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Abstract: Given a graph G with n vertices and l edges, the load distribution of a coloring q: V→ {red,
blue} is defined as dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored
red and bq is the number of edges with at least one end-vertex colored blue. The minimum load
coloring problem (MLCP) is to find a coloring q such that the maximum load, lq = 1/l ×max{rq, bq},
is minimized. This problem has been proved to be NP-complete. This paper proposes a memetic
algorithm for MLCP based on an improved K-OPT local search and an evolutionary operation.
Furthermore, a data splitting operation is executed to expand the data amount of global search, and a
disturbance operation is employed to improve the search ability of the algorithm. Experiments are
carried out on the benchmark DIMACS to compare the searching results from memetic algorithm and
the proposed algorithms. The experimental results show that a greater number of best results for the
graphs can be found by the memetic algorithm, which can improve the best known results of MLCP.

Keywords: minimum load coloring; memetic algorithm; evolutionary; local search

1. Introduction

The minimum load coloring problem (MLCP) of the graph, discussed in this paper, was introduced
by Nitin Ahuja et al. [1]. This problem is described as follows: a graph G = (V, E) is given, in which V is
a set of n vertices, and E is a set of l edges. The load of a k-coloring ϕ: V→ {1, 2, 3, . . . ,k} is defined as

1/l× max
i∈{1,2,3...,k}

|{e ∈ E|ϕ−1(i)∩ e , ∅}|,

the maximum fraction of edges with at least one end-point in color i, where the maximum is taken
over all i ∈ {1,2,3, . . . ,k}. The aim of the minimum load coloring problem is to minimize the load over
all k-colorings.

This paper is dedicated to the NP-complete minimum load coloring problem [1]. We focus on
coloring the vertices with the colors of red and blue. A graph G = (V, E) is given, in which V is a set of
n vertices, and E is a set of l edges. The load distribution of a coloring q: V→ {red, blue} is defined as
dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored red, and bq is the
number of edges with at least one end-vertex colored blue. The objective of MLCP is to find a coloring
q such that the maximum load, lq = 1/l ×max{rq, bq}, is minimized. MLCP can be applied to solve the
wavelength division multiplexing (WDM) problem of network communication, and build the WDM
network and complex power network [1–3].
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This paper proposes an effective memetic algorithm for the minimum load coloring problem,
which relies on four key components. Firstly, an improved K-OPT local search procedure, combining a
tabu search strategy and a vertices addition strategy, is especially designed for MLCP to explore the
search space and escape from the local optima. Secondly, a data splitting operation is used to expand
the amount of data in the search space, which enables the memetic algorithm to explore in a larger
search space. Thirdly, to find better global results, through randomly changing the current search
patterns a disturbance operation is employed to improve the probability of escaping from the local
optima. Finally, a population evolution mechanism is devised to determine how the better solution is
inserted into the population.

We evaluate the performance of memetic algorithm on 59 well-known graphs from benchmark
DIMACS coloring competitions. The computational results show that the search ability of memetic
algorithm is better than those of simulated annealing algorithm, greedy algorithm, artificial bee colony
algorithm [4] and variable neighborhood search algorithm [5]. In particular, it improves the best known
results of 16 graphs in known literature algorithms.

The paper is organized as follows. Section 2 describes the related work of heuristic algorithms.
Section 3 describes the general framework and the components of memetic algorithm, including the
population initialization, the data splitting operation, the improved K-OPT local search procedure of
individuals, the evolutionary operation and the disturbance operation. Section 4 describes the design
process of simulated annealing algorithm. Section 5 describes the design process of greedy algorithm.
Section 6 describes the experimental results. Section 7 describes the conclusion of the paper.

2. Related Work

In [6,7], the parameterized and approximation algorithms are proposed to solve the load coloring
problem, and theoretically prove their capability in finding the best solution. On the other hand,
considering the theoretical intractability of MLCP, several heuristic algorithms are proposed to find the
best solutions. Heuristic algorithms use rules based on previous experience to solve a combinatorial
optimization problem at the cost of acceptable time and space, and, at the same time, comparatively
better results can be obtained. The heuristic algorithms used here include an artificial bee colony
algorithm [4], a tabu search algorithm [5] and a variable neighborhood search algorithm [5] to
solve MLCP.

Furthermore, to find the best solutions of the other combinatorial optimization problems, several
heuristic algorithms are employed, such as a variable neighborhood search algorithm [8,9], a tabu
search algorithm [10–13], a simulated annealing algorithm [14–17], and a greedy algorithm [18].

Local search algorithm, as an important heuristic algorithm, has been improved and evolved
into many updated forms, such as a variable depth search algorithm [19], a reactive local search
algorithm [20], an iterated local search algorithm [21], and a phased local search algorithm [22].

Memetic algorithm [23,24] is an optimization algorithm which combines population-based global
search and individual-based local heuristic search, whose application is found in solving combinatorial
optimization problems. Memetic algorithm is also proposed to solve the minimum sum coloring
problem of graphs [24].

3. A Memetic Algorithm for MLCP

In this paper, we propose an efficient memetic algorithm to solve MLCP of graphs. In our
algorithm, there are several important design parts.

(1) Construct the population for the global search.
(2) Search heuristically the individuals to find better solutions.
(3) Evolve the population to find better solutions.

Memetic algorithm is summarized in Memetic_D_O_MLCP (Algorithm 1). After population
initialization, the algorithm randomly generates a population X consisting of p individuals (Algorithm 1,
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Line 2, Section 3.2). Then, the memetic algorithm repeats a series of generations (limited to a stop
condition) to explore the search space defined by the set of all proper 2-colorings (Section 3.1). For each
generation, by data splitting operation, the population X is expanded to population Z with twice as
much as the data amount (Algorithm 1, Line 5, Section 3.3). An improved K- OPT local search is
carried out for each individual Zj (0 ≤ j < |Z|) of the population Z to find the best solution of MLCP
(Algorithm 1, Line 8, Section 3.4). If the improved solution has a better value, it is then used to update
the best solution found so far (Algorithm 1, Lines 9-10). Finally, an evolutionary operation is conducted
in population Z to get a replaced one instead of population X (Algorithm 1, Line 14, Section 3.5).
To further improve the search ability of the algorithm and find better solutions, we add a disturbance
operation into the memetic algorithm (Algorithm 1, Line 15, Section 3.6).

Algorithm 1 Memetic_D_O_MLCP (G, m, p, b, k, X, Z).

Require:
G: G = (V, E), |V| = n, |E| = l
m: initial number of red vertices in graph G
p: number of individuals in the population
b, k: control parameters of disturbance operation
X: set that stores the population
Z: set that stores the extended population of X, |Z| = 2 × |X|

Output: s1, the best solution found by the algorithm
f (s1), the value of the objective function
begin
1 d1← 0, d2← 0; /* control variables of disturbance operation, Section 3.6 */
2 Init_population(X, m, p); /* generates population X consisting of p individuals, Section 3.2 */
3 Wbest ← 0;
4 repeat
5 Z← Data_spliting(X); /* population X is extended to population Z with twice as much the data amount,
Section 3.3 */
6 j← 0;
7 while j < 2×p do
8 W← New_K-OPT_MLCP (G, Zj, T, L);

/* a heuristic search is carried out for individual Zj, (T is tabu table and L is tabu tenure value,
Section 3.4) */
9 if f (W) > Wbest then
10 Wbest ← f (W), s1 ←W;
11 end if
12 j← j + 1;
13 end while
14 X← Evolution_population (Z, X); /* Section 3.5 */
15 (s1, Wbest, d1, d2)←Disturbance_operation(X, b, k, d1, d2, Wbest); /* Section 3.6 */
16 until stop condition is met;
17 return s1, Wbest;
end

3.1. Search Space and Objective Function

In [1], the following description is considered to be MLCP’s equivalent problem. A graph G = (V,
E) is given, in which V is a set of n vertices, and E is a set of l edges. (Vred, Vblue) is a two-color load
coloring bipartition scheme of V, in which Vred is the set of vertices which are red, and Vblue is the set of
vertices which are blue, here V = Vred∪Vblue. The aim is to find the maximum value of min{|Er(Vred)|,
|Er(Vblue)|} from all bipartition schemes of (Vred, Vblue) such that lq can minimize. The maximum value
is the minimum two-color load problem solution of graph G. Here, Er(Vred) is the set of edges with
both end-points in Vred, and Er(Vblue) is the set of edges with both end-points in Vblue.
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The algorithm conducts a searching within the bipartition scheme (Vred, Vblue), here |Vred|⊂V,
Vblue = V\Vred, when |Er(Vred)| ≈ |Er(Vblue)|, (Vred, Vblue) is the solution of the MLCP found by the
algorithm. The search space S of the algorithm is defined as follows:

S =
{
(Vred, Vblue)

∣∣∣Vred ⊂ V, Vblue = V\Vred
∣∣∣}. (1)

The objective function is as follows:
f ((Vred, Vblue)) = min

{∣∣∣Er(Vred)
∣∣∣, ∣∣∣Er(Vblue)

∣∣∣}
Er(Vred) =

{
(v, w)

∣∣∣∀(v, w) ∈ E, v ∈ Vred, w ∈ Vred
}

Er(Vblue) =
{
(v, w)

∣∣∣∀(v, w) ∈ E, v ∈ Vblue, w ∈ Vblue
} . (2)

We define the best solution of the MLCP as follows:

fb((Vred, Vblue)) = max
1≤ j≤t
{ f ((Vred, Vblue) j)}. (3)

Here, t is the number of all solutions that can be found by the algorithm in graph G, and (Vred,
Vblue)j is the jth solution of the MLCP found by the algorithm.

Suppose a graph G = (V, E) is given in Figure 1. Let |V| = 6, |E| = 8, and then the best solution for
MLCP of graph G is shown in Figure 2, and its best value is 2.
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Figure 2. A best solution for MLCP of graph G.

3.2. Initial Population

The algorithm randomly generates population X consisting of p individuals. For the given graph
G = (V, E), in which V is a set containing n vertices, and E is a set containing l edges, m vertices are
chosen at random from V to construct set Vred (m is the initial number of the red vertices); and the
remaining vertices are used to construct set Vblue, that is, |Vred| = m, Vblue = V\Vred. Sets Vred and Vblue
are seen as a bipartition scheme (Vred, Vblue), which is also treated as an individual in population X.
In this way, p individuals are generated at random initially, and population X is thus constructed,
|X| = p.
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3.3. Data Splitting Operation

To avoid the defect of the local optima, we expand the data amount of population X, hence
we get an expanded scope of data search. We use two data splitting strategies to split a bipartition
scheme into two. Thus, by using the first data splitting strategy each individual Xi (0 ≤ i < p) in
population X generates an individual Z2×i, and by using the second data splitting strategy each
individual Xi (0 ≤ i < p) generates an individual Z2×i+1. By doing this, p individuals in population X
are divided into 2 × p individuals, and the enlarged population Z is constructed (|X| = p, |Z| = 2 × p).
Figure 3 shows the population expansion, where the red arrow indicates the effects of the first data
splitting strategy and the blue arrow the effects of the second data splitting strategy.
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The first data splitting strategy of bipartition scheme (Vred, Vblue) is an important part of memetic
algorithm, which consists of five steps.

First step: Degree set Degreered of all vertices in sub-graph G1(Vred) is calculated.
Second step: Find the minimum degree vertex, v, from Degreered. If there is more than one vertex

with the same minimum degree, randomly select a vertex among them.
Third step: Degree set Degreeblue of all vertices in sub-graph G2(Vblue) is calculated.
Fourth step: Find the minimum degree vertex, w, from Degreeblue. If there is more than one vertex

with the same minimum degree, randomly select a vertex among them.
Fifth step: A new bipartition scheme (V′red, V′blue) is generated by exchanging the vertices v and

w in sets Vred and Vblue.
Suppose the number of red vertices is 4 in the given graph G = (V, E), V ={v0,v1, . . . ,v9}.

We obtain a bipartition scheme (Vred, Vblue), as shown in Figure 4a, in which set Vred ={v0,v3,v8,v9},
Vblue ={v1,v2,v4,v5,v6,v7}, where the degree of vertex v9 in set Vred is the smallest, and that of vertex
v4 in set Vblue is the smallest. After exchanging the two vertices, a new bipartition scheme (V′red,
V′blue) is generated. The new bipartition scheme (V′red, V′blue) after splitting is: V′red ={v0,v3,v4,v8},
V′blue ={v1,v2,v5,v6,v7,v9}, as shown in Figure 4b.
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The second data splitting strategy is described as follows: for a given bipartition scheme (Vred,
Vblue), in which |Vred| = m, Vblue = V\Vred, randomly a vertex v in set Vred is chosen, and a vertex w in
set Vblue is randomly chosen. Then, vertices v and w in set Vred and set Vblue are exchanged to generate
a new bipartition scheme (V”red, V”blue).
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3.4. Search for the Individuals

Memetic algorithm needs to carry out a heuristic search for each individual in the population by
an effective and improved K-OPT local search algorithm designed.

We first obtain an individual Zj which is a (Vred, Vblue)j, ((Vred)j⊂V, (Vblue)j =V\(Vred)j, 0 ≤ j<|Z|).
The local search algorithm is implemented to add as many selected vertices, acquired through our
vertex adding strategy, as possible in set (Vblue)j to set (Vred)j, until the stop condition set by the
algorithm is met. Thus, a new bipartition scheme (Vred, Vblue)’j is constructed. Generally speaking, in
(Vred, Vblue)’j, |Er((V′red)j)|is approximately equal to |Er((V′blue)j)|. Then, the objective function value f
((Vred, Vblue)’j) is calculated using Equation (2). If f ((Vred, Vblue)’j) > f (s1), the memetic algorithm accepts
the constructed bipartition as the new best solution. The improved K-OPT local search algorithm is
implemented by the New_K-OPT_MLCP (Algorithm 2).

Our vertex adding strategy is described as follows:
We first need to define the following three vectors as the foundation on which the vertex adding

strategy is constructed.

• CCred: The current set of red vertices in graph G.
• PAVred: The vertex set of possible additions, i.e., each vertex is connected to at least one vertex

of CCred.
PAVred =

{
v
∣∣∣v ∈ Vblue,∃w ∈ CCred, (v, w) ∈ E, Vblue = V\CCred

}
. (4)

• GPAVred: The degree set of vertices vi∈PAVred in sub-graph G′(PAVred), where PAVred ⊆ Vblue.
GPAVred[i] = degreeG′(PAVred)

(vi) =
∣∣∣{a∣∣∣∀a ∈ PAVred, (vi, a) ∈ E

}
|

vi ∈ PAVred
0 ≤ i ≤|PAVred|−1

. (5)

To avoid the local optima defect, the vertex adding strategy is employed in two phases: vertex
addition phase (Algorithm 2, Lines 8–12) and vertex deletion phase (Algorithm 2, Lines 14–18).

In the vertex addition phase of CCred, we obtain PAVred from the current CCred, then select a vertex
w from PAVred and move it from Vblue to CCred, and finally update PAVred. The vertex addition phase is
repeatedly executed until PAVred = ∅ or |Er(CCred)| > |Er(Vblue)|.

In the vertex deletion phase of CCred, we select a vertex u from CCred, then delete the vertex u from
CCred, and add it to Vblue. Go back to the vertex addition phase again to continue the execution until
the set ending conditions are met.

The approach to select vertex w is first to obtain a GPAVred in sub-graph G’(PAVred), then to
calculate the vertex selection probability value ρ(wi) of each vertex wi (0 ≤ i < |PAVred|) in PAVred, and
finally to select vertex wi to maximize ρ(wi). If there are more than one vertex with the maximum value
of ρ(wi), randomly select one.

maxd = max
wi∈PAVred,0≤i<|PAVred |

(degreeG′(PAVred)
(wi))

ρ(wi) =
maxd+1−GPAVred[i]

maxd+1
wi ∈ PAVred
0 ≤ i <|PAVred|

. (6)

A vertex w is selected according to the following criterion:

f1(w) = max
0≤i<|PAVred |

(ρ(wi)). (7)

We found that the larger the probability value ρ(wi) of vertex wi is, the smaller the degree value of
vertex wi becomes.
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The approach of vertex u selection is as follows: we assume that (CCred, Vblue)(j) is the bipartition
scheme with no possible additions. We successively take the value of i from the range of 0 – (|CCred|

− 1), and then in turn execute CCred
(j)
\{ui} as follows: delete vertex ui from CCred

(j) successively to
generate new bipartition schemes (CC′red, V′blue)i, i.e., (CC′red)i←CCred

(j)
\{ui}, (V′blue)i←Vblue

(j)
∪{ui},

ui∈CCred, 0 ≤ i <|CCred|, and finally obtain Ed((CC′red, V′blue)i).
Ed((CC′red, V′blue)i) =

∣∣∣∣{(x, y)
∣∣∣∀(x, y) ∈ E, x ∈ (CC′red)i, y ∈ (V′blue)i

}
|

(V′blue)i = V\(CC′red)i

0 ≤ i <
∣∣∣CCred

( j)
∣∣∣ . (8)

The maximum value maxdd is found from all the values of Ed, and the vertex selection probability
value ρ2(ui) of vertex ui can be calculated:

maxdd = max
0≤i<|CCred

( j) |
(Ed((CC′red, V′blue)i))

ρ2(ui) =
maxdd+1−Ed((CC′red,V′blue)i

)

maxdd+1
ui ∈ CCred

( j)

0 ≤ i <
∣∣∣CCred

( j)
∣∣∣

(9)

A vertex u is selected according to the following criterion:

f2(u) = max
ui∈CCred

( j),0≤i<|CCred
( j) |
(ρ2(ui)). (10)

We found that the larger the probability value ρ2(ui) of vertex ui is, the smaller the corresponding
Ed ((CC′red, V′blue)i) becomes. If there are more than one vertices with the maximum value of ρ2(ui),
randomly select one.

At each generation, the variable gA stores the value of vertices number successfully added to the
CCred for now, and the variable gmaxA stores the value of vertices number successfully added to the
CCred during the previous generations. If gA > gmaxA, the incumbent CCred has more red vertices than
the previous ones found by the local search algorithm. Then, gmaxA is updated with the value of gA
and the incumbent CCred is stored to the set Abest (Algorithm 2, Line 12). In the vertex addition phase,
the value of gA + 1 replaces that of gA (gA← gA + 1) after a vertex is added. In the vertex deletion
phase, the value of gA − 1 replaces that of gA (gA← gA − 1) after a vertex is deleted.

At the completion of the inner loop statements, when gmaxA > 0, CCred, which has the greatest
number of vertices, is stored in set Abest, then the incumbent CCred is updated with Abest. When
gmaxA = 0, CCred, which has the greatest number of vertices, is stored in set Aprev; if the execution
of the inner loop does not find any new set CCred that has more vertices, Aprev is adopted as CCred
generated by the previous execution of the inner loop and will replace the incumbent CCred (Algorithm 2,
Lines 22–28).

The algorithm’s search efficiency may be reduced because of the roundabout searching
characteristics. To solve this problem, a restricting tabu table is added to the local search algorithm.

The tabu table can be presented by two-dimensional array or one-dimensional array. We adopt
the one-dimensional array T, set the tabu tenure value as L, and store the iteration numbers of running
the local search algorithm into the tabu table. When the algorithm runs reach iteration value c, and if
(c − T[w]) < L or if (c −T[u]) < L, it means vertex w or u has been processed and the vertex should be
re-selected. Otherwise, the current value c is stored in the tabu table, i.e.,T[w]← c or T[u]← c.
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Algorithm 2 New_K-OPT_MLCP (G, Zj, T, L).

Require:
Zj: the jth individual (Vred, Vblue)j, (Vred)j⊂V, (Vblue)j = V\(Vred)j
T: tabu table
L: tabu tenure value
Output: s2, the solution found by local search algorithm
begin
1 (CCred, Vblue)← (Vred, Vblue)j;
2 according to CCred and Vblue, PAVred and GPAVred are obtained;
3 repeat
4 Aprev← CCred, DA← Aprev, PL←{v0, v1, . . . . . . vn-1}, gA← 0, gmaxA← 0, c← 0;
5 repeat
6 c← c + 1;
7 if |PAVred∩PL| > 0 and |Er(CCred)| < |Er(Vblue)| then
8 select vertex w according to f 1(w), if there are multiple vertices, select a vertex w randomly;
9 if c − T[w] < L then select a non-tabu vertex w according to f 1(w);
10 T[w]← c;
11 CCred ← CCred∪{w}, Vblue ←Vblue\{w}, gA← gA + 1, PL← PL\{w};
12 if gA > gmaxA then gmaxA← gA, Abest← CCred;
13 else
14 select vertex u according to f 2(u), if there are multiple vertices, select a vertex u randomly;
15 if c − T[u] < L then select a non-tabu vertex u according to f 2(u);
16 T[u]← c;
17 CCred ← CCred\{u}, Vblue ← Vblue∪{u}, gA← gA−1, PL← PL\{u};
18 if u∈Aprev then DA← DA\{u};
19 end if
20 based on CCred and Vblue, PAVred and GPAVred are updated;
21 until |DA| = 0 or the cut-off time condition for CPU running is met;
22 if gmaxA > 0 then
23 CCred ← Abest;
24 Vblue ← V\CCred;
25 else
26 CCred ← Aprev;
27 Vblue ← V\CCred;
28 end if
29 until gmaxA ≤ 0 or the cut-off time condition for CPU running is met;
30 (Vred, Vblue)j ← (CCred, Vblue);
31 s2 ← (Vred, Vblue)j;
32 return s2;
end

3.5. Evolutionary Operation of Population

An evolutionary operation in the population X is needed to quickly find the best solution of
MLCP. We sort the individuals Zj (0 ≤ j < 2×p) in population Z in ascending order according to the
calculated value of objective function f * in Equation (11). Then, we replace the individuals X0 –Xp−1 of
population X with the individuals Z0 –Zp−1 to complete the evolutionary operation.

f∗((Vred, Vblue) j) = |{(a, b)|∀(a, b) ∈ E, a ∈ (Vred) j, b ∈ (Vblue) j}|, 0 ≤ j < 2× p. (11)

Evolution operation of the population is represented by Evolution_population (Algorithm 3).
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Algorithm 3 Evolution_population (Z, X).

Require:
Z: population, |Z| =2 × p
Output: population X
begin
1 j← 0;
2 while j < 2 × p do
3 R[j]← f* ((Vred, Vblue)j);
4 j← j + 1;
5 end while
6 Individuals Z0 –Z2×p −1 of population Z are sorted in ascending order according to the value of set R;
7 (X0–Xp −1)←(Z0–Zp −1);
8 return X;
end

3.6. Disturbance Operation

To further improve the search ability of the algorithm and find better values, we add a disturbance
operation into the memetic algorithm. This disturbance operation is executed k times.

Algorithm 4 Disturbance_operation(X, b, k, d1, d2, Wbest).

Require:
X: set that stores the population
b, k: control parameters of disturbance operation
d1, d2: control variables of disturbance operation
Wbest: variable that stores the value of the objective function f (st), in which st is the current best solution of
MLCP
Output: s1, a better solution found by the local search algorithm

f (s1), the value of the objective function
d1, d2, values of the control variables

begin
1 d1← d1 + 1;
2 if d1 = b then
3 d2← d2 + 1;
4 if d2 ≤ k then
5 if d2 = 1 then
6 randomly choose Xj from X and start disturbance to generate a new X′j;
7 W← New_K-OPT_MLCP (G, X′j, T, L);
8 if f (W) > Wbest then s1 ←W, Wbest ← f (W);
9 t← X′j ;
10 else
11 start disturbance t to generate a new t′ ;
12 W← New_K-OPT_MLCP (G, t′, T, L);
13 if f (W) > Wbest then s1 ←W, Wbest ← f (W);
14 t← t′;
15 end if
16 d1← d1 − 1
17 else
18 d1← 0, d2← 0;
19 end if
20 end if
21 return s1, Wbest, d1, d2;
end
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When the number of iterations is b, disturbance operation begins and randomly selects an
individual (Vred, Vblue)j (0 ≤ j < |X|) from population X, and chooses at random a vertex from set Vred
and a vertex from set Vblue, then the two vertices are exchanged to generate a new (Vred, Vblue)’. Then,
employ the New_K-OPT_MLCP algorithm to search in (Vred, Vblue)’; if a better solution of MLCP is
found, the memetic algorithm will accept it.

The disturbance operation is represented by Disturbance_operation (Algorithm 4).
In Memetic_D_O_MLCP algorithm, setting the value of b and k will determine the disturbance

operation’s starting condition and the number of times of its execution. In Disturbance_operation
algorithm, Lines 1, 3, 16, and 18 store the modified values of variables d1 and d2, which are the threshold
values needed to start off a new disturbance operation.

4. Simulated Annealing Algorithm

Simulated annealing algorithm, a classical heuristic algorithm to solve combinatorial optimization
problems, starts off from a higher initial temperature. With the decreasing of temperature parameters,
the algorithm can randomly find the global best solution of problems instead of the local optima by
combining the perturbations triggered by the probabilities.

For a given graph G, simulated annealing algorithm finds a coloring bipartition scheme (Vred,
Vblue) of V which maximizes min{|Er(Vred)|, |Er(Vblue)|}. With parameters T0 (initial temperature value),
α (cooling coefficient) and Tend (the end temperature value), first, the algorithm divides the vertex
set V into two sets, i.e., Vred and Vblue (Vred = ∅, Vblue = V) and the initial value of the best solution
of MLCP Cbest is set to 0. Next, a vertex is randomly selected in Vblue and moved from Vblue to Vred;
here, |Vred| = 1, Vblue = V\Vred. Then, the algorithm repeats a series of generations to explore the search
space defined by the set of all 2-colorings. At each generation, a vertex is randomly selected in Vblue
and moved from Vblue to Vred. The additions will take place in the following three forms:

When 2 > |Vred| and 2 ≤ |Vblue|, a vertex is randomly selected in Vblue and moved from Vblue to Vred
to generate a new coloring bipartition scheme (V′red, V′blue) and the new status is accepted.

When 2 > |Vblue| and 2 ≤ |Vred|, a vertex is randomly selected in Vred and moved from Vred to Vblue
to generate a new coloring bipartition scheme (V′red, V′blue) and accepted as the new status.

When 2 ≤ |Vred| and 2 ≤ |Vblue|, a vertex is randomly selected from Vred and one randomly from
Vblue, then the two vertices are exchanged to generate a new coloring bipartition scheme (V′red, V′blue),
only when R1((V′red, V′blue)) ≥ R1((Vred, Vblue)), the scheme is accepted as a new status. Otherwise,
the probability will decide whether to accept it as a new status or not.

Once the new status is accepted, if Cbest < R1 ((V′red, V′blue)), then the bipartition scheme (V′red,
V′blue) is accepted as the best solution of MLCP.

At the end of each generation, the temperature T cools down until T ≤Tend according to T = T × α,
where α∈(0,1). The algorithm runs iteratively as per the above steps until the stop condition is met.

The best solution found by the algorithm is Rb((Vred, Vblue)), i.e., R1((Vred, Vblue) j) = min{|Er((Vred) j)|, |Er((Vblue) j)|}

Rb((Vred, Vblue)) = max
0≤ j<t
{R1((Vred, Vblue) j)}

. (12)

Here, t is the number of all solutions that can be found by the simulated annealing algorithm in
graph G, and (Vred, Vblue)j is the jth solution of MLCP.

The simulated annealing algorithm is represented by SA (Algorithm 5).
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Algorithm 5 SA(G, Vred, Vblue, T0, α, Tend).

Require: G: G = (V, E), |V| = n, |E| = l
Vred: a set of red vertices in graph G
Vblue: a set of blue vertices in graph G
T0: initial temperature value
α: cooling coefficient
Tend: end temperature value
Output: s3, the best solution found by SA algorithm
R1(s3), value of the objective function
begin
1 Cbest ← 0;
2 repeat
3 T← T0;
4 initialize Vred and Vblue, randomly select a vertex in Vblue and moved from Vblue to Vred;
5 while T > Tend do
6 if 2 > |Vred| and 2 ≤ |Vblue| then
7 a vertex is randomly selected in Vblue and moved from Vblue to Vred to generate a new bipartition scheme
(V′red, V′blue);
8 (Vred, Vblue)← (V′red, V′blue);
9 if Cbest < R1((V′red, V′blue)) then Cbest ←R1((V′red, V′blue)), s3 ← (V′red, V′blue);
10 else if 2 > |Vblue| and 2 ≤ |Vred| then
11 a vertex is randomly selected in Vred and moved from Vred to Vblue to generate a new bipartition scheme
(V′red, V′blue);
12 (Vred, Vblue)← (V′red, V′blue);
13 if Cbest < R1 ((V′red, V′blue)) then Cbest ← R1 ((V′red, V′blue)), s3 ← (V′red, V′blue);
14 else if 2 ≤ |Vred| and 2 ≤ |Vblue| then
15 according to (Vred, Vblue), a vertex is randomly selected from Vred and a vertex randomly selected from
Vblue;
16 the two vertices are exchanged to generate a new bipartition scheme (V′red, V′blue);
17 if R1 ((Vred, Vblue)) ≤ R1((V′red, V′blue)) then
18 (Vred, Vblue)← (V′red, V′blue);
19 if Cbest < R1((V′red, V′blue)) then Cbest ← R1((V′red, V′blue)), s3 ← (V′red, V′blue);

20 else if random number in (0, 1) < e
R1((V

′

red ,V
′

blue))−R1((Vred ,Vblue))

T then
21 (Vred, Vblue)← (V′red, V′ blue);
22 end if
23 end if
24 T← T × α;
25 end while
26 until stop condition is met;
27 return s3, Cbest; /*Cbest is the value of the objective function R1(s3) */
end

5. Greedy Algorithm

Greedy algorithm aims at making the optimal choice at each stage with the hope of finding a
global best solution. For a given graph G, greedy algorithm finds a coloring bipartition scheme (Vred,
Vblue) of V which maximizes min{|Er(Vred)|, |Er(Vblue)|}.

When a graph G = (V, E) is given, the algorithm divides vertex set V into two sets, i.e., Vred and
Vblue (Vred = ∅, Vblue = V), and the initial value of the best solution of MLCP Cbest is set to 0. Next,
a vertex is randomly selected in Vblue and moved from Vblue to Vred, here |Vred | = 1, Vblue = V\Vred.
Then, the algorithm repeats a series of generations to explore the search space defined by the set of
all 2-colorings. At each generation, based on sub-graph G′(Vblue), choose a vertex w of the minimum
degree (w∈Vblue); if there are more than one vertex with the same minimum degree, randomly select a
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vertex among them. Then, add the vertex from Vblue to Vred, that is: Vred← Vred∪{w}, Vblue← Vblue\{w},
thus a new bipartition scheme (V′red, V′blue) is generated, and, when R2((V′red,V′blue)) > Cbest, the
scheme is accepted as the best solution. The generation will be repeated until |Er(Vred)| > |Er(Vblue)|.

The algorithm runs iteratively as per the above steps until the stop condition is met.
The best solution found by the algorithm is Rg((Vred,Vblue)), i.e., R2((Vred, Vblue) j) = min{|Er((Vred) j)|, |Er((Vblue) j)|}

Rg((Vred, Vblue)) = max
0≤ j<t
{R2((Vred, Vblue) j)}

. (13)

Here, t is the number of all solutions that can be found by the greedy algorithm in graph G, and
(Vred, Vblue)j is the jth solution of MLCP.

The greedy algorithm is represented by Greedy (Algorithm 6).

Algorithm 6 Greedy (G, Vred, Vblue).

Require: G: G = (V, E), |V| = n, |E| = l
Vred: a set of red vertices in graph G
Vblue: a set of blue vertices in graph G
Output: s4, the best solution found by greedy algorithm
R2(s4), value of the objective function
begin
1 Cbest ←0;
2 repeat
3 Vred ←Ø, Vblue ← V;
4 randomly select a vertex in Vblue and moved from Vblue to Vred;
5 repeat
6 (V’red, V’blue)← (Vred, Vblue);
7 if R2((V’red, V’blue)) > Cbest then s4 ← (V’red, V’blue), Cbest ← R2 ((V’red, V’blue));
8 select a vertex w with the minimum degree from sub-graph G′(Vblue), if there are multiple vertices, select
a vertex w randomly;
9 Vred ← Vred ∪ {w}, Vblue ← Vblue\{w};
10 until |Er(Vred)| > |Er(Vblue)|;
11 until stop condition is met;
12 return s4, Cbest; /* Cbest is the value of the objective function R2 (s4) */
end

6. Experimental Results

All algorithms were programmed in C++, and run on a PC with Intel Pentium(R) G630 processor
2.70 GHz and 4 GB memory under Windows 7 (64 bits), and the test graphs adopted were the
benchmark DIMACS proposed in [5]. We compared the search results by using memetic algorithm,
simulated annealing algorithm, and greedy algorithm. Then, the results of memetic algorithm were
compared with those obtained from using artificial bee colony algorithm [4], tabu search algorithm [5]
and variable neighborhood search algorithm [5].

The first group of experiments was performed to adjust the key parameters and analyze
their influence on Memetic_D_O_MLCP. As is known to all, the most important parameters in
Memetic_D_O_MLCP implementations are the values of p and L, which determine the number of the
individuals of the population and the tabu tenure value during the search process. To find the most
suitable values of p and L for Memetic_D_O_MLCP approach to MLCP, we performed experiments
with different values of p and L. Memetic_D_O_MLCP was run 10 times for each benchmark instance,
and each test lasted 30 min.

The results of experiments are summarized in Table 1, organized as follows: in the first column,
Inst the benchmark instance name is given, containing the vertices set V; and, in the second column,
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m is the initial number of red vertices in the benchmark graph. For each p∈{4, 12, 20} and L∈{10, 60, 90},
column Best contains the best values of MLCP solution found by the algorithm, while column Avg
represents the average values of MLCP solution found by the algorithm. For each instance, the best
values of Best and Avg are shown in italics. The analysis of the obtained results shows that values of p
and L influence the solution quality. For example, the number of best values of Best is 5 for combination
p = 12 and L = 90; Best 3 for p = 4, L = 90 and p = 20, L = 60; Best 2 for p = 4 and L = 10, p = 4 and
L = 60, p = 12 and L = 60; Best 1 for p = 20 and L = 90; Best 0 for p = 12 and L = 10, p = 20 and L = 10.
Meanwhile, the number of best values of Avg is 2 for combinations p = 12 and L = 90, p = 4 and L = 90;
Avg 1 for p = 4 and L = 10, p = 4 and L = 60, p = 12 and L = 60, p = 20 and L = 10, p = 20 and L = 60,
p = 20 and L = 90.

In Table 1, one observes that, for combination p = 12 and L = 90, the number of instances
where the Memetic_D_O_MLCP achieved the best value for Best and Avg is 5 and 2, respectively.
For all other combinations, these numbers are the biggest. Therefore, we used the combination in all
other experiments.

The second groups of tests compared the search results of Memetic_D_O_MLCP, SA algorithm and
Greedy algorithm, each having been run 20 times for each benchmark instance with the cut-off time of
30 min. In simulated annealing algorithm, the initial temperature T0 is set at 1000, the cooling coefficient
α at 0.9999 and the end temperature Tend at 0.0001. The results of experiments are summarized in Table 2,
organized as follows: in the second column, |V| is the number of vertices; and, in the third column, |E| is
the number of edges. For each instance the best values of Best are shown in italics. Among 59 instances,
the search results of Memetic_D_O_MLCP, SA algorithm and Greedy algorithm were the same in
the instances myciel3.col, myciel4.col, queen5_5.col and queen6_6.col. Memetic_D_O_MLCP and Greedy
algorithm could find equivalent best value of four instances (i.e., queen7_7.col, queen8_8.col, queen8_12.col,
and queen9_9.col). In the remaining 51 instances, Memetic_D_O_MLCP could find the best results of
38 instances (accounting for 75%), and Greedy algorithm could find the best results of 13 instances
(accounting for 25%). The experiments showed that Memetic_D_O_MLCP could find more instances
of best values.

The third group of tests aimed at comparing the search results after each algorithm was run on
four benchmark instances, namely myciel6.col, homer.col, mulsol.i.5.col and inithx.i.1.col, for the first one
100 s. The results that algorithms found were collected at an interval of 10 s. The running time was
regarded as the X coordinate on the axis and the value of MLCP solution as the Y coordinate.

Figure 5 illustrates that Memetic_D_O_MLCP can find the best result at each time node.
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Table 1. Experiments with parameters p and L.

Inst m

p = 4 p = 12 p = 20

L = 10 L = 60 L = 90 L = 10 L = 60 L = 90 L = 10 L = 60 L = 90

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

fpsol2.i.1.col |V|/5 3035 2844 3033 2857 3582 2928 3015 2840 3002 2845 3029 2837 3071 2929 2942 2727 2998 2843
fpsol2.i.2.col |V|/5 2120 1965 2375 1953 2183 1860 2272 1972 2176 1944 2450 1969 2324 2016 2169 1932 2310 2038
fpsol2.i.3.col |V|/5 2141 1930 2331 1931 2266 2048 2333 1960 2330 1930 2115 1900 1981 1817 2397 1986 2281 1951

DSJC125.1.col |V|/5 255 252 254 252 254 251 254 252 255 252 255 252 254 252 255 253 254 252
DSJC125.5.col |V|/5 1081 1072 1082 1067 1088 1078 1084 1076 1087 1080 1089 1080 1084 1078 1087 1072 1084 1074

queen15_15.col |V|/5 1716 1699 1721 1678 1721 1694 1693 1650 1705 1692 1716 1681 1659 1632 1704 1638 1674 1641
queen16_16.col |V|/5 2090 2050 2087 2049 2087 2055 2040 1976 2062 1994 2098 2026 2036 1990 2032 1995 2040 1996
mulsol.i.4.col |V|/5 1704 1694 1704 1698 1704 1694 1701 1695 1704 1696 1704 1698 1700 1697 1704 1697 1704 1694
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Table 2. Test results of the Memetic_D_O_MLCP, SA, and Greedy on benchmark instances.

Inst |V | |E|
Memetic_D_O_MLCP SA Greedy

m Best Avg Best Avg Best Avg

anna.col 138 986 |V|/5 200 198 160 154 131 131
david.col 87 812 |V|/5 158 157 133 130 140 140

DSJC125.1.col 125 736 |V|/5 255 252 222 217 240 238
DSJC125.5.col 125 3891 |V|/5 1091 1083 1025 1021 1075 1067
DSJC125.9.col 125 6961 |V|/5 1798 1789 1761 1756 1776 1772
fpsol2.i.1.col 496 11654 |V|/5 3091 2896 3016 2982 2510 2502
fpsol2.i.2.col 451 8691 |V|/5 2290 2046 2267 2242 1707 1703
fpsol2.i.3.col 425 8688 |V|/5 2387 1996 2291 2247 1664 1664
games120.col 120 1276 |V|/5 288 281 215 209 284 284

homer.col 561 3258 10 662 655 450 441 492 489
huck.col 74 602 |V|/5 130 129 111 109 113 113

inithx.i.1.col 864 18707 10 6644 6153 4861 4773 6167 6050
inithx.i.2.col 645 13979 10 5622 5104 3641 3597 3571 3481
inithx.i.3.col 621 13969 10 5589 4756 3643 3593 3131 3111

jean.col 80 508 |V|/5 111 110 98 95 106 106
latin_square_10.col 900 307350 10 85161 85072 77006 75770 85185 85185

le450_5a.col 450 5714 10 1824 1801 1516 1495 1834 1827
le450_5b.col 450 5734 10 1820 1801 1512 1498 1843 1831
le450_5c.col 450 9803 10 2985 2951 2541 2530 3014 2995
le450_5d.col 450 9757 10 2943 2913 2542 2519 2972 2958
le450_15b.col 450 8169 10 2395 2355 2138 2120 2409 2398
le450_15c.col 450 16680 10 4530 4476 4294 4267 4560 4539
le450_15d.col 450 16750 10 4586 4542 4320 4289 4626 4609
le450_25a.col 450 8260 10 2467 2434 2183 2148 2466 2454
le450_25b.col 450 8263 10 2664 2606 2172 2149 2682 2658
le450_25c.col 450 17343 10 4711 4652 4457 4438 4728 4714
le450_25d.col 450 17425 10 4872 4807 4470 4449 4883 4875
miles250.col 128 774 |V|/5 185 184 145 137 183 183
miles500.col 128 2340 |V|/5 522 522 393 381 518 518
miles750.col 128 4226 |V|/5 870 870 673 638 849 849

miles1000.col 128 6432 |V|/5 1183 1180 954 921 1156 1156
miles1500.col 128 10396 |V|/5 1645 1616 1461 1421 1485 1484
mulsol.i.1.col 197 3925 |V|/5 1697 1690 1193 1152 1624 1624
mulsol.i.2.col 188 3885 |V|/5 1685 1682 1153 1117 1202 1189
mulsol.i.3.col 184 3916 |V|/5 1695 1692 1174 1131 1211 1174
mulsol.i.4.col 185 2946 |V|/5 1704 1701 1172 1134 1218 1195
mulsol.i.5.col 186 3973 |V|/5 1714 1713 1189 1144 1216 1210
myciel3.col 11 20 |V|/5 5 5 5 5 5 5
myciel4.col 23 71 |V|/5 21 21 21 21 21 21
myciel6.col 95 755 |V|/5 233 231 215 212 194 193
myciel7.col 191 2360 |V|/5 723 717 643 634 574 574

queen5_5.col 25 320 |V|/5 46 46 46 46 46 46
queen6_6.col 36 580 |V|/5 91 91 91 88 91 91
queen7_7.col 49 952 |V|/5 148 147 145 141 148 148
queen8_8.col 64 1456 |V|/5 236 232 219 214 236 228

queen8_12.col 96 2736 |V|/5 458 453 400 391 458 458
queen9_9.col 81 2112 |V|/5 340 336 308 304 340 334

queen10_10.col 100 2940 |V|/5 485 479 419 415 468 466
queen11_11.col 121 3960 |V|/5 644 643 563 556 633 633
queen12_12.col 144 5192 |V|/5 866 853 725 717 833 833
queen13_13.col 169 6656 |V|/5 1097 1093 918 909 1067 1067
queen14_14.col 196 8372 |V|/5 1407 1385 1148 1131 1346 1345
queen15_15.col 225 10360 |V|/5 1721 1706 1402 1376 1676 1675
queen16_16.col 256 12640 |V|/5 2107 2075 1668 1652 2051 2048

school1.col 385 19095 10 6633 6553 4951 4886 6644 6644
school1_nsh.col 352 14612 10 5545 5450 3838 3780 5548 5548

zeroin.i.1.col 211 4100 10 1210 1198 1113 1095 924 923
zeroin.i.2.col 211 3541 10 1135 1126 975 959 803 800
zeroin.i.3.col 206 3540 10 1134 1126 981 964 800 799
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The fourth group of tests compared the time each algorithm took to find the best results, each
being run 20 times for 32 instances with the cut-off time of 30 min.

The results are summarized in Table 3. Compared with SA algorithm and Greedy algorithm,
it took less time for Memetic_D_O_MLCP to find the best results for the 11 instances (shown in
italics). Accounting for 34% in the total, these 11 instances were: fpsol2.i.2.col, huck.col, mulsol.i.3.col,
mulsol.i.4.col, mulsol.i.5.col, myciel6.col, queen10_10.col, queen11_11.col, queen15_15.col, inithx.i.3.col, and
zeroin.i.2.col. For six instances, namely david.col, DSJC125.9.col, games120.col, miles250.col, miles750.col,
and jean.col, which accounted for 19% in the total, the time spent by Memetic_D_O_MLCP and Greedy
algorithm showed little difference. Additionally, the former found better results than the latter. For the
remaining 15 instances, although the time taken by Memetic_D_O_MLCP was longer than that by
Greedy algorithm, as it consumed more time for executing the operations of data splitting, searching,
evolution and disturbance, the results found by the former were better than those by the latter. Of all
32 instances, comparing with Memetic_D_O_MLCP, SA algorithm spent more time to find the best
results; besides, the Best SA algorithm results were inferior.

The comparison between Memetic_D_O_MLCP and artificial bee colony (ABC) algorithm [4] is
summarized in Table 4. For each instance, the best values of Best are shown in italics. Of all 21 instances
proposed in [4], except that the search results of instances myciel3.col and myciel4.col were equivalent to
that of artificial bee colony algorithm, Memetic_D_O_MLCP found better results (accounting for 90%)
and improved the best-known result of instance myciel5.col.
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Table 3. Running time of the Memetic_D_O_MLCP, SA and Greedy on benchmark instances.

Inst
Memetic_D_O_MLCP SA Greedy

m Best Avg Time(min) Best Avg Time(min) Best Avg Time(min)

anna.col |V|/5 200 199 5.30 159 150 17.29 131 131 0.09
david.col |V|/5 158 157 0.47 140 130 21.97 140 140 0.02

DSJC125.1.col |V|/5 254 252 27.92 220 214 29.76 239 237 19.24
DSJC125.5.col |V|/5 1086 1078 22.82 1026 1012 28.20 1075 1067 14.07
DSJC125.9.col |V|/5 1797 1785 18.86 1757 1752 14.04 1782 1773 17.81
fpsol2.i.1.col |V|/5 3073 2871 23.52 2984 2966 13.42 2510 2504 4.78
fpsol2.i.2.col |V|/5 2274 1882 17.20 2250 2226 25.58 1707 1706 22.30
games120.col |V|/5 288 280 1.05 216 205 29.74 284 284 0.05

huck.col |V|/5 130 129 0.03 113 109 6.86 113 113 0.09
miles250.col |V|/5 185 184 5.92 140 134 29.67 183 183 4.05
miles500.col |V|/5 522 522 1.11 389 375 25.71 518 518 < 0.01
miles750.col |V|/5 870 870 1.72 644 618 17.17 849 849 0.07
miles1000.col |V|/5 1186 1178 18.53 938 892 24.83 1156 1156 0.22
miles1500.col |V|/5 1619 1613 27.56 1453 1411 15.90 1485 1485 2.36
mulsol.i.1.col |V|/5 1695 1689 20.94 1164 1089 28.06 1624 1624 0.29
mulsol.i.2.col |V|/5 1685 1680 26.63 1157 1065 22.97 1202 1188 8.10
mulsol.i.3.col |V|/5 1693 1687 22.76 1147 1112 23.56 1209 1183 25.14
mulsol.i.4.col |V|/5 1704 1694 25.22 1139 1091 29.25 1218 1186 28.08
mulsol.i.5.col |V|/5 1714 1705 23.77 1165 1093 20.23 1214 1207 28.68

jean.col |V|/5 111 110 0.13 97 93 18.93 106 106 0.02
myciel6.col |V|/5 232 231 20.01 213 211 19.19 194 192 26.07
myciel7.col |V|/5 719 710 18.73 631 624 27.23 574 574 3.68

queen10_10.col |V|/5 485 478 1.42 418 410 10.08 468 466 21.61
queen11_11.col |V|/5 644 643 2.56 554 539 21.94 640 633 12.95
queen12_12.col |V|/5 866 853 5.32 721 703 22.64 833 833 0.07
queen13_13.col |V|/5 1097 1093 25.21 907 884 21.66 1067 1067 2.98
queen15_15.col |V|/5 1697 1675 21.65 1377 1357 29.27 1676 1675 26.07

inithx.i.1.col 10 6622 5982 23.36 4774 4696 11.55 6169 6044 1.45
inithx.i.3.col 10 5362 4123 22.89 3616 3569 9.58 3151 3117 22.93
zeroin.i.1.col 10 1207 1189 12.76 1111 1083 19.77 924 923 5.78
zeroin.i.2.col 10 1131 1124 18.46 967 939 21.43 802 799 26.64
zeroin.i.3.col 10 1131 1125 28.96 959 937 28.32 800 798 10.53

Table 4. Comparison results on Memetic_D_O_MLCP and ABC.

Inst
Memetic_D_O_MLCP ABC

m Best Best

DSJC125.1.col |V|/5 255 209
DSJC125.5.col |V|/5 1091 1005
DSJC125.9.col |V|/5 1798 1746
fpsol2.i.1.col |V|/5 3091 2956
fpsol2.i.2.col |V|/5 2290 2231
fpsol2.i.3.col |V|/5 2387 2207
inithx.i.1.col 10 6644 1295
inithx.i.2.col 10 5622 3574
inithx.i.3.col 10 5589 3548
myciel3.col |V|/5 5 5
myciel4.col |V|/5 21 21
myciel5.col |V|/5 73 68
myciel6.col |V|/5 233 207
myciel7.col |V|/5 723 621
le450_5a.col 10 1824 1475
le450_5b.col 10 1820 1490
le450_5c.col 10 2985 2505
le450_5d.col 10 2943 2493
le450_15b.col 10 2395 2110
le450_15c.col 10 4530 4217
le450_15d.col 10 4586 4227

Furthermore, we compared the search results from Memetic_D_O_MLCP, tabu search (Tabu)
algorithm [5] and variable neighborhood search (VNS) algorithm [5]; the results are shown in Table 5
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(the algorithms in the literature were run 20 times, each lasting 30 min for each benchmark instance).
Memetic_D_O_MLCP could find the best results of 26 instances (shown in italics), in which the
best results of 11 instances equaled those found by Tabu algorithm. Hence, Memetic_D_O_MLCP
could improve the best-known results of the remaining 15 instances. Besides, of the 53 instances in
Table 5, the best results of 22 instances found by Memetic_D_O_MLCP were better than those by Tabu
algorithm, and the best results of 42 instances found by Memetic_D_O_MLCP were better than that of
VNS algorithm.

Table 5. Comparison results on Memetic_D_O_MLCP, Tabu and VNS.

Inst
Memetic_D_O_MLCP Tabu VNS

m Best Avg Best Avg Best Avg

anna.col |V|/5 200 198 195 182 218 189
david.col |V|/5 158 157 153 142 164 152

DSJC125.1.col |V|/5 255 252 248 238 227 215
DSJC125.5.col |V|/5 1091 1083 1078 1073 1047 1033
DSJC125.9.col |V|/5 1798 1789 1794 1787 1793 1785
games120.col |V|/5 288 281 282 269 192 181

homer.col 10 662 655 651 625 603 541
huck.col |V|/5 130 129 130 126 123 110

inithx.i.1.col 10 6644 6153 7412 6272 6215 5838
inithx.i.2.col 10 5622 5104 5956 5831 4771 4478
inithx.i.3.col 10 5589 4756 5943 5818 4804 4464

jean.col |V|/5 111 110 110 104 110 95
latin_square_10.col 10 85161 85072 76925 76925 77031 76956

le450_5a.col 10 1824 1801 1977 1923 1545 1520
le450_5b.col 10 1820 1801 1969 1923 1550 1522
le450_5c.col 10 2985 2951 3154 3124 2578 2553
le450_5d.col 10 2943 2913 3140 3108 2583 2546
le450_15b.col 10 2395 2355 2795 2719 2338 2268
le450_25b.col 10 2664 2606 2903 2863 2382 2337
le450_25d.col 10 4872 4807 5420 5376 4844 4747
miles250.col |V|/5 185 184 183 172 134 126
miles500.col |V|/5 522 522 502 483 402 367
miles750.col |V|/5 870 870 836 833 708 648
miles1000.col |V|/5 1183 1180 1114 1108 1035 963
miles1500.col |V|/5 1645 1616 1517 1513 1565 1490
mulsol.i.1.col |V|/5 1697 1690 1649 1649 1313 1240
mulsol.i.2.col |V|/5 1685 1682 1685 1668 1319 1211
mulsol.i.3.col |V|/5 1695 1692 1695 1669 1260 1217
mulsol.i.4.col |V|/5 1704 1701 1704 1693 1276 1214
mulsol.i.5.col |V|/5 1714 1713 1697 1686 1296 1233
myciel3.col |V|/5 5 5 5 5 7 7
myciel4.col |V|/5 21 21 21 20 25 24
myciel6.col |V|/5 233 231 231 223 247 237
myciel7.col |V|/5 723 717 714 701 737 711

queen5_5.col |V|/5 46 46 46 45 50 48
queen6_6.col |V|/5 91 91 91 90 86 82
queen7_7.col |V|/5 148 147 148 145 142 136
queen8_8.col |V|/5 236 232 236 233 208 201
queen8_12.col |V|/5 458 453 458 457 380 369
queen9_9.col |V|/5 340 336 336 332 306 293

queen10_10.col |V|/5 485 479 485 483 403 394
queen11_11.col |V|/5 644 643 650 637 546 536
queen12_12.col |V|/5 866 853 866 858 703 689
queen13_13.col |V|/5 1097 1093 1106 1066 910 887
queen14_14.col |V|/5 1407 1385 1407 1403 1127 1101
queen15_15.col |V|/5 1721 1707 1722 1703 1388 1366
queen16_16.col |V|/5 2107 2075 2136 2125 1682 1650

school1.col 10 6633 6553 6975 6752 5628 5398
school1_nsh.col 10 5545 5450 5721 5622 4169 4066

zeroin.i.1.col 10 1210 1198 1185 1166 1454 1358
zeroin.i.2.col 10 1135 1126 1105 1079 1294 1201
zeroin.i.3.col 10 1134 1126 1107 1082 1221 1158

7. Conclusions

In this paper, we propose a memetic algorithm (Memetic_D_O_MLCP) to deal with the minimum
load coloring problem. The algorithm employs an improved K-OPT local search procedure with a
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combination of data splitting operation, disturbance operation and a population evolutionary operation
to assure the quality of the search results and intensify the searching ability.

We assessed the performance of our algorithm on 59 well-known graphs from the benchmark
DIMACS competitions. The algorithm could find the best results of 46 graphs. Compared with
simulated annealing algorithm and greedy algorithm, which cover the best results for the tested
instances, our algorithm was more competent.

In addition, we investigated the artificial bee colony algorithm, variable neighborhood search
algorithm and tabu search algorithm proposed in the literature. We carried out comparative experiments
between our algorithm and artificial bee colony algorithm using 21 benchmark graphs, and the
experiments showed that the algorithm’s best results of 19 benchmark graphs were better than those
of artificial bee colony algorithm, and the best-known result of one benchmark graph was improved
by our algorithm. More experiments were conducted to compare our algorithm with tabu search
algorithm and variable neighborhood search algorithm, and proved that the best-known results of 15
benchmark graphs were improved by our algorithm.

Finally, we showed that the proposed Memetic_D_O_MLCP approach significantly improved the
classical heuristic search approach for the minimum load coloring problem.
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