality pairing between E and E∗.

Definition 4. (see [29]) Recall that J : E→ 2E∗ is called the normalized duality mapping if ∀x ∈ E,

Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2}.

Definition 5. (see [29]) Recall that A : E → E∗ is said to be a monotone mapping if ∀xi ∈ D(A), i = 1, 2,
one has

〈x1 − x2,Ax1 −Ax2〉 ≥ 0.

A monotone mapping A : E→ E∗ is said to be maximal monotone if R(J + rA) = E∗, ∀r > 0.

Definition 6. (see [29]) Recall that a mapping B : E → E∗ is said to be coercive if {xn} ⊂ D(B) with
limn→∞ ‖xn‖ = +∞, then limn→∞

〈xn ,Bxn〉
‖xn‖ = +∞.
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Definition 7. (see [29]) Recall that a mapping B : D(B) = E→ E∗ is said to be a hemi-continuous mapping
if B(x + ty) ⇀ Bx, as t→ 0, for ∀x, y ∈ E.

Definition 8. (see [29]) ψ : E → (−∞,+∞] is said to be a proper convex functional if there exists u0 ∈ E
such that ψ(u0) < +∞ and ψ((1− λ)u + λv) ≤ (1− λ)ψ(u) + λψ(v), for ∀u, v ∈ E and λ ∈ [0, 1]. ψ :
E→ (−∞,+∞] is said to be lower-semi-continuous: lim infy→x ψ(y) ≥ ψ(x), for ∀x ∈ E. The subdifferential
of ψ, ∂ψ : E→ E∗, is defined by:

∂ψ(u) = {w ∈ E∗ : ψ(u)− ψ(v) ≤ 〈u− v, w〉, ∀v ∈ E}, ∀u ∈ E.

3.2. Applications to Capillarity Elliptic Systems

Example 1. Suppose Ω is bounded conical domain in Rn (n ∈ N) with Γ ∈ C1, ϑ is the exterior normal
derivative of Γ, εi is a non-negative constant, λi is a positive number, fi(x) ∈ Lpi (Ω) is a given function, for
i = 1, 2, · · · , M. In addition, βx : R → R is the subdifferential of ϕx, where ϕx = ϕ(x, ·) : R → R, for each
x ∈ Γ. Suppose 2n

n+1 < pi < +∞, i = 1, 2, · · · , M. If pi ≥ n then 1 ≤ qi, ri < +∞ and if pi < n then
1 ≤ qi, ri ≤

npi
n−pi

for i = 1, 2, · · · , M.

The following capillarity system is studied in [30]:
−div[(1 + |∇u(i) |pi√

1+|∇u(i) |2pi
)|∇u(i)|pi−2∇u(i)] + λi(|u(i)|qi−2u(i) + |u(i)|ri−2u(i))

+εigi(x,∇u(i), u(i)) = fi(x), x ∈ Ω

− < ϑ, (1 + |∇u(i) |pi√
1+|∇u(i) |2pi

)|∇u(i)|pi−2∇u(i) >∈ βx(u(i)(x)), x ∈ Γ, i = 1, 2, · · · , M,

(29)

where | · | and < ·, · > denote the norm and inner product in Rn, respectively.
The study on (29) in [30] is based on the following assumptions.

(1) ∀x ∈ Γ, ϕx = ϕ(x, ·) : R → R is a proper convex and lower-semi-continuous mapping with
ϕx(0) = 0.

(2) 0 ∈ βx(0), ∀t ∈ R, x ∈ Γ→ (I + λβx)−1(t) ∈ R is measurable for λ > 0.
(3) For each i ∈ {1, 2, · · · , M}, gi : Ω× Rn × R→ R satisfies Caratheodory’s conditions and satisfies

that
|gi(x, r1, r2, · · · , rn+1)− gi(x, s1, s2, · · · , sn+1)| ≤ bi|rn+1 − sn+1|,

for ∀(r1, r2, · · · , rn+1), (s1, s2, · · · , sn+1) ∈ Rn+1.

By using splitting method, the sufficient condition that (29) has non-trivial solution is obtained:

Theorem 6. (see [30]) If u(i) ∈ Lpi (Ω) satisfies that∫
Ω
[gi(x,∇u(i), u(i))− fi]|u(i)|pi−2u(i)dx ≥ 0,

for i = 1, 2, · · · , M, then u = (u(1), u(2), · · · , u(M)) is the non-trivial solution of capillarity system (29).

Based on Example 1, we present the following example:

Example 2. Suppose Ω, Γ and ϑ are the same as those in Example 1. Suppose λi > 0, 2n
n+1 < pi < +∞.

If pi ≥ n, then suppose 1 ≤ qi, ri < +∞ and if pi < n, then suppose 1 ≤ qi, ri ≤
npi

n−pi
, for i ∈ N.
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Now, we will discuss the following capillarity systems.
−div[(1 + |∇u(i) |pi√

1+|∇u(i) |2pi
)|∇u(i)|pi−2∇u(i)]

+λi(|u(i)|qi−2u(i) + |u(i)|ri−2u(i)) + u(i)(x) = fi(x), x ∈ Ω

− < ϑ, (1 + |∇u(i) |pi√
1+|∇u(i) |2pi

)|∇u(i)|pi−2∇u(i) >= 0, x ∈ Γ, i ∈ N.

(30)

Please note that (30) is the extension from the finite case of (29) to that for infinite case. However,
both the capillarity equations and the boundary conditions are the special case of (29) in the sense that
εi ≡ 1 and gi(x,∇u(i), u(i)) ≡ u(i) for i ∈ N and βx ≡ 0, for x ∈ Γ.

Lemma 9. (see [30]) The mapping Ui : W1,pi (Ω)→ (W1,pi (Ω))∗ defined by

〈w, Uiu〉 =
∫

Ω
< (1 +

|∇u|pi√
1 + |∇u|2pi

)|∇u|pi−2∇u,

∇v > dx + λi

∫
Ω
|u(x)|qi−2u(x)v(x)dx + λi

∫
Ω
|u(x)|ri−2u(x)v(x)dx,

for ∀u, w ∈W1,pi (Ω), is everywhere defined, hemi-continuous, monotone and coercive, for each i ∈ N.

Lemma 10. (see [30]) Define Bi : L2(Ω)→ L2(Ω) by

D(Bi) = {u ∈ L2(Ω)| ∃ f ∈ L2(Ω) such that f ∈ Uiu}.

For u ∈ D(Bi), Biu = { f ∈ L2(Ω) | f ∈ Uiu}. Then Bi : L2(Ω) → L2(Ω) is m-accretive, for each
i ∈ N.

Lemma 11. (see [30]) The mapping Ai : D(Ai) ⊂ L2(Ω)→ L2(Ω) defined by

(Aiu)(x) = u(x)− fi(x), ∀u(x) ∈ D(Ai),

is µi-inversely strongly accretive, for µi ∈ (0, 1], for i ∈ N.

Theorem 7. If fi(x) ≡ λi(|k|qi−1 + |k|ri−1)sgnk + k, then {u(i) ≡ k : i ∈ N} is the solution of capillarity
system (30). Moreover, {k} = ⋂∞

i=1(Ai + Bi)
−10.

Proof. It is easy to see that {u(i) ≡ k : i ∈ N} is the solution of capillarity system (30) and {k} ⊂⋂∞
i=1(Ai + Bi)

−10. Now, we shall show that {k} ⊃ ⋂∞
i=1(Ai + Bi)

−10.
In fact, if Aiu + Biu = 0 and Aiv + Biv = 0, then u + Biu = v + Biv, which implies that

0 ≤ 〈u− v, Biu− Biv〉 = 〈u− v, v− u〉 ≤ 0.

Thus, u = v and then
⋂∞

i=1(Ai + Bi)
−10 is a singleton. Since k ∈ ⋂∞

i=1(Ai + Bi)
−10, then the

result follows.

Theorem 8. Let fi(x) ≡ λi(|k|qi−1 + |k|ri−1)sgnk + k, for i ∈ N. Suppose Ai and Bi are the same as those
in Lemmas 10 and 11, respectively. Let F : L2(Ω)→ L2(Ω) be any strongly positive linear bounded operator
with coefficient ξ > 0 and f : L2(Ω)→ L2(Ω) be a contraction with coefficient k ∈ (0, 1). Constructing the
following iterative algorithm:
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

u0, u1 ∈ L2(Ω) chosen arbitrarily, e1 ∈ L2(Ω),
z0 = u0,
zn = δnλ f (un) + (I − δnF)un,
vn = zn + kn(zn − zn−1),
wn = αnvn + βn ∑∞

i=1 ωn,i(I + sn,iBi)
−1(I − sn,i Ai)(

vn+wn
2 ) + γnen,

C1 = L2(Ω) = Q1,
Cn+1 = {p ∈ Cn : ‖wn − p‖2 ≤ 2αn+βn

2−βn
‖zn − p‖2 + 2γn

2−βn
‖en − p‖2

+ 2αn+βn
2−βn

k2
n‖zn − zn−1‖2 − 2kn

2αn+βn
2−βn

〈zn − p, zn−1 − zn〉},
Qn+1 = {p ∈ Cn+1 : ‖u1 − p‖2 ≤ ‖PCn+1(u1)− u1‖2 + σn+1},
un+1 ∈ Qn+1, n ∈ N.

Under the assumptions of Theorem 2, using the result of Theorem 5, one has un(x)→ P⋂∞
i=1(Ai+Bi)−10(u1),

which is the unique solution of capillarity system (30) and satisfies the following variational inequality: For
∀z(x) ∈ ⋂∞

i=1(Ai + Bi)
−10,

〈(F− λ f )P⋂∞
i=1(Ai+Bi)−10(u1), P⋂∞

i=1(Ai+Bi)−10(u1)− z)〉 ≤ 0.

Remark 7. From Theorem 8 we can easily see the relationship among the solution of capillarity system, the
solution of variational inequality and the zero of sum of infinitely many m-accretive mappings and infinitely
many µi-inversely strongly accretive mappings.

Author Contributions: L.W. and R.P.A. contributed are equally to Sections 1 and 2. The Y.S. contributed to
Section 3.

Funding: Supported by the National Natural Science Foundation of China (11071053), Natural Science Foundation
of Hebei Province (A2014207010), Key Project of Science and Research of Hebei Educational Department
(ZD2019073), Key Project of Science and Research of Hebei University of Economics and Business (2018ZD06),
Youth Project of Science and Research of Hebei University of Economics and Business (2017KYQ09) and Youth
Project of Science and Research of Hebei Educational Department (QN2017328).

Acknowledgments: Thanks for the reviewers’ valuable opinions and careful work.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings.
Bull. Am. Math. Soc. 1967, 73, 591–597. [CrossRef]

2. Takahashi, W. Nonlinear Functional Analysis. Fixed Point Theory and its Applications; Yokohama Publishers:
Yokohama, Japan, 2000

3. Wei, L.; Shi, A.F. Splitting-midpoint method for zeros of the sum of accretive operator and µ-inversely
strongly accretive operator in a q-uniformly smooth Banach space and its applications. J. Inequal. Appl.
2015, 2015, 183. [CrossRef]

4. Shehu, Y. Iterative approximations for zeros of the sum of accretive operators in Banach spaces. J. Funct. Spaces
2016, 2016, 5973468. [CrossRef]

5. Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul.
2005, 4, 1168–1200. [CrossRef]

6. Tseng, P. A mordified forward-backward splitting method for maximal monotone mappings. SIAM J.
Control Optim. 2000, 38, 431–446. [CrossRef]

7. Khan, S.A.; Suantai, S.; Cholamjiak, W. Shrinking projection methods involving inertial forward-backward
splitting methods for inclusion problems. RACSAM 2018, 113, 645–656. [CrossRef]

8. Moudafi, A.; Oliny, M. Convergence of a splitting inertial proximal method for monotone operators.
J. Comput. Appl. Math. 2003, 155, 447–454. [CrossRef]

9. Lorenz, D.; Pock, T. An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis.
2015, 51, 311–325. [CrossRef]

http://dx.doi.org/10.1090/S0002-9904-1967-11761-0
http://dx.doi.org/10.1186/s13660-015-0704-6
http://dx.doi.org/10.1155/2016/5973468
http://dx.doi.org/10.1137/050626090
http://dx.doi.org/10.1137/S0363012998338806
http://dx.doi.org/10.1007/s13398-018-0504-1
http://dx.doi.org/10.1016/S0377-0427(02)00906-8
http://dx.doi.org/10.1007/s10851-014-0523-2


Mathematics 2019, 7, 466 19 of 19

10. Cholamjiak, P. A generalized forward-backward splitting method for solving quasi inclusion problems in
Banach spaces. Numer. Algorithm 2016, 71, 915–932. [CrossRef]

11. Lopez G.; Martin-Marquez, V.; Wang, F.; Xu, H.K. Forward-backward splitting method for accretive operators
in Banach spaces. Abstr. Appl. Anal. 2012, 2012, 109236. [CrossRef]

12. Qin, X.; Cho, S.Y.; Wang, L. Convergence of splitting algorithms for the sum of two accretive operators with
applications. Fixed Point Theory Appl. 2014, 2014, 166. [CrossRef]

13. Bot, R.I.; Csetnek, E.R.; Hendrich, C. Inertial Douglas-Rachford splitting for monotone inclusion.
Appl. Math. Comput. 2015, 256, 472–487.

14. Dong, Q.L.; Jiang, D.; Cholamjiak, P.; Shehu, Y. A strong convergence result involving an inertial
forward-backward algorithm for monotone inlusions. J. Fixed Point Theory Appl. 2017, 19, 3097–3118.
[CrossRef]

15. Wei, L.; Duan, L.L. A new iterative algorithm for the sum of two different types of finitely many accretive
operators in Banach and its connection with capillarity equation. Fixed Point Theory Appl. 2015, 2015, 25.
[CrossRef]

16. Wei, L.; Duan, L.L.; Agarwal, R.P.; Chen, R.; Zheng, Y.Q. Mordified forward-backward splitting midpoint
method with superposition perturbations for sum of two kind of infinite accretive mappings and its
applications. J. Inequal. Appl. 2017, 2017, 227. [CrossRef] [PubMed]

17. Wei, L.; Shen, Y.W.; Zheng, Y.Q.; Tan, R.L. A new iterative scheme for the sum of infinite m-accretive
mappings and inversely strongly accretive mappings and its application. J. Nonlinear Var. Appl.
2017, 1, 345–356.

18. Wei, L.; Agarwal, R.P. Simple form of a projection set in hybrid iterative schemes for non-linear mappings,
application of inequalities and computational experiments. J. Inequal. Anal. 2018, 2018, 179. [CrossRef]
[PubMed]

19. Wei, L.; Agarwal, R.P. A new iterative algorithm for the sum of infinite m-accretive mappings and infinite
µi-inversely strongly accretive mappings and its applications to integro-differentail systems. Fixed Point
Theory Appl. 2016, 2016, 7. [CrossRef]

20. Mosco, U. Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 1969, 3, 510–585.
[CrossRef]

21. Tsukada, M. Convergence of best approximations in a smooth Banach space. J. Approx. Theory
1984, 40, 301–309. [CrossRef]

22. Bruck, R.E. Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math Soc.
1973, 179, 251–262. [CrossRef]

23. Xu, H.K. Inequalities in Banach space with applications. Nonlinear Anal. 1991, 16, 1127–1138. [CrossRef]
24. Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive

semigroups. J. Math. Anal. Appl. 2003, 279, 327–379. [CrossRef]
25. Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschtz-type Mappings with Applications;

Springer: New York, NY, USA, 2009
26. He, S.N.; Liu, L.L.; Gibali, A. Self-adaptive iterative method for solving boundedly Lipschitz continuous and

strongly monotone variational inequalities. J. Inequal. Appl. 2018, 2018, 350. [CrossRef] [PubMed]
27. Gibali, A.; Reich, S.; Zalas, R. Ooter approximation methods for solving variational inequalities in Hilbert

space. Optimization 2017, 66, 417–437. [CrossRef]
28. Rockafellar, R.T. On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc.

1970, 149, 75–88. [CrossRef]
29. Pascali, D.; Sburlan, S. Nonlinear Mappings of Monotone Type; Sijthoff Noordhoff International Publishers:

Bucharest, Romania, 1978.
30. Wei, L.; Chen, R. Study on the existence of non-trivial solution of one kind capillarity systems. J. Math. (PRC)

2017, 37, 390-400. (In Chinese)

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11075-015-0030-6
http://dx.doi.org/10.1155/2012/109236
http://dx.doi.org/10.1186/1687-1812-2014-166
http://dx.doi.org/10.1007/s11784-017-0472-7
http://dx.doi.org/10.1186/s13663-015-0269-6
http://dx.doi.org/10.1186/s13660-017-1506-9
http://www.ncbi.nlm.nih.gov/pubmed/28989255
http://dx.doi.org/10.1186/s13660-018-1774-z
http://www.ncbi.nlm.nih.gov/pubmed/30137907
http://dx.doi.org/10.1186/s13663-015-0495-y
http://dx.doi.org/10.1016/0001-8708(69)90009-7
http://dx.doi.org/10.1016/0021-9045(84)90003-0
http://dx.doi.org/10.1090/S0002-9947-1973-0324491-8
http://dx.doi.org/10.1016/0362-546X(91)90200-K
http://dx.doi.org/10.1016/S0022-247X(02)00458-4
http://dx.doi.org/10.1186/s13660-018-1941-2
http://www.ncbi.nlm.nih.gov/pubmed/30839892
http://dx.doi.org/10.1080/02331934.2016.1271800
http://dx.doi.org/10.1090/S0002-9947-1970-0282272-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	 Some Inertial Forward-Backward Algorithms
	New Inertial Forward-Backward Projection Algorithms
	New Mid-Point Inertial Forward-Backward Projection Algorithms
	Relationship with Variational Inequalities
	The First Kind Iteration Theorems
	The Second Kind Iteration Theorems


	Applications
	Preparation for Discussion of Capillarity Systems
	Applications to Capillarity Elliptic Systems

	References

