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Abstract: Airborne particulate matter (PM) is a key air pollutant that affects human health adversely.
Exposure to high concentrations of such particles may cause premature death, heart disease,
respiratory problems, or reduced lung function. Previous work on particulate matter (PM2.5 and
PM10) was limited to specific areas. Therefore, more studies are required to investigate airborne
particulate matter patterns due to their complex and varying properties, and their associated (PM10

and PM2.5) concentrations and compositions to assess the numerical productivity of pollution control
programs for air quality. Consequently, to control particulate matter pollution and to make effective
plans for counter measurement, it is important to measure the efficiency and efficacy of policies
applied by the Ministry of Environment. The primary purpose of this research is to construct a
simulation model for the identification of a change point in particulate matter (PM2.5 and PM10)
concentration, and if it occurs in different areas of the world. The methodology is based on the
Bayesian approach for the analysis of different data structures and a likelihood ratio test is used to
a detect change point at unknown time (k). Real time data of particulate matter concentrations at
different locations has been used for numerical verification. The model parameters before change
point (θ) and parameters after change point (λ) have been critically analyzed so that the proficiency
and success of environmental policies for particulate matter (PM2.5 and PM10) concentrations can
be evaluated. The main reason for using different areas is their considerably different features, i.e.,
environment, population densities, and transportation vehicle densities. Consequently, this study
also provides insights about how well this suggested model could perform in different areas.

Keywords: airborne particulate matter; Bayesian approach; change point detection; likelihood ratio
test; time series analysis; air quality

1. Introduction

Airborne particulate matter is one of the most dangerous air pollutants and harmful to human
health. For the last two decades, information about the negative impacts of PM10 (particles less
than 10 µm in diameter) and PM2.5 (particles less than 2.5 micrometers in diameter) has increased
enormously. Exposure to high concentrations of such particles may cause premature death, heart
disease, respiratory problems, or reduced lung function through different mechanisms, which include
pulmonary and systemic inflammation, accelerated atherosclerosis, and altered cardiac autonomic
function (Heroux et al. [1] and Pope et al. [2]). Therefore, to control particulate matter (PM) pollution,
and to make effective plans for counter measurements, it is important to measure the efficiency and
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effectiveness of policies applied by the Ministry of Environment. Every region has developed different
kinds of extensive bodies of legislation, which establish air quality standards for key air pollutants to
improve the air quality and to satisfy these standards. The European Environment Agency, the United
States Environmental Protection Agency, and the Ministry of Environment in South Korea have each
set their own air quality standards for all air pollutants. Thus, It is essential to follow established air
quality monitoring systems to measure the PM concentrations on an hourly as well as daily basis,
because some areas deviate from the established PM standards. This may cause adverse environmental
effects and serious health problems.

Until now, a number of statistical methods have been established to model the hazards of PM
from air quality standards. A Bayesian multiple change point model was proposed to measure the
quantitative efficiency of pollution control programs for air quality, which estimate the hazards of
different air pollutants. In the model, it was assumed as a nonhomogeneous Poisson process with
multiple change points. The change points were identified, and a rate function was estimated by using
a reversible jump MCMC algorithm (Gyarmati-Szabo et al. [3]). In another study, the changes in health
effects due to simultaneous exposure to physical and chemical properties of airborne particulate matter
were gauged through Bayesian approach and inferences were drawn via the Markov Chain Monte
Carlo method (Pirani et al. [4]). A Bayesian approach was introduced to estimate the distributed
lag functions in time series models, which can be used to determine the short-term health effects of
particulate air pollution on mortality (Welty et al. [5]). Hybrid models were proposed to forecast
the PM concentrations for four major cities of China; Beijing, Shanghai, Guangzhou, and Lanzhou
(Qin et al. [6]).

A change point detection method for detecting changes in the mean of the one dimensional
Gaussian process was proposed on the basis of a generalized likelihood ratio test (GLRT). The important
characteristic of this method is that it includes data dependence and covariance of the Gaussian process.
However, in case of unidentified covariance, the plug-in GLRT method was suggested which remains
asymptotically near optimal (Keshavarz et al. [7]). A new method for acute change point detection was
proposed for fractional Brownian motion with a time dependent diffusion coefficient. The likelihood
ratio method has been used for change point detection in Brownian motion. A statistical test was also
suggested to identify the significance of a calculated critical point (Kucharczyk et al. [8]). The change
point detection technique in machine monitoring was suggested, which was based on two stages. In the
first stage, irregularities are measured in time series data through the automatic regression (AR) model,
and then the martingale statistical test is applied to detect the change point in unsupervised time series
data (Lu et al. [9]). An integrated inventory model was developed to determine the optimal lot size
and production uptime while considering stochastic machine breakdown and multiple shipments for
a single-buyer and single-vendor (Taleizadeh et al. [10]).

A statistical change point algorithm based on nonparametric deviation estimation between time
series samples from two retrospective segments was proposed in which the direct density ratio
estimation method was applied for deviation measurement through relative Pearson divergence
(Liu et al. [11]). A novel statistical methodology for online change point detection was suggested
in which data for an uncertain system was composed through an autoregressive model. On the
basis of nonparametric estimation of unidentified elements, an innovative CUSUM-like scheme
was recommended for change detection. This estimation method could also be updated online
(Hilgert et al. [12]). A new methodology, the Karhunen-Loeve expansions of the limit Gaussian
processes, was suggested for change point test in the level of a series. Firstly, change point detection in
the mean was explained, which later extended to linear and nonlinear regression (Górecki et al. [13]).
A Cramer-von Mises type test was presented to test the sudden changes in random fields which was
dependent on Hilbert space theory (Bucchia and Wendler [14]). The continuous-review inventory
model was developed for Controllable lead time for comparing two models; one with normally
distributed lead time demand and the second assumes that there is no specific distribution for lead
time demand (Shin et al. [15]).
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A new technique was developed to identify the structural changes in linear quantile regression
models. When a structural change in the relationship between covariates and response at a specific
point exists, it may not be at the centre of response distribution, but at the tail. The traditional mean
regression method might not be applicable for change point detection of such structural changes at
tails. Subsequently, the proposed technique could be appropriate for it (Zhou et al. [16]). For detection
of simultaneous changes in mean and variance, a new methodology called the fuzzy classification
maximum likelihood change point (FCML-CP) algorithm was suggested. Multiple change points in
the mean and variance of a process can be estimated by this method. This technique is much better
than the normal statistical mixture likelihood method because it saves a lot of time (Lu and Chang [17]).
A model for Partial Trade-Credit Policy of Retailer was developed in which deterioration of products
was assumed as exponentially distributed (Sarkar and Saren [18]).

The Bayesian change point algorithm for sequential data series was introduced which has some
uncertain limitations regarding location and number of change points. This algorithm was precisely
based on posterior distribution to deduce if a change point has occurred or not. It can also update
itself linearly as new data points are observed. Posterior distribution monitoring is the finest way to
identify the presence of a new change point in observed data points. Simulation studies illustrate
that this algorithm is good for rapid detection of existing change points, and it is also known for a
low rate of false detection (Ruggieri and Antonellis [19]). Due to the probabilistic concept of Bayesian
change point detection (BCPD), this methodology can overcome threats in identifying the location and
number of change points.

The performance of two different methods for change point detection of multivariate data with
both single and multiple changes was compared. The results illustrated adequate performance for both
Expectation Maximization (EM) and Bayesian methods. However, EM exhibits better performance
in case of minor changes and unsuitable priors while the Bayesian method has less computational
work to do (Keshavarz and Huang [20]). The Bayesian multiple change point model was suggested
for the identification of Distributed Denial of Service (DDoS) flooding attacks in VoIP systems in
which Session Initiation Protocol (SIP) is used as signalling mechanism (Kurt et al. [21]). One of the
well-known change detection techniques is post classification with multi temporal remote sensing
images. An innovative post classification technique with iterative slow feature analysis (ISFA) and
Bayesian soft fusion was suggested to acquire accurate and reliable change detection maps. Three
steps were suggested in this technique, first was to get the class probability of images through
independent classification. After that, a continuous change probability map of multi temporal images
was obtained by ISFA algorithm. Lastly, posterior probabilities for the class combinations of coupled
pixels were determined through the Bayesian approach to assimilate the class probability with the
change probability, which is called Bayesian soft fusion. This technique could be widely applicable in
land cover monitoring and change detection at a large scale (Wu et al. [22]).

The Bayesian change point technique was designed to analyse biomarkers time series data in
women for the diagnosis of ovarian cancer. The identification of such kind of change points could be
used to diagnose the disease earlier (Mariño et al. [23]). The Generalized Extreme Value (GEV) fused
lasso penalty function was applied to identify the change point of annual maximum precipitation
(AMP) in South Korea. Numerical analysis and applied data analysis were conducted in order to
compare performance from the GEV fused lasso and Bayesian change point analysis, which shows that
when water resource structures are hydrologically designed the GEV fused lasso method should be
used to identify the change points (Jeon et al. [24]). The Bayesian method was recommended to identify
the change point occurrence in extreme precipitation data, and the model follows a generalized Pareto
distribution. This Bayesian change point detection was inspected for four different situations, one with
no change model, second with a shape change model, third with a scale change model, and fourth
with both a scale and shape change model. It was determined that unexpected and sustained change
points need to be considered in extreme precipitation while making hydraulic design (Chen et al. [25]).
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Bayesian change point methodology was presented to identify changes in the temporal event
rate for a non-homogeneous Poisson process. This methodology was used to determine if a change in
the event rate has occurred or not, the time for change, and the event rate before or after the change.
The methodology has been explained through an example of earthquake occurrence in Oklahoma.
This spatiotemporal change point methodology can also be used for identifying changes in climate
patterns and assessing the spread of diseases. It permits participants to make real time decisions
about the influence of changes in event rates (Gupta and Baker [26]). A new Bayesian methodology
was recommended to analyze multiple time series with the objective of identifying abnormal regions.
A general model was developed and it was shown that Bayesian inference allows independent
sampling from the posterior distribution. Copy number variations (CNVs) are identified by using
data from multiple individuals. The Bayesian method was evaluated on both real and simulated CNV
data to provide evidence that this method is more precise as compare to other suggested methods for
analyzing such data (Bardwell and Fearnhead [27]).

All the above mentioned methods are either too complex and complicated for application on
random hazards of PM or not applicable to randomness of PM hazards. Therefore, still more studies
are required to investigate the PM hazards, due to its complex and varying properties and associated
(PM10 and PM2.5) concentrations and compositions, to investigate the numerical productivity of
pollution control programs for air quality. The primary purpose of this research is to develop models
for change point detection of particulate matter (PM2.5 and PM10) concentrations if it occurs in different
areas. The pollutant concentrations before and after a change point has to be critically analyzed so
that the proficiency and success of environmental policies for particulate matter (PM2.5 and PM10)
concentrations can be evaluated. The Bayesian approach is used to analyze random hazards of PM
concentrations with a change point at an unknown time (k).

To demonstrate the proposed approach, real time data of random hazards of PM concentrations at
different sites has been used. The PM concentrations change point (k), parameters before change point
(θ), and parameters after change point (λ) have been comprehensively analyzed by using the Bayesian
technique. Thus, simulation models have been constructed for different data structures. The main
reason for using different areas is their considerably different features i.e., environment, population
densities, and transportation vehicle densities. Consequently, this study also provides insight about
how well this suggested model could perform in different areas. The paper is structured as follows:
Section 2 refers to problem definitions, explaining assumptions along with notation, and Section 3
shows the formulation of mathematical models. Sections 4 and 5 depict numerical examples and results,
respectively, to validate the practical applications of the proposed models. Section 6 discusses the
depicted results of previous section, it also explains the managerial insights of results. Finally, Section 7
presents conclusions of this study. Table 1 depicts the comparative study of different authors who have
contributed in the direction of research, while the last row of the table portrays the contribution of this
research paper. On the other hand, Tables 2 and 3 compares the difference in previous workings and
this work.
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Table 1. Author’s contribution in the direction of research.

Airborne BCPD
Time Series AnalysisAuthors Particulate Matters Change-Point Detection (Bayesian Change Point

(PM2.5, PM10) Detection)

Lim et al. (2012) [28] Ambient particulate matter (PM) - - -

Rao et al. (2018) [29] Particulate matter air pollution - - -

Wei and Meng (2018) [30] Airborne fine particulate matter (PM2.5) - - -

Wang et al. (2017) [31] Inhaled particulate matter - - -

Heroux et al. (2015) [1] Ambient air pollutants - - -

Wellenius et al. (2012) [32] Ambient Air Pollution - - -

Pirani et al. (2015) [4] Airborne particles - - Bayesian inference within Time series

Li et al. (2013) [33] Airborne particulate matter - - Time series analysis

Kim et al. (2018a) [34] Particulate matter - - -

Kim et al. (2017) [35] Air pollution - - Time series model

Qin et al. (2017) [36] Air pollution - - Time series analysis

Lee et al. (2015) [37] Fine and coarse particles - - Time series analysis

Cabrieto et al. (2018) [38] - kernel change point detection, - -
correlation changes

Keshavarz et al. (2018) [7] Generalized likelihood ratio test, - -
- One-dimensional Gaussian process - -

Kucharczyk et al. (2018) [8] - likelihood ratio test, - -
fractional Brownian motion - -

Lu et al. (2017) [9] - Change-point detection, machine monitoring, - -
Anomaly measure (AR model), Martingale test Time series data

- On-line change detection, - -
Hilgert et al. (2016) [12] - autoregressive dynamic models, - -

- CUSUM-like scheme - -

Górecki et al. (2017) [13] - Change point detection, heteroscedastic, - Time series data
- Karhunen-Loeve expansions - -

Bucchia and Wendler (2017) [14]
- Change point detection, bootstrap, Time series data
- Hilbert space valued random fields, - -
- (Cramer–von Mises type test) - -

Zhou et al. (2015) [16] - Sequential change point detection, - -
- linear quantile regression models - -

Lu and Chang (2016) [17] - Detecting change points, - -
- mean/variance shifts, FCML-CP algorithm - -
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Table 1. Cont.

Airborne BCPD
Time Series AnalysisAuthors Particulate Matters Change-Point Detection (Bayesian Change Point

(PM2.5, PM10) Detection)

Liu et al. (2013) [11] - Change point detection, Time series analysis
- relative density ratio estimation - -

Ruggieri and Antonellis
(2016) [19] - - Bayesian sequential change point detection -

Keshavarz and Huang (2014) [20] - - Bayesian and Expectation
Maximization methods,

- - multivariate change point detection -

Kurt et al. (2018) [21] - - Bayesian change point model, -
- - SIP-based DDoS attacks detection -

Wu et al. (2017) [22]
- - Post classification change detection, -
- - iterative slow feature analysis, -
- - Bayesian soft fusion -

Gupta and Baker (2017) [26] - - Spatial event rates, change point,
- - Bayesian statistics, induced seismicity -

Marino et al. (2017) [23] - - Change point, multiple biomarkers, -
- - ovarian cancer -

Jeon et al. (2016) [24] - - Abrupt change point detection, -
- - annual maximum precipitation, fused lasso -

Bardwell and Fearnhead
(2017) [27] - - Bayesian Detection, Abnormal Segments Time series analysis

Chen et al. (2017) [25] - - Bayesian change point analysis, -
- - extreme daily precipitation -

Bayesian approach and
This study Airbone Particulate Matter Change point detection likelihood ratio test for Time series data

change point detection
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Table 2. Change point detection.

Authors Change-Point Detection

Cabrieto et al. (2018) [38] Detection of correlation changes by applying kernel change point detection on the running correlations

Keshavarz et al. (2018) [7] Detecting a change in the mean of one-dimensional Gaussian process data in the fixed domain regime
based on the generalized likelihood ratio test (GLRT)

Kucharczyk et al. (2018) [8] Variance change point detection for fractional Brownian motion based on the likelihood ratio test

Lu et al. (2017) [9] Graph-based structural change detection for rotating machinery monitoring by martingale-test method

Hilgert et al. (2016) [12] On-line change detection for uncertain autoregressive dynamic models
through nonparametric estimation (CUSUM-like scheme)

Górecki et al. (2017) [13] Change point detection in heteroscedastic time series through Karhunen-Loeve expansions

Bucchia and Wendler (2017) [14] Change point detection and bootstrap for Hilbert space valued random fields
(Cramer-von Mises type test)

Zhou et al. (2015) [16] A method for sequential detection of structural changes in linear quantile regression models.

Lu and Chang (2016) [17] Detecting change-points for shifts in mean and variance using
fuzzy classification maximum likelihood change-point (FCML-CP) algorithm

Liu et al. (2013) [11] Change point detection in time-series data by relative density-ratio estimation

This study Change point detection for airborne particulate matter (PM2.5, PM10)
through Bayesian approach and likelihood ratio test

Table 3. BCPD (Bayesian change point detection).

Authors BCPD (Bayesian Change Point Detection)

Ruggieri and Antonellis (2016) [19] A sequential Bayesian change point algorithm was proposed
that provides uncertainty bounds on both the number and location of change points

Keshavarz and Huang (2014) [20] Bayesian and Expectation Maximization (EM) methods for change point detection problem
of multivariate data with both single and multiple changes

Kurt et al. (2018) [21] A Bayesian change point model for detecting SIP-based DDoS attacks

Wu et al. (2017) [22] A post-classification change detection method based on iterative slow
feature analysis and Bayesian soft fusion

Gupta and Baker (2017) [26] Estimating spatially varying event rates with a change point using Bayesian statistics:
Application to induced seismicity

Marino et al. (2017) [23] Change-point of multiple biomarkers in women with ovarian cancer

Jeon et al. (2016) [24] Abrupt change point detection of annual maximum precipitation through fused
lasso penalty function by using the Generalized Extreme Value (GEV) distribution

Bardwell and Fearnhead (2017) [27] Bayesian Detection of Abnormal Segments in Multiple Time Series

Chen et al. (2017) [25] Bayesian change point analysis for extreme daily precipitation

This study Change point detection for airborne particulate matter (PM2.5, PM10)
through Bayesian approach and likelihood ratio test

2. Problem Definition, Notation and Assumptions

2.1. Problem Definition

The major objective of this research is to develop a more precise, well defined and user friendly
method for application on random hazards of PM to detect the change point of subjected air pollutant
hazards at any unknown time (k) if it occurs at any area across the globe. The existing methods are
either too complex and complicated for the application on random hazards of PM due to its complex
and varying properties or not applicable to randomness of PM hazards. Therefore, still more studies
are required to develop a such kind of methodology, which is easily understandable and appropriate
to model the hazards of the PM concentrations from air quality standards that can also detect change
points in these hazards. Secondly, this method could be applicable for any kind of time series and data
distributions. Analysis of these changes need to be done, whether these change points are favorable
or not for the environment. For this, a comparison of subjected pollutant hazards before and after a
change point has to be done for the evaluation of pollution control programs adopted by environmental
protection agencies. If hazards occurrences increase after the change point, then environmental policies
have a negative impact which marks the failure of pollution control program, but if the hazards
occurrences reduce after the change point, then it demonstrates the effectiveness of the pollution
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control program. Thirdly, an alteration in occurrences must be measured to define the new pollution
control policies for further improvements in the current level of subjected air pollutant hazards.

For anticipated goals, the Bayesian approach will be used to determine posterior probabilities of
pollutant occurrences and the likelihood ratio test will be used for identifying the change point in that
Bayesian model. This suggested model would be numerically validated by using real-time data of
particulate matters’ concentrations in different areas of Seoul, South Korea, observed from January 2004
to December 2013. The change point (k) for for particulate matter (PM2.5 and PM10) hazards, the rate
before the change point (θ), and the rate after the change point (λ) would be comprehensively analyzed.
The central idea for using different regions is their considerably different features i.e., environment,
population densities, and transportation vehicle densities. Hence, this study can also be a vision for the
implementation of recommended model in different areas.Air quality standards for particular matter
PM2.5 and PM10 are given in Table 4. Results have been determined by following these standards.

Table 4. Region-wise air quality standards for particulate matters (PM2.5 and PM10).

Air Quality Standards for PM2.5 Air Quality Standards for PM10
(µg/m3) (µg/m3)

European Standard (PM2.5) 25 European Standard (PM10) 24 h 50
American Standard (PM2.5) 35 American Standard (PM10) 24 h 150

Korean Standard (PM2.5) 24 h 50 Korean Standard (PM10) 24 h 100

Tables 5 and 6 illustrate some details regarding data collected for Guro, Nowon, Songpa,
and Yongsan which exhibit standard-wise and location-wise percentage of polluted days. In case
of PM2.5, more than 44%, 21% and 8% days are polluted as per European, American and Korean
standards respectively, which is alarming. Similarly, in case of PM10, the polluted days concentrations
as per European and Korean standards is more than 40% and 6% respectively and it could not be
acceptable. Hence, there is a need to control hazards of PM.

Table 5. Particulate matter (PM2.5) location-wise data.

Particle Criteria Total Number Effective Dangerous %Age against %Age against
Pollution (µg/m3) of Days Readings Concentration Total Days Effective Readings

PM2.5 Guro’s data (Seoul, South Korea)

European Standard 25 2498 2486 1125 45.04% 45.25%
American Standard 35 2498 2486 532 21.30% 21.40%

Korean Standard 50 2498 2486 207 8.29% 8.33%

PM2.5 Nowon’s data (Seoul, South Korea)

European Standard 25 3228 3031 1371 42.47% 45.23%
American Standard 35 3228 3031 718 22.24% 23.69%

Korean Standard 50 3228 3031 255 7.90% 8.41%

PM2.5 Songpa’s data (Seoul, South Korea)

European Standard 25 3653 3388 1547 42.35% 45.66%
American Standard 35 3653 3388 795 21.76% 23.47%

Korean Standard 50 3653 3388 281 7.69% 8.29%

PM2.5 Yongsan’s data (Seoul, South Korea)

European Standard 25 3653 3456 1537 42.08% 44.47%
American Standard 35 3653 3456 746 20.42% 21.59%

Korean Standard 50 3653 3456 280 7.66% 8.10%
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Table 6. Particulate matter (PM10) location-wise data.

Particle Criteria Total Number Effective Dangerous %Age against %Age against
Pollution (µg/m3) of Days Readings Concentration Total Days Effective Readings

PM10 Guro’s data (Seoul, South Korea)

European Standard 50 3653 3540 1580 43.25% 44.63%
American Standard 150 3653 3540 60 1.64% 1.69%

Korean Standard 100 3653 3540 279 7.64% 7.88%

PM10 Nowon’s data (Seoul, South Korea)

European Standard 50 3653 3531 1444 39.53% 40.89%
American Standard 150 3653 3531 41 1.12% 1.16%

Korean Standard 100 3653 3531 239 6.54% 6.77%

PM10 Songpa’s data (Seoul, South Korea)

European Standard 50 3653 3467 1490 40.79% 42.98%
American Standard 150 3653 3467 50 1.37% 1.44%

Korean Standard 100 3653 3467 240 6.57% 6.92%

PM10 Yongsan’s data (Seoul, South Korea)

European Standard 50 3653 3508 1566 42.87% 44.64%
American Standard 150 3653 3508 60 1.64% 1.71%

Korean Standard 100 3653 3508 282 7.72% 8.04%

2.2. Notation

The list of notation to represent the random variables and parameters is as follows:

Indices

i replication or sequence, i = 1, 2, ...
j position in the chain, j = 1, 2, ...n

Random variables

Y random process
y variable (Y) at any given point
yi variable (Y) at point i where i ∈ 0, 1, 2...

Parameters

k change point in the random process
θ parameter before change point k associated with probability distribution function of random

variable Y
λ parameter after change point k associated with probability distribution function of random

variable Y

Variables

Pr(θ) prior distribution for parameter θ
Pr(θ|yi) posterior distribution for parameter θ
Pr(λ|yi) posterior distribution for parameter λ
Pr(yi|θ) likelihood or sampling model
V mean of the chain or replications (Average of daily pollutant concentrations)
Vij jth observation from the ith replication
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Vi mean of ith replication
V mean of m replications
B between sequence variance represents the variance of replications with the mean of

m replications
S2

i variance for all replications
W within sequence variance is the mean variance for m replications
Var(V) overall estimate of the variance of V in the target distribution√

R estimated potential scale reduction for convergence

2.3. Assumptions

The following assumptions were used for the proposed model:

1. Y represents the number of times an event occurs in time t and Y is always positive real numbers
y ∈ 1, 2... that can be any random value.

2. Y(0) = 0 means that no event occurred at time t = 0.
3. Time series random data observed on equal interval of lengths.
4. The particulate matter daily concentrations or occurrence of events follow specific random

probability distribution function.
5. The particulate matter daily concentrations in any interval of length (t) is a random variable and

number of times event occurs is also positive random variable with parameter (rate = θ).

3. Mathematical Model

3.1. Formulation of Mathematical Model

The probability distribution function of a random variable Y at any given point y in the sample
space is given as follows:

f (y; θ) = Pr(Y = y|θ) f or y ∈ 1, 2...

There could be a single parameter or multiple parameters depending upon the probability
distribution function of random variable Y.

The change point for random process Y is being detected by the likelihood ratio test and that is a
statistical test used for comparing the goodness of fit for two statistical models; one is null model and
other is alternative model. The test is based on the likelihood ratio, which states how many times more
likely the data are under one model than the other. This likelihood ratio compared to a critical value
used to decide whether to reject the null model.

f (Change point|Y, Eexpectation before change point, Expectation after change point
)

=
L
(
Y; Change point, Expectation before change point, Expectation after change point

)
∑n

j=1 L
(
Y; j, Change point, Expectation before change point, Expectation after change point

) (1)

and parameters’ comparison before and after the change-point is also being done.
Let the change point in the random process be denoted by k and θ be the random variable

parameter before change point k while λ be the random variable parameter after change point k. It can
be represented as:

yi ∼ pd f (θ) for i = 1, 2, ...., k

yi ∼ pd f (λ) for i = k + 1, k + 2, ..., n
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Hence,
f (y; θ) = Pr(Y = yi|θ) for i = 1, 2, ...., k

f (y; λ) = Pr(Y = yi|λ) for i = k + 1, k + 2, ..., n

The joint pdf (probability density function) is the product of marginal pdf. If random variable
Y = yi with parameter θ is modelled, then joint pdf of our sample data will be as below:

Pr(Y = yi|θ) =
n

∏
i=1

Pr(yi|θ) f or i ∈ 0, 1, 2, ..., n

A class of prior densities is conjugate for the likelihood/sampling model Pr(yi|θ) if the posterior
distribution is also in the same class. Therefore, prior distribution Pr(θ) and posterior distribution
Pr(θ|yi) will follow the same conjugate prior distribution to the likelihood/sampling model Pr(yi|θ).
However, the likelihood Pr(yi|θ) follows the random distribution based on data. Therefore, the prior
distribution Pr(θ) of parameters and posterior distribution Pr(θ|yi) of the same parameters must be
same and conjugate for Bayesian analysis. Bayes theorem for parameter’s θ and λ is as follows:

Pr(θ|yi) ∝ Pr(θ)Pr(yi|θ)

Pr(λ|yi) ∝ Pr(λ)Pr(yi|λ)

By applying Bayes theorem, the posterior distribution of model parameters θ and λ can
be determined

Pr(θ|yi) =
Pr(yi|θ)Pr(θ)

Pr(yi) f or i ∈ 1, 2, ..., k

Pr(λ|yi) =
Pr(yi|λ)Pr(λ)

Pr(yi) f or i ∈ k + 1, k + 2, ..., n

As,
L(θ|Y) = fθ(Y) = f (Y|θ)

Now, apply likelihood ratio test statistic for change point detection

f (k|Y, θ, λ) =
L
(
Y; k, Expectation before change point, Expectation after change point

)
∑n

j=1 L
(
Y; j, Expectation before change point, Expectation after change point

)
And likelihood will be determined as given by:

L(Y; k, θ, λ) =

[
exp
(

k((Expectation after k point − Expectation before k point)
)(Expectation before k

Expectation after k

)∑k
i=1 yi

]

The change point k is uniform over yi. Please note that θ, λ and k are all independent of each other.

3.1.1. Convergence of the Parameters

A single simulation run of a somewhat arbitrary length cannot represent the actual characteristics
of the resulting model. Therefore, to estimate the steady-state parameters, the Gelman-Rubin
Convergence diagnostic has to be applied in which target parameters are estimated by running
multiple sequences of the chain. m replications of the simulation (m ≥ 10) are made, each of length
n = 1000. If the target distribution is unimodal then Cowles and Carlin recommends that we must run
at least ten chains, as this approach monitors the scalar numbers of interest in the analysis. Therefore,
the mean rate of pollutant concentrations is a parameter of interest that is denoted by V.
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Scalar summary V = Mean of the chain (Average of daily pollutant concentrations)

Let Vij be the jth observation from the ith replication

Vij, i = 1, 2, ...., m j = 1, 2, ...., n

Mean of ith replication

Vi =
1
n

n

∑
j=1

Vij

Mean of m replications

V =
1
m

m

∑
i=1

Vi

The between sequence variance represents the variance of replications with the mean of m
replications calculated as follows:

B =
n

m− 1

m

∑
i=1

(Vi −V)2

Variance for all replications is calculated to determine the within sequence variance

S2
i =

1
n− 1

n

∑
j=1

(Vij −V)2

The within sequence variance is the mean variance for k replications determined as given below:

W =
1
m

m

∑
i=1

S2
i

Finally, the within sequence variance and between sequence variance are combined to get an
overall estimate of the variance of V in the target distribution

Var(V) =
n− 1

n
W +

1
n

B

Convergence is diagnosed by calculating

√
R =

√
Var(V)

W

This factor
√

R (estimated potential scale reduction) is the ratio between the upper and lower
bound on the space range of V which is used to estimate the factor by which Var(V) could be reduced
through more iterations. Further iterations of the chain must be run if the potential scale reduction is
high. Run the replications until R is less than 1.1 or 1.2 for all scalar summaries.

3.1.2. Flowchart

The flowchart (Figure 1) for change point k detction, for any random process Y, is given as follows:
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Figure 1. Flowchart for change point (k) detection.

3.2. Comparison Method for Change Point Detection

A change point analysis has been done by using a combination of CUSUM (cumulative sum
control chart) and bootstrapping for comparative analysis.

3.2.1. The CUSUM (Cumulative Sum Control Chart) Technique

The CUSUM (cumulative sum control chart) is a sequential analysis technique typically used for
monitoring change detection. CUSUM charts are constructed by calculating and plotting a cumulative
sum based on the data. The cumulative sums are calculated as follows:

1. First calculate the average.

X̄ =

(
X1 + X2 + X3 + ....,

n

)
2. Start the cumulative sum at zero by setting S0 = 0
3. Calculate the other cumulative sums by adding the difference between current value and the

average to the previous sum, i.e.,

Si = Si−1 +
(
Xi − X̄

)
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Plot the series and the cumulative sum is not the cumulative sum of the values. Instead it is the
cumulative sum of differences between the values and the average. Because the average is subtracted
from each value, the cumulative sum also ends at zero.

Interpreting a CUSUM chart requires some practice. Suppose that during a period of time the
values tend to be above the overall average. Most of the values added to the cumulative sum will be
positive and the sum will steadily increase. A segment of the CUSUM chart with an upward slope
indicates a period where the values tend to be above the overall average. Likewise a segment with
a downward slope indicates a period of time where the values tend to be below the overall average.
A sudden change in direction of the CUSUM indicates a sudden shift or change in the average. Periods
where the CUSUM chart follows a relatively straight path indicate a period where the average did
not change.

3.2.2. Bootstrap Analysis

A confidence level can be determined for the apparent change by performing a bootstrap analysis.
Before performing the bootstrap analysis, an estimator of the magnitude of the change is required.
One choice, which works well regardless of the distribution and despite multiple changes, is Sdi f f
defined as:

Sdi f f = Smax − Smin

Smax = max
i=0,1,2,...,

Si

Smin = min
i=0,1,2,...,

Si

Once the estimator of the magnitude of the change has been selected, the bootstrap analysis can
be performed. A single bootstrap is performed by:

1. Generate a bootstrap sample of n units, denoted X0
1, X0

2, X0
3, ...X0

n by randomly reordering the
original n values. This is called sampling without replacement.

2. Based on the bootstrap sample, calculate the bootstrap CUSUM, denoted S0
0, S0

1, S0
2, ...S0

n.
3. Calculate the maximum, minimum and difference of the bootstrap CUSUM, denoted S0

max, S0
min

and S0
di f f .

4. Determine whether the bootstrap difference S0
di f f is less than the original difference Sdi f f .

The idea behind bootstrapping is that the bootstrap samples represent random reordering of the
data that mimic the behavior of the CUSUM if no change has occurred. By performing a large number
of bootstrap samples, it can be estimated that how much Sdi f f would vary if no change took place.
It would be compared with the Sdi f f value calculated from the data in its original order to determine if
this value is consistent with what has been expected if no change occurred. If bootstrap CUSUM charts
tend to stay closer to zero than the CUSUM of the data in its original order, this leads one to suspect that
a change must have occurred. A bootstrap analysis consists of performing a large number of bootstraps
and counting the number of bootstraps for which S0

di f f is less than Sdi f f . Let N be the number of
bootstrap samples performed and let X be the number of bootstraps for which S0

di f f < Sdi f f . Then the
confidence level that a change occurred as a percentage is calculated as follows:

Confidence Level = 100
X
N

percentage

This is strong evidence that a change did in fact occur. Ideally, rather than bootstrapping,
one would like to determine the distribution of S0

di f f based on all possible reordering of the data.
However, this is generally not feasible. A better estimate can be obtained by increasing the number of
bootstrap samples. Bootstrapping results in a distribution free approach with only a single assumption,
that of an independent error structure. Both control charting and change-point analysis are based on
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the mean-shift model. Let X1, X− 2, X3, ... represent the data in time order. The mean-shift model can
be written as

Xi = µi + εi

where µi is the average at time i. Generally µi = µi−1 except for a small number of values of i called
the change-points. εi is the random error associated with the ith value. It is assumed that the εi are
independent with means of zero. Once a change has been detected, an estimate of when the change
occurred can be made. One such estimator is the CUSUM estimator. Let m be such that:

| Sm |= max
i=0,1,2,...,

| Si |

Sm is the point furthest from zero in the CUSUM chart. The point m estimates last point before
the change occurred. The point m + 1 estimates the first point after the change. Once a change has
been detected, the data can be broken into two segments, one each side of the change-point, 1 to m and
m + 1 to 24, estimating the average of each segment, and then analyzing the two estimated averages.

4. Numerical Example

The formulated mathematical model has been used for the numerical verification and the validity
of the model has also been checked. That is why real-time data of particulate matter hazards for four
different sites of Seoul, South Korea has been utilized for this investigation.

4.1. Particulate Matter (PM2.5) and (PM10) Change Points for Four Different Sites

Two dissimilar cases need to be considered

4.1.1. Case 1—When There Is No Hazard

In this case, there is no hazard and concentrations of particulate matter does not exceed the
threshold value of the standards. Therefore, there will be no polluted day and random variable
Y would always be y = 0. Hence, due to zero hazard in the concentrations of particulate matter,
this model has not been applied.

4.1.2. Case 2—When There Are Hazards

In this case, several polluted days for particulate matter (PM2.5 and PM10) concentrations are
considered as a Poisson process. A counting process is a Poisson counting process with the rate θ > 0.
Here, we report the results obtained by applying the method described in Section 3 to the particulate
matter (PM2.5 and PM10) concentrations for four different sites (Guro, Nowon, Songpa, and Yongsan)
in Seoul, South Korea. We used the daily data observed from January 2004 to December 2013 to
compute the change point of both pollutants.

f (y; θ) = (Pr(Y = y|θ)) = Poisson(y, θ) =
e−θθy

y!
f or y ∈ 1, 2, ...., n

Poisson distribution is the number of events occurring in a given time period. So in this case,
occurrence of the number of polluted days in a month is taken as Poisson distribution. The rate of
polluted days for both PM2.5 and PM10 are given in Tables 7 and 8 respectively.
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Table 7. PM2.5 Poisson Process.

PM2.5 Poisson Process (Rate) θ

Area Distribution European Standards American Standards Korean Standards

Guro Poisson 13.720 6.488 2.524
Nowon Poisson 12.934 6.774 2.406
Songpa Poisson 12.892 6.625 2.342
Yongsan Poisson 12.808 6.217 2.333

Table 8. PM10 Poisson Process.

PM10 Poisson Process (Rate) θ

Area Distribution European Standards American Standards Korean Standards

Guro Poisson 13.167 0.500 2.325
Nowon Poisson 12.033 0.342 1.992
Songpa Poisson 12.417 0.417 2.000
Yongsan Poisson 13.050 0.500 2.350

The change point for this Poisson process has to be detected to know whether a change has
occurred, the most likely month in which change has occurred, and if the rate of polluted days has
increased or decreased after the change point. It has been assumed that the number of polluted days
for (particulate matter) PM2.5 and PM10 concentrations follows a Poisson distribution with a mean
rate θ until the month k. After the month k, the polluted days are distributed according to the Poisson
distribution with a mean rate λ. It can be represented as:

yi ∼ Poisson(θ) for i = 1, 2, ...., k

yi ∼ Poisson(λ) for i = k + 1, k + 2, ..., n

Hence,
f (y; θ) = Pr(Y = yi|θ) for i = 1, 2, ...., k

f (y; λ) = Pr(Y = yi|λ) for i = k + 1, k + 2, ..., n

If we model Y = yi as Poisson with mean rate θ then joint pdf of our sample data will be as below:

Pr(Y = yi|θ) =
n

∏
i=1

pr(yi|θ) =
n

∏
i=1

e−θθyi

y!
= c(y1, y2, ...yn)e−nθθ∑ yi i ∈ 0, 1, 2, ..., n

This means that whatever our conjugate class of densities is, it will have to include terms like
e−C2θθC1 for constants C1 and C2. The simplest class of such densities, which include these terms and
corresponding probability distributions, are known as family of Gamma distributions. Therefore, prior
distribution Pr(θ) and posterior distribution Pr(Y = θ|y1, y2, ...yn) will follow a Gamma distribution,
but likelihood or sampling model Pr(y1, y2, ...yn|θ) follow a Poisson distribution.

Therefore, the prior distributions of θ and λ, uncertain positive quantities θ and λ has
Gamma(a1, b1) and Gamma(a2, b2) distributions respectively, where a1 is shape parameter and b1

is rate parameter for θ while a2 is shape parameter and b2 is rate parameter for λ

Pr(θ) = Gamma(θ, a1, b1) =
ba1

1 e−b1θθa1−1

Γ(a1)

Pr(λ) = Gamma(λ, a2, b2) =
ba2

2 e−b2λλa2−1

Γ(a2)
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Gamma distribution is also conjugate prior of the rate (inverse scale) parameter of the Gamma
distribution itself. That is why the rate parameter b1 and b2 will also follow a Gamma distribution with
different shape and rate parameters as given below:

b1 ∼ Gamma(c1, d1) where c1 = shape parameter d1 = rate parameter

b2 ∼ Gamma(c2, d2) where c2 = shape parameter d2 = rate parameter

By applying Bayes theorem, posterior distributions for rate parameters θ, λ, b1 and b2 will be
determined in the following way. Likelihood and prior distributions of θ

Pr(y1, y2, y3, ...., yn|θ) ∼ Poisson(θ)

Pr(θ) = Gamma(θ, a1, b1)

Pr(θ|y1, y2, y3, ...., yn) =
Pr(y1, y2, y3, ...., yn|θ)Pr(θ)

Pr(y1, y2, y3, ...., yn)
= (e−b1θθa1−1)× (e−nθθ∑ yi )× c(y1, y2, y3, ...., yn)

= (e−(b1+n)θθa1+∑ yi−1)× c(y1, y2, y3, ...., yn, a1, b1)

(θ|y1, y2, y3, ...., yn) ∼ Gamma(a1 +
n

∑
i=1

yi, b1 + n)

This is evidently a Gamma distribution. Hence, the conjugacy of Gamma family for the Poisson
sampling model or likelihood is confirmed. Hence, it is concluded from the above that if:

θ ∼ Gamma(a1, b1)

Pr(y1, y2, y3, ...., yn|θ) ∼ Poisson(θ)

Then:

(θ|y1, y2, y3, ...., yn) ∼ Gamma(a1 +
n

∑
i=1

yi, b1 + n)

Similarly, the posterior distributions of all parameters θ, λ, b1 and b2 can be determined as
given below:

(θ|y, λ, b1, b2, k) ∼ Gamma(a1 +
k

∑
i=1

yi, k + b1)

(λ|y, θ, b1, b2, k) ∼ Gamma(a2 +
n

∑
i=k+1

yi, k + b2)

(b1|y, θ, λ, b2, k) ∼ Gamma(a1 + c1, θ + d1)

(b2|y, θ, λ, b1, k) ∼ Gamma(a2 + c2, λ + d2)

As Gamma is a two-parameter family of continuous probability distribution. As a result,
the function:

L(θ|Y) = fθ(Y) = f (Y|θ)

The likelihood ratio test statistic is:

f (k|Y, θ, λ) =
L(Y; k, θ, λ)

∑n
j=1 L(Y; j, θ, λ)
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The likelihood is determined as given by:

L(Y; k, θ, λ) = exp(k(λ− θ)) (θ/λ)∑k
i=1 yi

For Bayesian approach, MATLAB has been used for change point detection of particulate matter
(PM2.5 and PM10) data during the study period (2004–2013) for four different sites (Guro, Nowon,
Songpa and Yongsan) in Seoul, South Korea. 10 replications of each simulation are made with
1100 observations in each replication. First 100 observations are discarded as a burn-in period.
Replication Mean Vi of remaining 1000 observations has been taken for each replication as shown
in Tables 9 and 10. Then mean (V) of replication mean has been taken to get the converged values
of parameters.

Moreover, the CUSUM charts of polluted days as per European, American and Korean standards
are shown in Figures 2–9 for four different sites Guro, Nowon, Songpa and Yongsan in Seoul,
South Korea.

Figure 2. CUSUM chart for Guro PM2.5.

Figure 3. CUSUM chart for Guro PM10.



Mathematics 2019, 7, 474 19 of 42

Figure 4. CUSUM chart for Nowon PM2.5.

Figure 5. CUSUM chart for Nowon PM10.

Figure 6. CUSUM chart for Songpa PM2.5.
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Figure 7. CUSUM chart for Songpa PM10.

Figure 8. CUSUM chart for Yongsan PM2.5.

Figure 9. CUSUM chart for Yongsan PM10.
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Table 9. PM2.5 Converged values of parameters (Bayesian approach).

PM2.5 Converged Values of Parameters (Bayesian Approach)

Guro Nowon Songpa Yongsan

Replication (θ) (λ) K (θ) (λ) K (θ) (λ) K (θ) (λ) K
Mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

European standards

V1 15.96 11.17 43.29 15.88 10.30 49.98 14.93 11.24 53.69 24.80 12.13 6.92
V2 16.03 11.25 42.53 15.89 10.34 49.83 14.90 11.28 53.81 24.46 12.15 8.07
V3 16.00 11.18 43.12 15.90 10.32 49.76 14.91 11.25 53.92 24.81 12.07 7.49
V4 16.01 11.17 43.19 15.90 10.30 49.96 14.91 11.24 54.05 24.77 12.14 7.75
V5 15.98 11.12 43.52 15.88 10.26 50.13 14.93 11.23 53.59 24.56 12.09 7.48
V6 15.96 11.14 43.61 15.87 10.28 50.12 14.89 11.24 53.98 24.07 12.08 9.48
V7 15.95 11.17 43.41 15.84 10.30 50.12 14.88 11.26 53.91 24.61 12.03 8.20
V8 16.04 11.21 42.76 15.94 10.34 49.65 14.93 11.26 53.73 24.69 12.13 7.87
V9 16.01 11.19 42.75 15.88 10.30 49.78 14.90 11.24 53.71 24.50 12.10 7.83
V10 15.96 11.15 43.59 15.85 10.30 50.23 14.88 11.25 54.07 24.23 12.12 8.30

(V)
Mean of 10 15.99 11.17 43.18 15.88 10.30 49.95 14.90 11.25 53.85 24.55 12.10 7.94
replications

American standards

V1 8.35 5.32 33.46 9.82 4.77 42.11 8.73 4.95 53.32 16.12 5.69 6.17
V2 8.24 5.33 33.67 9.84 4.80 41.76 8.72 4.96 53.31 16.04 5.71 6.17
V3 8.22 5.30 34.31 9.82 4.78 42.12 8.72 4.95 53.35 16.00 5.69 6.21
V4 8.29 5.30 34.10 9.84 4.79 41.75 8.72 4.95 53.32 16.08 5.68 6.18
V5 8.31 5.30 33.49 9.86 4.77 41.67 8.72 4.93 53.32 16.05 5.67 6.17
V6 8.27 5.31 33.70 9.80 4.77 42.11 8.71 4.94 53.39 15.96 5.68 6.20
V7 8.24 5.30 34.01 9.88 4.79 41.66 8.70 4.95 53.33 15.92 5.69 6.19
V8 8.25 5.32 33.70 9.86 4.80 41.61 8.74 4.96 53.25 16.16 5.69 6.16
V9 8.47 5.33 32.46 9.83 4.78 41.66 8.72 4.94 53.21 15.99 5.68 6.16
V10 8.38 5.33 33.28 9.82 4.79 41.89 8.71 4.95 53.42 15.96 5.69 6.21

(V)
Mean of 10 8.30 5.31 33.62 9.84 4.78 41.83 8.72 4.95 53.32 16.03 5.69 6.18
replications
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Table 9. Cont.

PM2.5 Converged Values of Parameters (Bayesian Approach)

Guro Nowon Songpa Yongsan

Replication (θ) (λ) K (θ) (λ) K (θ) (λ) K (θ) (λ) K
Mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

Korean standards

V1 3.58 1.63 38.14 3.75 1.21 50.29 3.13 1.64 56.57 7.95 2.05 5.80
V2 3.57 1.65 37.90 3.74 1.22 50.25 3.15 1.65 56.26 7.95 2.06 5.76
V3 3.58 1.64 37.97 3.75 1.21 50.23 3.15 1.64 56.34 7.92 2.05 5.80
V4 3.57 1.62 38.40 3.74 1.20 50.43 3.15 1.63 56.54 8.01 2.06 5.77
V5 3.56 1.61 38.48 3.74 1.20 50.32 3.14 1.63 56.50 7.94 2.05 5.78
V6 3.55 1.62 38.63 3.73 1.20 50.52 3.13 1.63 56.87 7.97 2.04 5.77
V7 3.54 1.62 38.60 3.75 1.20 50.30 3.13 1.64 56.53 7.87 2.05 5.80
V8 3.59 1.64 37.93 3.75 1.21 50.27 3.16 1.64 56.08 7.98 2.06 5.78
V9 3.57 1.63 37.84 3.73 1.20 50.43 3.15 1.64 55.86 7.90 2.05 5.79
V10 3.55 1.62 38.69 3.73 1.21 50.36 3.13 1.63 56.86 7.90 2.05 5.79

(V)
Mean of 10 3.56 1.63 38.26 3.74 1.21 50.34 3.14 1.64 56.44 7.94 2.05 5.78
replications
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Table 10. PM10 Converged values of parameters (Bayesian approach).

PM10 Converged Values of Parameters (Bayesian Approach)

Guro Nowon Songpa Yongsan

Replication (θ) (λ) K (θ) (λ) K (θ) (λ) K (θ) (λ) K
Mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

European standards

V1 14.71 9.20 85.53 14.95 8.36 67.04 16.11 9.49 53.29 14.57 8.41 90.09
V2 14.75 9.27 85.10 14.93 8.39 67.10 16.08 9.52 53.30 14.57 8.50 89.53
V3 14.74 9.20 85.49 14.93 8.36 67.16 16.11 9.45 53.29 14.58 8.47 89.63
V4 14.75 9.19 85.47 14.93 8.35 67.17 16.08 9.47 53.52 14.57 8.39 90.16
V5 14.76 9.12 85.65 14.92 8.33 67.13 16.06 9.44 53.75 14.56 8.35 89.85
V6 14.72 9.18 85.59 14.91 8.35 67.20 16.06 9.47 53.43 14.54 8.42 89.98
V7 14.71 9.18 85.75 14.90 8.36 67.13 16.14 9.48 53.36 14.52 8.41 90.12
V8 14.77 9.25 85.07 14.96 8.37 67.05 16.08 9.39 53.93 14.61 8.51 89.23
V9 14.73 9.18 85.29 14.92 8.35 67.03 16.07 9.47 53.26 14.60 8.48 88.67
V10 14.72 9.19 85.67 14.91 8.37 67.16 16.03 9.46 53.91 14.53 8.39 90.18

(V)
Mean of 10 14.73 9.20 85.46 14.93 8.36 67.12 16.08 9.46 53.50 14.56 8.43 89.74
replications

American standards

V1 0.63 0.12 90.65 0.69 0.13 66.56 0.56 0.07 87.63 0.66 0.04 91.61
V2 0.63 0.12 90.76 0.63 0.11 72.52 0.55 0.07 89.08 0.66 0.04 91.33
V3 0.63 0.12 90.67 0.52 0.08 81.79 0.56 0.07 87.86 0.66 0.04 91.46
V4 0.63 0.12 90.34 0.53 0.09 81.32 0.57 0.07 86.80 0.66 0.04 91.41
V5 0.63 0.12 90.23 0.76 0.14 60.70 0.56 0.06 88.35 0.67 0.04 91.03
V6 0.63 0.12 90.48 0.52 0.08 81.91 0.56 0.07 87.98 0.66 0.04 91.50
V7 0.63 0.12 90.53 0.45 0.06 89.85 0.56 0.06 88.72 0.66 0.05 91.18
V8 0.63 0.12 90.63 0.82 0.15 56.42 0.56 0.09 88.73 0.66 0.04 91.11
V9 0.63 0.13 89.33 0.64 0.11 71.37 0.56 0.07 88.19 0.66 0.04 91.69
V10 0.64 0.12 89.79 0.59 0.11 75.61 0.56 0.07 88.26 0.66 0.04 91.29

(V)
Mean of 10 0.63 0.12 90.34 0.62 0.11 73.80 0.56 0.07 88.16 0.66 0.04 91.36
replications
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Table 10. Cont.

PM10 Converged Values of Parameters (Bayesian Approach)

Guro Nowon Songpa Yongsan

Replication (θ) (λ) K (θ) (λ) K (θ) (λ) K (θ) (λ) K
Mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

Korean standards

V1 2.89 0.91 85.25 2.92 0.89 65.68 3.16 1.09 52.78 3.32 1.11 67.44
V2 2.90 0.92 85.17 2.91 0.89 65.67 3.17 1.10 52.65 3.33 1.13 66.93
V3 2.89 0.90 85.96 2.92 0.89 65.69 3.17 1.09 52.79 3.32 1.12 67.52
V4 2.88 0.88 86.67 2.91 0.88 65.69 3.17 1.09 52.83 3.30 1.08 68.72
V5 2.90 0.91 84.97 2.91 0.88 65.67 3.16 1.08 52.79 3.30 1.09 68.37
V6 2.88 0.89 86.13 2.91 0.88 65.72 3.16 1.09 52.75 3.27 1.06 69.89
V7 2.87 0.87 87.12 2.90 0.89 65.70 3.16 1.09 52.64 3.28 1.08 68.93
V8 2.89 0.89 86.14 2.92 0.88 65.67 3.18 1.09 52.59 3.33 1.12 67.09
V9 2.88 0.89 86.27 2.90 0.88 65.63 3.16 1.09 52.56 3.31 1.10 67.66
V10 2.88 0.90 86.17 2.90 0.89 65.74 3.15 1.09 53.15 3.30 1.10 68.08

(V)
Mean of 10 2.89 0.90 85.98 2.91 0.89 65.68 3.16 1.09 52.75 3.31 1.10 68.06
replications
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However, the bootstraps analysis of European standards has been shown in Figures 10–17 as
given below.

Figure 10. CUSUM chart for Guro PM2.5 plus 10 bootstraps (European Standards).

Figure 11. CUSUM chart for Guro PM10 plus 10 bootstraps (European Standards).
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Figure 12. CUSUM chart for Nowon PM2.5 plus 10 bootstraps (European Standards).

Figure 13. CUSUM chart for Nowon PM10 plus 10 bootstraps (European Standards).
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Figure 14. CUSUM chart for Songpa PM2.5 plus 10 bootstraps (European Standards).

Figure 15. CUSUM chart for Songpa PM10 plus 10 bootstraps (European Standards).
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Figure 16. CUSUM chart for Yongsan PM2.5 plus 10 bootstraps (European Standards).

Figure 17. CUSUM chart for Yongsan PM10 plus 10 bootstraps (European Standards).

The change point k is discrete uniform over (1, 2, 3...120) as there are 120 months in 10 years.
Please note that θ, λ and k are all independent of each other.
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5. Numerical Results

Two dissimilar approaches have been used to attain the results. First one is Bayesian approach,
which is based on probability distributions. It can be applicable to any kind of data distribution.
For this, firstly data distributions are defined and then proposed method is applied to acquire the
results. This approach is better to apply for random data structures and time series. While the second
method is based on CUSUM charts, this technique is directly applicable on the raw data, which is
good for deterministic data structures. Summarized forms of particulate matter (PM2.5 and PM10)
change point (k), the rate before change point (θ) and the rate after change point (λ) during the study
period (2004–2013) for four different sites (Guro, Nowon, Songpa and Yongsan) in Seoul, South Korea
are given in Tables 11–14. The results have been computed by following the European, American,
and Korean Standards as discussed in Table 4.

5.1. PM2.5 Change Point (k) through Bayesian Approach

In Table 11, the results obtained through Bayesian approach have been described, where (k) is
the predicted change point varies for different areas and different air quality standards. The results
indicate the reduction of polluted days after change point (k) for PM2.5. While (θ) represents the per
month rate of polluted days before change point, (k) and (λ) be the rate of per month polluted days
after change point (k).

5.2. PM2.5 Last Point before Change (k) and First Point after Change (k + 1) through CUSUM Approach

Table 12 represents the results obtained for PM2.5 through CUSUM approach, where (k) is the
last point before change and (k + 1) be the first point after change point. So, the change point leis
somewhere between (k) and (k + 1). This method also shows the reduction of polluted days after
change point as (θ) represents the per month rate of polluted days before change point and (λ) be the
rate of per month polluted days after change point.

5.3. PM10 Change Point (k) through Bayesian Approach

Table 13 explains the results obtained for PM10 through Bayesian approach. Hence, the expected
change point is (k) that differs for different areas and various air quality standards. These results show
the reduction of polluted days after change point (k) for PM10. While (θ) is the per month rate of
polluted days before change point (k) and (λ) represents the rate of per month polluted days after
change point (k).

5.4. PM10 Last Point before Change (k) and First Point after Change (k + 1) through CUSUM Approach

The results obtained for PM10 through CUSUM approach have been described in Table 14, where
the last point before change is (k) and the first point after change point is (k + 1). Therefore, the change
point leis anywhere between (k) and (k + 1). This method also depicts the reduction of polluted days
after change point. (θ) represents the per month rate of polluted days before change point and (λ) be
the rate of per month polluted days after change point.
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Table 11. PM2.5 Change Point (k) for European, American and Korean Standards through Bayesian approach.

Bayesian Approach for Change Point Detection

Area (θ) (λ) K
√

Rθ Var(V)θ
√

Rλ Var(V)λ
√

RK Var(V)K
Seoul, Rate before Rate after Change Point Convergence Variance Convergence Variance Convergence Variance

South Korea Change Point Change Point Parameter for (θ) for (θ) Parameter for (λ) for (λ) Parameter for K for K

European standards

Guro 15.99 11.17 43.18 1.000408 0.583 1.000719 0.541 1.000747 59.219
Nowon 15.88 10.30 49.95 0.999943 0.783 1.000094 0.472 1.000036 34.238
Songpa 14.90 11.25 53.85 1.000199 0.302 1.000007 0.180 1.000870 9.719
Yongsan 24.55 12.10 7.94 1.000898 21.961 1.000943 0.477 1.002031 90.053

American standards

Guro 8.30 5.31 33.62 1.002540 1.064 1.000105 0.176 1.001256 75.773
Nowon 9.84 4.78 41.83 1.000595 0.296 1.000200 0.089 1.001159 13.007
Songpa 8.72 4.95 53.32 0.999857 0.172 0.999934 0.076 1.000255 2.395
Yongsan 16.03 5.69 6.18 0.999993 5.726 0.999956 0.101 1.000028 0.356

Korean standards

Guro 3.56 1.63 38.26 1.000475 0.132 1.000439 0.052 1.000865 41.605
Nowon 3.74 1.21 50.34 0.999959 0.083 1.000377 0.025 0.999978 9.024
Songpa 3.14 1.64 56.44 1.000200 0.068 1.000144 0.031 1.000588 45.887
Yongsan 7.94 2.05 5.78 1.000136 1.498 1.000237 0.018 0.999780 0.339
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Table 12. PM2.5 Last point before change (k) and First point after change (k + 1) for European, American and Korean Standards through CUSUM approach.

CUSUM Approach for Change Point Detection

Area (θ) (λ) K k + 1 | Sm | Smax Smin Sdi f f Confidence
Seoul, Average Rate Average Rate Last Point First Point Most Extreme Highest Point Lowest Point Magnitude Level

South Korea before Change after Change before Change after Change Point in CUSUM in CUSUM of Change %

European standards

Guro 16.23 11.33 40 41 100.22 100.220 −5.280 105.500 100%
Nowon 15.81 10.06 53 54 152.50 152.500 −3.066 155.566 100%
Songpa 14.98 11.24 53 54 110.74 110.742 −6.108 116.850 100%
Yongsan 20.64 12.02 11 12 86.11 86.108 −5.192 91.300 70%

American standards

Guro 8.14 5.20 36 37 59.44 59.439 −5.024 64.463 100%
Nowon 9.90 4.80 41 42 128.28 128.283 −3.321 131.604 100%
Songpa 8.79 4.97 52 53 112.50 112.500 −5.375 117.875 100%
Yongsan 7.31 4.96 64 65 70.13 70.133 −4.783 74.917 100%

Korean standards

Guro 3.69 1.66 35 36 40.65 40.646 −1.476 42.122 100%
Nowon 3.76 1.20 50 51 67.72 67.717 −5.217 72.934 100%
Songpa 3.23 1.66 52 53 46.23 46.233 −8.275 54.508 100%
Yongsan 3.03 1.54 64 65 44.67 44.667 −1.667 46.333 100%
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Table 13. PM10 Change Point (k) for European, American and Korean Standards.

Bayesian Approach for Change Point Detection

Area (θ) (λ) K
√

Rθ Var(V)θ
√

Rλ Var(V)λ
√

RK Var(V)K
Seoul, Rate before Rate after Change Point Convergence Variance Convergence Variance Convergence Variance

South Korea Change Point Change Point Parameter for (θ) for (θ) Parameter for (λ) for (λ) Parameter for K for K

European standards

Guro 14.73 9.20 85.46 1.000072 0.425 1.000427 0.925 0.999931 64.845
Nowon 14.93 8.36 67.12 0.999879 0.464 0.999925 0.327 1.000040 3.184
Songpa 16.08 9.46 53.50 1.000300 0.643 1.001282 0.310 1.003363 9.133
Yongsan 14.56 8.43 89.74 1.000123 0.597 1.000437 1.492 1.001094 75.750

American standards

Guro 0.63 0.12 90.34 0.999840 0.009 1.000320 0.005 1.002821 31.264
Nowon 0.62 0.11 73.80 1.041187 0.173 1.036355 0.011 1.053574 1089.508
Songpa 0.56 0.07 88.16 1.000135 0.016 1.000253 0.037 1.000710 174.232
Yongsan 0.66 0.04 91.36 0.999851 0.016 1.000296 0.004 1.000219 32.243

Korean standards

Guro 2.89 0.90 85.98 1.000820 0.046 1.001576 0.053 1.003429 59.252
Nowon 2.91 0.89 65.68 0.999881 0.045 1.000137 0.016 1.000338 0.567
Songpa 3.16 1.09 52.75 0.999935 0.066 1.000075 0.017 1.001445 7.194
Yongsan 3.31 1.10 68.06 1.002209 0.077 1.003709 0.050 1.004787 81.344
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Table 14. PM10 Last point before change (k) and First point after change (k + 1) for European, American and Korean Standards through CUSUM approach.

CUSUM Approach for Change Point Detection

Area (θ) (λ) K k + 1 | Sm | Smax Smin Sdi f f Confidence
Seoul, Average Rate Average Rate Last point First Point Most Extreme Highest Point Lowest Point Magnitude Level

South Korea before Change after Change before Change after Change Point in CUSUM in CUSUM of Change %

European standards

Guro 15.05 9.79 77 78 145.17 145.167 −0.833 146.000 100%
Nowon 14.97 8.32 67 68 196.77 196.767 −2.967 199.733 100%
Songpa 16.15 9.46 53 54 197.92 197.917 −1.583 199.500 100%
Yongsan 15.01 9.53 77 78 151.15 151.150 −1.950 153.100 100%

American standards

Guro 0.64 0.10 89 90 12.50 12.500 −2.000 14.500 100%
Nowon 0.51 0.16 63 64 10.48 10.475 0.000 10.475 80%
Songpa 0.70 0.19 53 54 14.92 14.917 −5.833 20.750 100%
Yongsan 0.67 0.00 89 90 15.50 15.500 −0.500 16.000 10%

Korean standards

Guro 3.20 1.32 64 65 56.20 56.200 −0.675 56.875 100%
Nowon 2.91 0.87 66 67 60.55 60.550 −1.008 61.558 100%
Songpa 3.19 1.09 52 53 62.00 62.000 −4.000 66.000 100%
Yongsan 3.39 1.16 64 65 66.60 66.600 −0.650 67.250 100%
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6. Disussion

As the results of two different approaches have been described in the previous section.

1. Bayesian approach is based on probability distributions, which can be applicable on any kind of
data distribution. In this case, firstly data distributions are defined and then proposed method is
applied to acquire the results. This approach is better to apply for random data structures and
time series.

2. CUSUM Approach is directly applied on the raw data, which is good for deterministic
data structures.

6.1. Guro (Seoul, South Korea)

Guro is located in the southwestern part of Seoul, and has an important position as a transport
link which includes railroads and land routes. The largest digital industrial complex in Korea is also
positioned in Guro, centering on research and development activities as well as advanced information
and knowledge industries. That is why, the policies of the Ministry of Environment in South Korea have
influenced the concentrations of particulate matters (PM2.5 and PM10) in Guro and rate of polluted
days has reduced in any of the cases.

6.1.1. Bayesian Approach

Bayesian method is better to apply for random time series data. If we look in case of Guro, Table 11
indicates that for PM2.5 change-point (k) of polluted days were 43.18, 33.62, and 38.26 according to
European, American, and Korean standards respectively. Therefore, a change occurred in the rate
of polluted days, but it varied according to standards. At the minimum, the rate of polluted days
(θ = 15.99) was reduced 30.14% and the maximum reduction (θ = 3.56) to (λ = 1.63) was 54.21% in the
case of Korean standards. Similarly, Table 13 refers to the reduction of polluted days (θ) to (λ) for
PM10 after change point (k) which were 85.46, 90.34, and 85.98 according to European, American,
and Korean standards, respectively. Moreover, the decrease in the rate of polluted days (θ = 14.73)
to (λ = 9.20) was at least 37.54% for European standards, but it was 80.95% in the case of American
standards. Figures 18 and 19 graphically represent the replications of monthly polluted days before
and after the change point which are discussed in Tables 9 and 10.

Figure 18. Guro (Seoul, South Korea) monthly polluted days before and after the change point due
to PM2.5.
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Figure 19. Guro (Seoul, South Korea) monthly polluted days before and after the change point due
to PM10.

6.1.2. CUSUM Approach

CUSUM Approach also indicates a reduction in hazards rate from (θ) to (λ) after change. As for
Guro, Table 12 also represents the change of PM2.5 polluted days through CUSUM approach, which
shows that change point occurred between point 40 (k) and 41 (k + 1) for European standards,
between point 36 (k) and 37 (k + 1) for American standards and it lies in-between point 35 (k) and
36 (k + 1) for Korean standards. While Table 14 indicates the change of PM10 polluted days through
CUSUM approach with an indication of change point lies between point 77 (k) and 78 (k + 1) for
European standards, point 89 (k) and 90 (k + 1) for American standards and point 64 (k) and 65 (k + 1)
for Korean standards.

6.2. Nowon (Seoul, South Korea)

Nowon is located in the northeastern part of the city, and has the highest population density in
Seoul with 619,509 persons living in 35.44 km2, which is surrounded by mountains and forests on the
northeast. The policies of the Ministry of Environment in Nowon have improved the rate of polluted
days for PM2.5 and PM10 hazards from θ to λ. Improvement in the reduction of polluted days varies
case to case.

6.2.1. Bayesian Approach

Correspondingly, in case of Nowon, Table 11 depicts that change point (k) of polluted days
for PM2.5 were 49.95, 41.83, and 50.34 according to European, American, and Korean standards
respectively. Particularly for this case, the change point was the same according to European and
Korean standards, but varied for American standards. The rate of polluted days (θ = 15.88) for
European standards showed a minimum decrease of 35.14% after the change point and approached
(λ = 10.30), but the maximum decrease was for Korean standards which was 67.65% with (θ = 3.74) and
(λ = 1.21). In the same manner, when we study Table 13, it elaborates that for PM10, again there was
a reduction in the rate of polluted days after change point (k) of 67.12, 73.80, and 65.68 to European,
American, and Korean standards, respectively. That is comparable in cases of European and Korean
standards, but a bit different for American standards. In addition, the reduction in the rate of polluted
days for the European standard was at least 44.01% from (θ = 14.93) to (λ = 8.36), while the maximum
reduction was (θ = 0.62) to (λ = 0.11) 82.25% for American standards. Figures 20 and 21 graphically
represent the replications of monthly polluted days before and after the change point which are given
in Tables 9 and 10.
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Figure 20. Nowon (Seoul, South Korea) monthly polluted days before and after the change point due
to PM2.5.

Figure 21. Nowon (Seoul, South Korea) monthly polluted days before and after the change point due
to PM10.

6.2.2. CUSUM Approach

Moreover, CUSUM Approach also validates the reduction of PM hazards. In case of Nowon,
Table 12 represents the change of PM2.5 polluted days through CUSUM approach, which shows that
change point occurred between point 53 (k) and 54 (k + 1) for European standards, between point 41
(k) and 42 (k + 1) for American standards and it lies in-between point 50 (k) and 51 (k + 1) for Korean
standards. While Table 14 indicates the change of PM10 polluted days through CUSUM approach with
an indication of change point lies between point 67 (k) and 68 (k + 1) for European standards, point 63
(k) and 64 (k + 1) for American standards and point 66 (k) and 67 (k + 1) for Korean standards.

6.3. Songpa (Seoul, South Korea)

Songpa is located at the southeastern part of Seoul, and has largest population, with
647,000 residents. As per Ministry of Environment policies in Songpa, there is a smaller reduction
for the rate of polluted days (θ) to (λ) as compared to Guro and Nowon, but still there is a significant
reduction in PM hazards.

6.3.1. Bayesian Approach

Now for Songpa, we can check from Table 11 that change point (k) of polluted days for PM2.5 were
53.85, 53.32, and 56.44 for European, American, and Korean standards respectively, which were all
similar. The reduction in rate of polluted days was at least 24.50% for European Standards (θ = 14.90)
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to (λ = 11.25) while it was highest for Korean standards at 47.77% with (θ = 3.14) and (λ = 1.64).
Correspondingly, we can also inspect the improvement in the rate of polluted days from (θ) to (λ) for
PM10 after change point (k) in Table 13. Change point (k) for the rate of polluted days due to PM10

concentration were 53.50, 88.16, and 52.75 according to European, American and Korean standards
respectively, which was the same for European and Korean standards. The slightest improvement
41.17% has been in the case of European standards and (θ = 16.08) is converted to (λ = 9.46). On the
other hand, if we look at American standards, the rate of polluted days (θ = 0.56) was already low which
further decreased 87.5% to (λ = 0.07). Hence, this area is almost a meeting of the PM10 concentration
requirements for American standards but not for other standards. Figures 22 and 23 graphically
represent the replications of monthly polluted days before and after the change point which are given
in Tables 9 and 10.

Figure 22. Songpa (Seoul, South Korea) monthly polluted days before and after the change point due
to PM2.5.

Figure 23. Songpa (Seoul, South Korea) monthly polluted days before and after the change point due
to PM10.

6.3.2. CUSUM Approach

As per CUSUM Approach, there is a decrease in PM hazards. Table 12 also represents the change
of PM2.5 polluted days through CUSUM approach, which shows that change point occurred between
point 53 (k) and 54 (k + 1) for European standards, between point 52 (k) and 53 (k + 1) for American
standards and it lies in-between point 52 (k) and 53 (k + 1) for Korean standards. While Table 14
indicates the change of PM10 polluted days through CUSUM approach with an indication of change
point lies between point 53 (k) and 54 (k + 1) for European standards, point 53 (k) and 54 (k + 1) for
American standards and point 52 (k) and 53 (k + 1) for Korean standards.
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6.4. Yongsan (Seoul, South Korea)

Yongsan is a place in the center of Seoul in which almost 250,000 people reside. Prominent
locations in Yongsan includes Yongsan station, electronic market and Itaewon commercial area with
heavy traffic and transportation. Consequently, the policies of the Ministry of Environment in Yongsan
has affected the particulate matter (PM2.5 and PM10) concentrations more than all the previous three
locations (Guro, Nowon and Songpa). There is a remarkable decrease in rate of polluted days from (θ)
to (λ).

6.4.1. Bayesian Approach

Similarly, in the case of Yongsan, Tables 11 and 13 tell us that the rate of polluted days (θ) for
particulate matters (PM2.5 and PM10) was the highest in Seoul. The change occurred for PM2.5 with
the change point (k) 7.94, 6.18, and 5.78 with respect to European, American and Korean standards
respectively, which was comparable for all the three standards. There was minimally a 50.71% fall in
the rate of polluted days (θ = 24.55) to (λ = 12.10) for European standards, but the reduction in rate of
polluted days was a maximum of 74.18% in the case of Korean standards. On the same note, Table 13
indicates that the change in the rate of polluted days has also occurred for PM10 concentrations.
The change point (k) for it were 89.74, 91.36, and 68.06 for European, American and Korean standards,
respectively. Furthermore, at least 42.10% rate of polluted days (θ = 14.56) was reduced to (λ = 8.43)
for European standards but its maximum decrease was 93.93% for American standards (θ = 0.66) to
(λ = 0.04), although, it is already approaching the requirements of this standard. Figures 24 and 25
graphically represent the replications of monthly polluted days before and after the change point
which are given in Tables 9 and 10.

Figure 24. Yongsan (Seoul, South Korea) monthly polluted days before and after the change point due
to PM2.5.



Mathematics 2019, 7, 474 39 of 42

Figure 25. Yongsan (Seoul, South Korea) monthly polluted days before and after the change point due
to PM10.

6.4.2. CUSUM Approach

CUSUM Approach is directly applied on the raw data, which should be better for deterministic
data structures. It also shows a reduction in PM hazards. In case of Yongsan, Table 12 also represents
the change of PM2.5 polluted days through CUSUM approach, which shows that change point occurred
between point 11 (k) and 12 (k + 1) for European standards, between point 64 (k) and 65 (k + 1) for
American standards and it lies in-between point 64 (k) and 65 (k + 1) for Korean standards. While
Table 14 indicates the change of PM10 polluted days through CUSUM approach with an indication
of change point lies between point 77 (k) and 78 (k + 1) for European standards, point 89 (k) and 90
(k + 1) for American standards and point 64 (k) and 65 (k + 1) for Korean standards.

6.5. Strengths

1. This approach is very precise, well defined, user friendly and easily understandable for
applications on probability distributions, time series and random data.

2. The above mentioned model is an appropriate approach for detection of change points in random
data structures.

3. Good technique for evaluation of process control programs by comparing the parameters before
and after change point.

6.6. Limitations

1. Detection of only single change point is given in this model.
2. Further extension is required by making a model for a multiple number of change points for

locating changed segments.

6.7. Managerial Insights

1. This model presents a suitable technique to analyze the air quality and pollutant hazards in
the air.

2. By detecting change points in particulate matter (PM2.5 and PM10) concentrations and analyzing
the occurrences of polluted days before and after a change point, environmental protection
agencies can understand the role of their legislation efforts, and whether these change points are
favorable or not for the environment.

3. A comparison of particulate matter hazards before and after a change point evaluates a pollution
control program adopted by environmental protection agencies to make a decision. If these
policies need further revision or not for the reduction of death rates and burden of diseases due
airborne particulate matter concentrations in the air.
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4. This study of pollutant hazards also defines the current levels of subjected air pollutant in the air
which is helpful to make new pollution control policies for further improvements.

5. This research also brings an intuition to define new goals if previously defined goals have been
achieved and also provides a vision if the environmental standards need to be revised, or not to
overcome environmental challenges.

7. Conclusions

The main focus of this research work was to elucidate an appropriate change point detection
model for occurrences of pollutant hazards due to higher concentrations of particulate matter (PM2.5

and PM10) in different locations. The rate of pollutant hazards before and after a change point was
also estimated comprehensively to investigate the effectiveness of policies applied by the Ministry
of Environment. To verify the model, four major locations (Guro, Nowon, Songpa, and Yongsan)
in Seoul, South Korea were selected as study areas due to their different characteristics, such as
climate zones, environment, populations and population densities. Three different environmental
standards (European, American and Korean) were chosen as threshold values. Then, the model was
applied to real time data sets in all cases and conclusions were drawn. The rate before and after
the change point of particulate matter concentrations indicated a reduction in polluted days over a
10-year period. The overall results of our study confirm the effective role of legislation efforts used
consistently to improve the air quality through the years but pollutant hazards still exist. Hence,
further improvements are required to meet set standards to nullify hazards. This study can be further
extended by making a multi-parameter change point model for a multiple number of change points
considering the fact that different data structures follow different probability distributions.
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