

Article

A Mizoguchi–Takahashi Type Fixed Point Theorem in Complete Extended *b*-Metric Spaces

Nayab Alamgir¹, Quanita Kiran^{2,*}, Hassen Aydi^{3,4,*} and Aiman Mukheimer⁵

- ¹ School of Natural Sciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; nayab@sns.nust.edu.pk
- ² School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
- ³ Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
- ⁴ China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- ⁵ Department of Mathematics and General Sciences, Prince Sultan University Riyadh, Riyadh 11586, Saudi Arabia; mukheimer@psu.edu.sa
- * Correspondence: quanita.kiran@seecs.edu.pk (Q.K.); hassen.aydi@isima.rnu.tn (H.A.)

Received: 13 April 2019; Accepted: 24 May 2019; Published: 26 May 2019

Abstract: In this paper, we prove a new fixed point theorem for a multi-valued mapping from a complete extended *b*-metric space **U** into the non empty closed and bounded subsets of **U**, which generalizes Nadler's fixed point theorem. We also establish some fixed point results, which generalize our first result. Furthermore, we establish Mizoguchi–Takahashi's type fixed point theorem for a multi-valued mapping from a complete extended *b*-metric space **U** into the non empty closed and bounded subsets of **U** that improves many existing results in the literature.

Keywords: complete extended *b*-metric space; Hausdorff metric; fixed point theorems

1. Introduction

Throughout this paper, (\mathbf{U}, d_{ϕ}) is an extended *b*-metric space. We denote by $\mathcal{CL}(\mathbf{U})$ the set of all subsets of **U** that are non empty and closed, by $\mathcal{CLB}(\mathbf{U})$ the set of all subsets of **U** that are non empty closed and bounded and by $\mathcal{K}(\mathbf{U})$ the set of all subsets of **U** that are non empty compacts.

An element $u' \in U$ is called a fixed point of a multi-valued map $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$ if $u' \in Fu'$. An orbit for a mapping $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$ at a point $u_0 \in \mathbf{U}$ denoted by O(F) is a sequence $\{u_n\}_{n=0}^{\infty}$ in \mathbf{U} such that $u_{n+1} \in Fu_n$. A mapping $f : \mathbf{U} \to \mathbb{R}$ is said to be F-orbitally lower semi-continuous if for any sequence $\{u_n\}_{n=0}^{\infty}$ in O(F) and $u \in \mathbf{U}$, $u_n \to u$ implies $f(u) \leq \lim_{n\to\infty} \inf f(u_n)$.

Define a function $f : \mathbf{U} \to \mathbb{R}$ as $f(u) = d_{\phi}(u, Fu)$. For a constant $q \in (0, 1)$, define the set $I_q^u \subset \mathbf{U}$ as

$$I_q^u = \{ v \in Fu \mid qd_\phi(u, v) \le d_\phi(u, Fu) \}.$$

The Pompeiu–Hausdorff distance measuring the distance between the subsets of a metric space was initiated by D. Pompeiu in [1]. The fixed point theory of set-valued contractions was initiated by Nadler [2], but later many authors extrapolated it multi directionally (see [3,4]).

Theorem 1 (Reich [5]). Let (\mathbf{U}, d) be a complete metric space and let $F : \mathbf{U} \to \mathcal{K}(\mathbf{U})$. Assume that there exists a map $\eta : [0, \infty) \to [0, 1)$ such that

$$\limsup_{s \to t^+} \eta(s) < 1, \text{ for all } t \in (0, \infty),$$

and

$$\mathbf{H}(Fu,Fv) \leq \eta(d(u,v))d(u,v), \text{ for all } u,v \in \mathbf{U}.$$

Then F has a fixed point.

In [5] Reich raised the question if the above theorem is also true for $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$. In [6], Mizoguchi and Takahashi gave supportive solution to the conjecture of [5] under the hypothesis $\limsup_{s\to t^+} \eta(s) < 1$, for all $t \in [0, \infty)$. In particular, they proved the following result:

Theorem 2 (Mizoguchi, Takahashi [6]). Let (\mathbf{U}, d) be a complete metric space and let $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$. Assume that there exists a map $\eta : [0, \infty) \to [0, 1)$ such that

$$\limsup_{s \to t^+} \eta(s) < 1, \text{ for all } t \in [0, \infty),$$

and

$$\mathbf{H}(Fu,Fv) \leq \eta(d(u,v))d(u,v), \text{ for all } u,v \in \mathbf{U}, u \neq v.$$

Then F has a fixed point.

In [7], Feng and Liu extended Nadler's fixed point theorem, other than the direction of Reich and Takahashi. They proved a theorem as follows:

Theorem 3 (Feng, Liu [7]). Let (\mathbf{U}, d) be a complete metric space and let $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$. Assume that:

- (i) The map $f : \mathbf{U} \to \mathbb{R}$ defined by $f(u) = d(u, Fu), u \in \mathbf{U}$, is lower semi-continuous;
- (ii) There exist $p,q \in (0,1)$, p < q such that for all $u \in \mathbf{U}$ there exists $v \in \{v \in Fu \mid qd(u,v) \leq d(u,Fu)\}$ satisfying

$$d(v, Fv) \le pd(u, v).$$

Then F has a fixed point.

Hicks and Rhodes [8] and Klim and Wardowski [9] proved the following results:

Theorem 4 ([8]). *Let* (**U**, *d*) *be a complete metric space and let* $g : \mathbf{U} \to \mathbf{U}, 0 \le h < 1$. *Suppose there exists q such that*

$$d(gv, g^2v) \le hd(v, gv), \text{ for every } y \in \{x, gx, g^2x, \ldots\}.$$

Then

- (*i*) $\lim_{n \to \infty} g^n x = q \text{ exists};$
- (ii) $d(g^n x, q) \leq \frac{h^n}{1-h} d(x, gx);$

(iii) q is a fixed point of g iff G(x) = d(x, gx) is g-orbitally lower semi-continuous at q.

Theorem 5 ([9]). Let (\mathbf{U}, d) be a complete metric space and let $F : \mathbf{U} \to \mathcal{K}(\mathbf{U})$. Assume that the following conditions hold:

(*i*) The map $f : \mathbf{U} \to \mathbb{R}$ defined by $f(u) = d(u, Fu), u \in \mathbf{U}$, is lower semi-continuous;

(*ii*) There exists a map $\eta : [0, \infty) \to [0, 1)$ such that

$$\limsup_{s \to t^+} \eta(s) < 1, \text{ for all } t \in (0, \infty),$$

and for all $u \in \mathbf{U}$ there exists $v \in \{v \in Fu : d(u, v) \le d(u, Fu)\}$ satisfying

$$d(v, Fv) \le \eta(d(u, v))d(u, v)$$

In 2007, Kamran [10] logically presented Mizoguchi–Takahashi's type fixed point theorem, that simply generalizes Theorems 4 and 5.

The idea of generalizing metric spaces into *b*-metric spaces was initiated from the works of Bakhtin [11], Bourbaki [12], and Czerwik [13,14]. In [15], the notion of *b*-metric space was generalized further by introducing the concept of extended *b*-metric spaces (see also [16–18]) as follows:

Definition 1 ([15]). Let **U** be a non empty set and $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$. A function $d_{\phi} : \mathbf{U} \times \mathbf{U} \rightarrow [0, \infty)$ is called an extended b-metric, if for all $u_1, u_2, u_3 \in \mathbf{U}$ it satisfies:

- (*i*) $d_{\phi}(u_1, u_2) = 0$ if and only if $u_1 = u_2$,
- (*ii*) $d_{\phi}(u_1, u_2) = d_{\phi}(u_2, u_1),$
- (*iii*) $d_{\phi}(u_1, u_3) \leq \phi(u_1, u_3)[d_{\phi}(u_1, u_2) + d_{\phi}(u_2, u_3)].$

The pair (\mathbf{X}, d_{ϕ}) *is called an extended b-metric space.*

Remark 1 ([15]). Every *b*-metric space is an extended *b*-metric space with a constant function $\phi(x_1, x_2) = s$, for $s \ge 1$, but its converse is not true in general.

Example 1. Let $\mathbf{U} = \{u \in \mathbb{R} : u \ge 1\}$. Define $d_{\phi} : \mathbf{U} \times \mathbf{U} \rightarrow [0, \infty)$ and $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$ as follows:

$$d_{\phi}(u_1, u_2) = (u_1 - u_2)^2, \ \phi(u_1, u_2) = 1 + u_1 + u_2,$$

for all u_1 , $u_2 \in \mathbf{U}$. Then (\mathbf{U}, d_{ϕ}) is an extended b-metric space.

For more examples and recent results see [19]. Also, in [20] Muhammad Usman Ali et al. established fixed point results for new *F*-contractions of Hardy–Rogers type in the setting of *b*-metric space and proved the existence theorem for Volterra-type integral inclusion. Their results generalized many existence results in the literature. Finally in [21], authors introduced the notion of a generalized Pompeiu–Hausdorff metric induced by the extended *b*-metric as follows:

Definition 2. ([21]) Let (\mathbf{U}, d_{ϕ}) be an extended b-metric space, where $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$ is bounded. Then for all $\mathbf{A}, \mathbf{B} \in C\mathcal{LB}(\mathbf{U})$, where $C\mathcal{LB}(\mathbf{U})$ denotes the family of all non empty closed and bounded subsets of \mathbf{U} , the Hausdorff–Pompieu metric on $C\mathcal{LB}(\mathbf{U})$ induced by d_{ϕ} is defined by

$$\mathbf{H}_{\Phi}(\mathbf{A}, \mathbf{B}) = \max\{\sup_{a \in \mathbf{A}} d_{\phi}(a, \mathbf{B}), \sup_{b \in \mathbf{B}} d_{\phi}(b, \mathbf{A})\},\$$

where for every $a \in \mathbf{A}$, $d_{\phi}(a, \mathbf{B}) = \inf\{d_{\phi}(a, b) : b \in \mathbf{B}\}$ and $\Phi : \mathcal{CLB}(\mathbf{U}) \times \mathcal{CLB}(\mathbf{U}) \rightarrow [1, \infty)$ is such that

$$\Phi(\mathbf{A}, \mathbf{B}) = \sup\{\phi(a, b) : a \in \mathbf{A}, b \in \mathbf{B}\}.$$

Theorem 6. ([21]) Let (\mathbf{U}, d_{ϕ}) be an extended b-metric space. Then $(\mathcal{CLB}(\mathbf{U}), \mathbf{H}_{\Phi})$ is an extended Hausdorff–Pompieu b-metric space.

In this paper, we extend Nadler's fixed point theorem for the extended *b*-metric space. Moreover, we improve Mizoguchi–Takahashi's type fixed point theorem (Theorem 1.2, [10]) for the extended *b*-metric space when *F* is a multi-valued mapping from **U** to $CLB(\mathbf{U})$. Our results generalize Theorems 4 and 5 in the setting of extended *b*-metric spaces which in turn generalize many existing results including Theorems 1–3.

2. Main Results

We start with the following lemma.

Lemma 1. Let $\mathbf{X}, \mathbf{Y} \in \mathcal{CLB}(\mathbf{U})$, then for every $\eta > 0$ and $y \in \mathbf{Y}$ there exists $x \in \mathbf{X}$ such that

$$d_{\phi}(x,y) \leq \mathbf{H}_{\Phi}(\mathbf{X},\mathbf{Y}) + \eta.$$

Proof. By definition of the Hausdorff metric, for $\mathbf{X}, \mathbf{Y} \in \mathcal{CLB}(\mathbf{U})$ and for any $y \in \mathbf{Y}$, we have

$$d_{\phi}(\mathbf{X}, y) \leq \mathbf{H}_{\Phi}(\mathbf{X}, \mathbf{Y}).$$

By the definition of an infimum, we can let $\{x_n\}_{n=0}^{\infty}$ be a sequence in **X** such that

$$d_{\phi}(y, x_n) < d_{\phi}(y, \mathbf{X}) + \eta, \text{ where } \eta > 0.$$
(1)

We know that **X** is closed and bounded, so there exists $x \in \mathbf{X}$ such that $x_n \to x$. Therefore by (1), we have

$$d_{\phi}(x,y) < d_{\phi}(\mathbf{X},y) + \eta \leq \mathbf{H}_{\Phi}(\mathbf{X},\mathbf{Y}) + \eta.$$

Theorem 7. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space. If $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$ satisfies the inequality

$$\mathbf{H}_{\Phi}(Fu, Fv) \le \eta d_{\phi}(u, v), \text{ for all } u, v \in \mathbf{U},$$
(2)

where $\eta \in [0,1)$ is a real constant such that $\lim_{n,m\to\infty} \eta \phi(u_n, u_m) < 1$, then *F* has a fixed point.

Proof. Let us consider $\eta > 0$. Let $u_0 \in U$ and choose $u_1 \in Fu_0$. Since $Fu_0, Fu_1 \in CLBU$) and $u_1 \in Fu_0$, then by Lemma 1, there exists $u_2 \in Fu_1$ such that

$$d_{\phi}(u_1, u_2) \leq \mathbf{H}_{\Phi}(Fu_0, Fu_1) + \eta$$

Now since $Fu_1, Fu_2 \in CLBU$ and $u_2 \in Fu_1$, there is a point $u_3 \in Fu_2$ such that

$$d_{\phi}(u_2, u_3) \leq \mathbf{H}_{\Phi}(Fu_1, Fu_2) + \eta^2.$$

Continuing in this fashion, we obtain a sequence $\{u_n\}_{n=0}^{\infty}$ of elements of **U** such that $u_{n+1} \in Fu_n$ and

$$d_{\phi}(u_n, u_{n+1}) \leq \mathbf{H}_{\Phi}(Fu_{n-1}, Fu_n) + \eta^n$$
, for all $n \geq 1$

By (2), we note that

$$d_{\phi}(u_{n}, u_{n+1}) \leq \eta d_{\phi}(u_{n-1}, u_{n}) + \eta^{n} \\ \leq \eta (\eta d_{\phi}(u_{n-2}, u_{n-1}) + \eta^{n-1}) + \eta^{n} \\ \leq \eta^{2} d_{\phi}(u_{n-2}, u_{n-1}) + 2\eta^{n}.$$

Continuing in this way, we have

$$d_{\phi}(u_n, u_{n+1}) \le \eta^n d_{\phi}(u_0, u_1) + n\eta^n, \text{ for all } n \ge 1.$$
(3)

By the triangle inequality and (3) for m > n, we have

$$\begin{aligned} d_{\phi}(u_{n}, u_{m}) &\leq \phi(u_{n}, u_{m})[\eta^{n} d_{\phi}(u_{0}, u_{1}) + n\eta^{n}] + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m})[\eta^{n+1} d_{\phi}(u_{0}, u_{1}) \\ &+ (n+1)\eta^{n+1}] + \dots + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \dots \phi(u_{m-1}, u_{m}) \\ &[\eta^{m-1} d_{\phi}(u_{0}, u_{1}) + (m-1)\eta^{m-1}], \end{aligned}$$

$$d_{\phi}(u_{n}, u_{m}) \leq d_{\phi}(u_{0}, u_{1})[\phi(u_{n}, u_{m})\eta^{n} + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m})\eta^{n+1} + \ldots + \phi(u_{n}, u_{m}) \phi(u_{n+1}, u_{m}) \ldots \phi(u_{m-1}, u_{m})\eta^{m-1}] + [\phi(u_{n}, u_{m})n\eta^{n} + \phi(u_{n}, u_{m}) \phi(u_{n+1}, u_{m})(n+1)\eta^{n+1} + \ldots + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \ldots \phi(u_{m-1}, u_{m})(m-1)\eta^{m-1}],$$

$$\begin{aligned} d_{\phi}(u_{n}, u_{m}) &\leq d_{\phi}(u_{0}, u_{1})[\phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \phi(u_{n}, u_{m})\eta^{n} + \phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \\ \phi(u_{n+1}, u_{m})\eta^{n+1} + \dots + \phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \dots \\ \phi(u_{m-1}, u_{m})\eta^{m-1}] + [\phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \phi(u_{n}, u_{m})n\eta^{n} + \phi(u_{1}, u_{m}) \\ \phi(u_{2}, u_{m}) \dots \phi(u_{n+1}, u_{m})(n+1)\eta^{n+1} + \dots + \phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \\ \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \dots \phi(u_{m-1}, u_{m})(m-1)\eta^{m-1}]. \end{aligned}$$

Since $\lim_{n,m\to\infty} \phi(u_{n+1}, u_m)\eta < 1$, the series

$$\sum_{n=1}^{\infty} \eta^n \prod_{i=1}^n \phi(u_i, u_m) \text{ and } \sum_{n=1}^{\infty} n\eta^n \prod_{i=1}^n \phi(u_i, u_m)$$

converges by the ratio test for each $m \in \mathbb{N}$. Let

$$S = \sum_{n=1}^{\infty} \eta^n \prod_{i=1}^{n} \phi(u_i, u_m), \quad S_n = \sum_{j=1}^{n} \eta^j \prod_{i=1}^{j} \phi(u_i, u_m),$$

and

$$S' = \sum_{n=1}^{\infty} n\eta^n \prod_{i=1}^{n} \phi(u_i, u_m), \ S'_n = \sum_{j=1}^{n} j\eta^j \prod_{i=1}^{j} \phi(u_i, u_m).$$

Thus for m > n, the above inequality implies

$$d_{\phi}(u_n, u_m) \leq d_{\phi}(u_0, u_1)[S_{m-1} - S_n] + [S'_{m-1} - S'_n].$$

By letting $n \to \infty$, we conclude that $\{u_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Since **U** is complete, there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$ (so $\lim_{n\to\infty} u_{n+1} = u$). Now by the triangle inequality

$$d_{\phi}(Fu, u) \leq \phi(Fu, u)[d_{\phi}(Fu, u_n) + d_{\phi}(u_n, u)]$$

$$\leq \phi(Fu, u)[\eta d_{\phi}(u, u_{n-1}) + d_{\phi}(u_n, u)].$$

This implies that

$$d_{\phi}(Fu, u) \leq 0 \text{ as } n \to \infty.$$

 $d_{\phi}(Fu, u) = 0.$

Hence *u* is a fixed point of *F*. \Box

Theorem 8. Let us consider a multi-valued mapping $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$, where (\mathbf{U}, d_{ϕ}) is a complete extended *b*-metric space. Furthermore, let us consider that the following two conditions hold:

- (i) The map $f : \mathbf{U} \to \mathbb{R}$ defined by $f(u) = d_{\phi}(u, Fu), u \in \mathbf{U}$, is lower semi-continuous;
- (ii) There exist $p, q \in (0, 1)$, p < q such that for all $u \in \mathbf{U}$ there exists $v \in I_q^u$ satisfying

$$d_{\phi}(v, Fv) \leq pd_{\phi}(u, v)$$

Moreover $\lim_{n,m\to\infty} \alpha \phi(u_n, u_m) < 1$, for all $\alpha \in (0, 1)$. Then *F* has a fixed point in **U**.

Proof. As $Fu \in CLB(\mathbf{U})$ for any $u \in \mathbf{U}$, I_q^u is non void for any constant $q \in (0, 1)$. For some arbitrary point $u_0 \in \mathbf{U}$, there exists $u_1 \in I_q^{u_0}$ such that

$$d_{\phi}(u_1, Fu_1) \leq p d_{\phi}(u_0, u_1).$$

And, for $u_1 \in \mathbf{U}$, there exists $u_2 \in I_q^{u_1}$ satisfying

$$d_{\phi}(u_2, Fu_2) \leq pd_{\phi}(u_1, u_2).$$

Continuing in this fashion, we can get an iterative sequence $\{u_n\}_{u=0}^{\infty}$, where $u_{n+1} \in I_q^{u_n}$ and

$$d_{\phi}(u_{n+1}, Fu_{n+1}) \leq pd_{\phi}(u_n, u_{n+1}), \ n = 0, 1, 2, \cdots$$

Now we will prove that $\{u_n\}_{n=0}^{\infty}$ is a Cauchy sequence. On the one hand,

$$d_{\phi}(u_{n+1}, Fu_{n+1}) \le pd_{\phi}(u_n, u_{n+1}), \ n = 0, 1, 2, \cdots.$$
(4)

On the other hand, $u_{n+1} \in I_q^{u_n}$ implies

$$qd_{\phi}(u_n, u_{n+1}) \leq d_{\phi}(u_n, Fu_n), \ n = 0, 1, 2, \cdots$$

By the above two equations, we have

$$d_{\phi}(u_{n+1}, u_{n+2}) \leq \frac{p}{q} d_{\phi}(u_n, u_{n+1}), \quad n = 0, 1, 2, \cdots,$$
(5)

$$d_{\phi}(u_{n+1}, Fu_{n+1}) \leq \frac{p}{q} d_{\phi}(u_n, Fu_n), \ n = 0, 1, 2, \cdots$$

By inequality (5), it is easy to prove that

$$d_{\phi}(u_n, u_{n+1}) \leq \frac{p^n}{q^n} d_{\phi}(u_0, u_1), \quad n = 0, 1, 2, \cdots,$$

$$d_{\phi}(u_n, Fu_n) \leq \frac{p^n}{q^n} d_{\phi}(u_0, Fu_0), \quad n = 0, 1, 2, \cdots.$$
 (6)

Let $\alpha = \frac{p}{q}$. Since p < q we have $\alpha = \frac{p}{q} < 1$. By taking $n \to \infty$ in (6), we obtain

$$\lim_{n \to \infty} d_{\phi}(u_n, Fu_n) = 0. \tag{7}$$

By the triangle inequality and (6), for $m, n \in \mathbb{N}$, m > n

$$d_{\phi}(u_n, u_m) \leq \phi(u_n, u_m) [d_{\phi}(u_n, u_{n+1}) + d_{\phi}(u_{n+1}, u_m)],$$

 $d_{\phi}(u_n, u_m) \leq \phi(u_n, u_m) d_{\phi}(u_n, u_{n+1}) + \phi(u_n, u_m) \phi(u_{n+1}, u_m) [d_{\phi}(u_{n+1}, u_{n+2}) + d_{\phi}(u_{n+2}, u_m)],$

$$d_{\phi}(u_{n}, u_{m}) \leq \phi(u_{n}, u_{m})d_{\phi}(u_{n}, u_{n+1}) + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m})d_{\phi}(u_{n+1}) + \cdots + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \dots \phi(u_{m-1}, u_{m})d_{\phi}(u_{m-1}, u_{m}),$$

$$d_{\phi}(u_{n}, u_{m}) \leq \phi(u_{n}, u_{m}) \alpha^{n} d_{\phi}(u_{0}, u_{1}) + \phi(u_{n}, u_{m}) \phi(u_{n+1}, u_{m}) \alpha^{n+1} d_{\phi}(u_{0}, u_{1}) + \cdots + \phi(u_{n}, u_{m}) \phi(u_{n+1}, u_{m}) \dots \phi(u_{m-1}, u_{m}) \alpha^{m-1} d_{\phi}(u_{0}, u_{1}),$$

$$d_{\phi}(u_{n}, u_{m}) \leq d_{\phi}(u_{0}, u_{1}) [\phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \phi(u_{n}, u_{m})\alpha^{n} + \phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \phi(u_{n+1}, u_{m})\alpha^{n+1} + \dots + \phi(u_{1}, u_{m})\phi(u_{2}, u_{m}) \dots \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \dots \phi(u_{m-1}, u_{m})\alpha^{m-1}].$$

Since $\alpha < 1$ so $\lim_{n,m \to \infty} \alpha \phi(u_n, u_m) < 1$. Therefore the series $\sum_{n=1}^{\infty} \alpha^n \prod_{i=1}^n \phi(u_i, u_m)$ converges by ratio test for all $m \in \mathbb{N}$. Let

$$S = \sum_{n=1}^{\infty} \alpha^n \prod_{i=1}^n \phi(u_i, u_m), \text{ and } S_n = \sum_{j=1}^n \alpha^j \prod_{i=1}^j \phi(u_i, u_m).$$

Thus for m > n the above inequality implies

$$d_{\phi}(u_n, u_m) \leq d_{\phi}(u_0, u_1)[S_{m-1} - S_n].$$

By taking $n \to \infty$, we conclude that $\{u_n\}_{n=0}^{\infty}$ is a Cauchy sequence. As **U** is complete, there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$.

On the other hand as f is lower semi-continuous, so from (7) we have

$$0 \le f(u) \le \lim_{n \to \infty} \inf f(u_n) = 0$$

Hence $f(u) = d_{\phi}(u, Fu) = 0$. Finally, by the closeness of Fu, we have $u \in Fu$. \Box

Theorem 9. Let us consider a multi-valued mapping $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$, where (\mathbf{U}, d_{ϕ}) is a complete extended *b*-metric space. Furthermore, let us consider that the following two conditions hold:

- (*i*) The map $f : \mathbf{U} \to \mathbb{R}$ defined by $f(u) = d_{\phi}(u, Fu), u \in \mathbf{U}$, is lower semi-continuous;
- (*ii*) There exist $q \in (0,1)$ and $\eta : [0,\infty) \to [0,q)$ such that

$$\limsup_{s \to t^+} \eta(s) < q, \text{ for all } t \in [0, \infty)$$
(8)

and for all $u \in \mathbf{U}$, there exists $v \in I_q^u$ satisfying

$$d_{\phi}(v, Fv) \le \eta(d_{\phi}(u, v)) d_{\phi}(u, v), \text{ for all } u \in \mathbf{U} \text{ and } v \in Fu.$$
(9)

Moreover $\lim_{n,m\to\infty} \alpha \phi(u_n, u_m) < 1$, for all $\alpha \in (0, 1)$. Then *F* has a fixed point in **U**.

Proof. Let us assume that *F* has no fixed point, so $d_{\phi}(u, Fu) > 0$ for each $u \in \mathbf{U}$. Since $Fu \in C\mathcal{LB}(\mathbf{U})$, for any $u \in \mathbf{U}$, I_q^u is non void for any constant $q \in (0, 1)$. If v = u then $u \in Fu$, which is a contradiction. Hence for all $q \in (0, 1)$ and $u \in \mathbf{U}$, there exist $v \in Tu$ with $u \neq v$ such that

$$qd_{\phi}(u,v) \le d_{\phi}(u,Fu). \tag{10}$$

Let us take an arbitrary point $u_0 \in U$. By (10) and (*ii*), there exists $u_1 \in Fu_0$ with $u_1 \neq u_0$, satisfying

$$qd_{\phi}(u_0, u_1) \le d_{\phi}(u_0, Fu_0), \tag{11}$$

and

$$d_{\phi}(u_1, Fu_1) \le \eta(d_{\phi}(u_0, u_1))d_{\phi}(u_0, u_1), \quad \eta(d_{\phi}(u_0, u_1) < q.$$
(12)

From (11) and (12), we have

$$\begin{array}{rcl} d_{\phi}(u_{0},Fu_{0})-d_{\phi}(u_{1},Fu_{1}) & \geq & qd_{\phi}(u_{0},u_{1})-\eta(d_{\phi}(u_{0},u_{1}))d_{\phi}(u_{0},u_{1}) \\ & \geq & [q-\eta(d_{\phi}(u_{0},u_{1}))]d_{\phi}(u_{0},u_{1}) > 0. \end{array}$$

Further, for u_1 , there exists $u_2 \in Fu_1$, $u_2 \neq u_1$, such that

$$qd_{\phi}(u_1, u_2) \le d_{\phi}(u_1, Fu_1),$$
(13)

and

$$d_{\phi}(u_2, Fu_2) \le \eta(d_{\phi}(u_1, u_2)) d_{\phi}(u_1, u_2), \quad \eta(d_{\phi}(u_1, u_2) < q.$$
(14)

By (13) and (14), we have

$$\begin{aligned} d_{\phi}(u_1, Fu_1) - d_{\phi}(u_2, Fu_2) &\geq q d_{\phi}(u_1, u_2) - \eta(d_{\phi}(u_1, u_2)) d_{\phi}(u_1, u_2) \\ &\geq [q - \eta(d_{\phi}(u_1, u_2))] d_{\phi}(u_1, u_2) > 0. \end{aligned}$$

Furthermore from (12) and (13)

$$d_{\phi}(u_1, u_2) \leq \frac{1}{q} d_{\phi}(u_1, Fu_1) \leq \frac{1}{q} \eta(d_{\phi}(u_0, u_1)) d_{\phi}(u_0, u_1) < d_{\phi}(u_0, u_1).$$

Continuing in this fashion, for u_n , n > 1, there exists $u_{n+1} \in Fu_n$, $u_{n+1} \neq u_n$ satisfying

$$qd_{\phi}(u_n, u_{n+1}) \le d_{\phi}(u_n, Fu_n), \tag{15}$$

and

$$d_{\phi}(u_{n+1}, Fu_{n+1}) \le \eta(d_{\phi}(u_n, u_{n+1}))d_{\phi}(u_n, u_{n+1}), \quad \eta(d_{\phi}(u_n, u_{n+1}) < q.$$
(16)

From (15) and (16), we have

$$\begin{aligned} d_{\phi}(u_{n}, Fu_{n}) - d_{\phi}(u_{n+1}, Fu_{n+1}) &\geq q d_{\phi}(u_{n}, u_{n+1}) - \eta(d_{\phi}(u_{n}, u_{n+1})) d_{\phi}(u_{n}, u_{n+1}) \\ &\geq [q - \eta(d_{\phi}(u_{n}, u_{n+1}))] d_{\phi}(u_{n}, u_{n+1}) > 0 \end{aligned}$$

and

$$d_{\phi}(u_n, u_{n+1}) < d_{\phi}(u_{n-1}, u_n). \tag{17}$$

From above both equations, it follows that the sequences $\{d_{\phi}(u_n, Fu_n)\}$ and $\{d_{\phi}(u_n, u_{n+1})\}$ are decreasing, and hence convergent. Now from (8), there exists $q' \in [0,q)$ such that $\lim_{n\to\infty} \sup \eta(d_{\phi}(u_n, u_{n+1})) = q'$. Therefore for any $q_0 \in (q', q)$, there exists $n_0 \in \mathbb{N}$ such that

$$\eta(d_{\phi}(u_n, u_{n+1})) < q_0, \text{ for all } n > n_0$$
 (18)

Consequently from (15) and (16), we have

$$d_{\phi}(u_n, u_{n+1}) < \alpha d_{\phi}(u_{n-1}, u_n), \tag{19}$$

where $\alpha = \frac{q_0}{q}$ and $n > n_0$. Furthermore, from (15)–(17), for $n > n_0$, we have

$$\begin{aligned} d_{\phi}(u_{n}, Fu_{n}) &\leq \eta d_{\phi}(u_{n-1}, u_{n}) \leq \frac{\eta (d_{\phi}(u_{n-1}, u_{n}))}{q} d_{\phi}(u_{n-1}, Fu_{n-1}) \\ &\leq \dots \leq \frac{(\eta (d_{\phi}(u_{n-1}, u_{n})) \dots \eta (d_{\phi}(u_{0}, u_{1}))}{q^{n}} d_{\phi}(u_{0}, Fu_{0}) \\ &= \frac{\eta (d_{\phi}(u_{n-1}, u_{n})) \dots \eta (d_{\phi}(u_{n_{0}+1}, u_{n_{0}+2}))}{q^{n-n_{0}}} \\ &\times \frac{\eta (d_{\phi}(u_{n_{0}}, u_{n_{0}+1})) \dots \eta (d_{\phi}(u_{0}, u_{1}))}{q^{n_{0}}} d_{\phi}(u_{0}, Fu_{0}) \\ &< \left(\frac{q_{0}}{q}\right)^{n-n_{0}} \frac{\eta (d_{\phi}(u_{n_{0}}, u_{n_{0}+1})) \dots \eta (d_{\phi}(u_{0}, u_{1}))}{q^{n_{0}}} d_{\phi}(u_{0}, Fu_{0}) \end{aligned}$$

Since $q_0 < q$, clearly $\lim_{n \to \infty} (\frac{q_0}{q})^{n-n_0} = 0$. This gives

$$\lim_{n\to\infty}d_{\phi}(u_n,Fu_n)=0.$$

Let $m > n > n_0$, from the triangle inequality and (19), we have

$$d_{\phi}(u_{n}, u_{m}) \leq \phi(u_{n}, u_{m})d_{\phi}(u_{n}, u_{n+1}) + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m})d_{\phi}(u_{n+1}) + \cdots + \phi(u_{n}, u_{m})\phi(u_{n+1}, u_{m}) \dots \phi(u_{m-1}, u_{m})d_{\phi}(u_{m-1}, u_{m}),$$

$$d_{\phi}(u_n, u_m) \leq \phi(u_n, u_m) \alpha^n d_{\phi}(u_0, u_1) + \phi(u_n, u_m) \phi(u_{n+1}, u_m) \alpha^{n+1} d_{\phi}(u_0, u_1) + \cdots + \phi(u_n, u_m) \phi(u_{n+1}, u_m) \dots \phi(u_{m-1}, u_m) \alpha^{m-1} d_{\phi}(u_0, u_1).$$

By using the analogous procedure as in Theorem 8, there exists a Cauchy sequence $\{u_n\}_{n=0}^{\infty}$ such that $u_{n+1} \in Fu_n$, $u_{n+1} \neq u_n$. As **U** is complete, therefore there exists $u \in \mathbf{U}$ such that $u_n \to u$. By (i), we obtain

$$0 \leq d_{\phi}(u, Fu) \leq \lim_{n \to \infty} \inf d_{\phi}(u_n, Fu_n) = 0.$$

By the closedness of *Fu*, we have $u \in Fu$, which contradicts our assumption that *F* has no fixed point. \Box

Corollary 1. Let $F : \mathbf{U} \to \mathcal{K}(\mathbf{U})$ be a multi-valued mapping, where (\mathbf{U}, d_{ϕ}) is a complete extended b-metric space. Furthermore, let us consider that the following conditions hold:

(i) The map $f : \mathbf{U} \to \mathbb{R}$ defined by $f(u) = d_{\phi}(u, Fu), u \in \mathbf{U}$, is lower semi-continuous;

(*ii*) There exists $\eta : [0, \infty) \to [0, 1)$ such that

$$\limsup_{s \to t^+} \eta(s) < 1, \text{ for all } t \in [0, \infty),$$

and for all $u \in \mathbf{U}$, there exists $v \in I_1^u$ satisfying

$$d_{\phi}(v, Fv) \leq \eta(d_{\phi}(u, v))d_{\phi}(u, v)$$
, for all $u \in \mathbf{U}$ and $v \in Fu$.

Moreover $\lim_{n,m\to\infty} \alpha \phi(u_n, u_m) < 1$ *, for all* $\alpha \in (0, 1)$ *. Then F has a fixed point in* **U***.*

Proof. Let us assume that *F* has no fixed point, so $d_{\phi}(u, Fu) > 0$ for any $u \in \mathbf{U}$. Since $Fu \in \mathcal{K}(\mathbf{U})$ for any $u \in \mathbf{U}$, I_1^u is non empty. If v = u then $u \in Fu$, which is a contradiction. Hence for all $u \in \mathbf{U}$, there exists $v \in Fu$ with $u \neq v$ such that

$$d_{\phi}(u,v) \le d_{\phi}(u,Fu). \tag{20}$$

Let us consider an arbitrary point $u_0 \in U$. From (20), by using the analogous procedure as in Theorem 9, we obtain the existence of a Cauchy sequence $\{u_n\}_{n=0}^{\infty}$ such that $u_{n+1} \in Fu_n$, $u_{n+1} \neq u_n$, satisfying

$$d_{\phi}(u_n, u_{n+1}) = d_{\phi}(u_n, Fu_n)$$

and

$$d_{\phi}(u_n, Fu_n) \leq \eta(d_{\phi}(u_{n-1}, u_n))d_{\phi}(u_{n-1}, u_n), \quad \eta(d_{\phi}(u_{n-1}, u_n)) < 1.$$

Since **U** is complete, there exists $u \in \mathbf{U}$ such that $u_n \to u$. By (*i*), we obtain

$$0 \le d_{\phi}(u, Fu) \le \lim_{n \to \infty} \inf d_{\phi}(u_n, Fu_n) = 0$$

By the closedness of *Fu*, we have $u \in Fu$, which contradicts our assumption that *F* has no fixed point. \Box

Lemma 2. Let (\mathbf{U}, d_{ϕ}) be an extended *b*-metric space. Then for any $u \in \mathbf{U}$ and $\alpha > 1$, there exists an element $x \in \mathbf{X}$, where $\mathbf{X} \in C\mathcal{LB}(\mathbf{U})$ such that

$$d_{\phi}(u, x) \le \alpha d_{\phi}(u, \mathbf{X}). \tag{21}$$

Proof. Let us suppose that $d_{\phi}(u, \mathbf{X}) = 0$ then $u \in \mathbf{X}$, since \mathbf{X} is a closed subset of \mathbf{U} . Further, let us suppose that x = u, so (21) holds. Now, suppose that $d_{\phi}(u, \mathbf{X}) > 0$ and choose

$$\boldsymbol{\epsilon} = (\boldsymbol{\alpha} - 1)d_{\boldsymbol{\phi}}(\boldsymbol{u}, \mathbf{X}). \tag{22}$$

Then using the definition of $d_{\phi}(u, \mathbf{X})$, there exists $x \in \mathbf{X}$ such that

$$d_{\phi}(u, x) \le d_{\phi}(u, \mathbf{X}) + \epsilon$$
, where $\epsilon > 0.$ (23)

By putting (22) in (23), we get

$$d_{\phi}(u, x) \leq \alpha d_{\phi}(u, \mathbf{X}).$$

Theorem 10. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space and $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$ be a multi-valued mapping satisfying

$$d_{\phi}(v, Fv) \le \eta(d_{\phi}(u, v)) d_{\phi}(u, v), \text{ for all } u \in \mathbf{U} \text{ and } v \in Fu,$$
(24)

where $\eta : (0, \infty) \rightarrow [0, 1)$ such that

$$\limsup_{s \to t^+} \eta(s) < 1, \text{ for all } t \in [0, \infty).$$
(25)

Moreover, let us suppose that $\lim_{n,m\to\infty} \alpha \phi(u_n, u_m) < 1$ *, for all* $\alpha \in (0, 1)$ *. Then*

- (i) There exists an orbit $\{u_n\}_{n=0}^{\infty}$ of F for each $u_0 \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$ for $u \in \mathbf{U}$;
- (ii) *u* is a fixed point of *F*, if and only if the function $f(u) = d_{\phi}(u, Fu)$ is *F*-orbitally lower semi-continuous *at u*.

Proof. Let us assume $u_0 \in \mathbf{U}$ and choose $u_1 \in Fu_0$, since $Fu_0 \neq 0$. If $u_0 = u_1$, then u_0 is a fixed point of *F*. Let $u_0 \neq u_1$, by taking $\alpha = \frac{1}{\sqrt{\eta(d_{\phi}(u_0, u_1))}}$, it follows from Lemma 2 that there exists $u_2 \in Fu_1$ such that

$$d_{\phi}(u_1, u_2) \leq \frac{1}{\sqrt{\eta(d_{\phi}(u_0, u_1))}} d_{\phi}(u_1, Fu_1).$$

Continuing in this fashion, we produce a sequence $\{u_n\}_{n=1}^{\infty}$ of points in **U** such that $u_{n+1} \in Fu_n$ and

$$d_{\phi}(u_n, u_{n+1}) \le \frac{1}{\sqrt{\eta(d_{\phi}(u_{n-1}, u_n))}} d_{\phi}(u_n, Fu_n).$$
(26)

Now assume that $u_{n-1} \neq u_n$, for otherwise u_{n-1} is fixed point of *F*. Using (24), it follows from (26) that

$$d_{\phi}(u_{n}, u_{n+1}) \leq \sqrt{\eta(d_{\phi}(u_{n-1}, u_{n}))} d_{\phi}(u_{n-1}, u_{n})$$

$$< d_{\phi}(u_{n-1}, u_{n}).$$
(27)

Hence $\{d_{\phi}(u_n, u_{n+1})\}$ is a decreasing sequence, so it is converges to some non-negative real number. Let *a* be the limit of $\{d_{\phi}(u_n, u_{n+1})\}$. Clearly, a = 0, for otherwise by taking limits in (27), we obtain $a \leq \sqrt{c}a$, where $c = \limsup_{s \to a^+} \eta(s)$. From (27), we have

$$\begin{aligned} d_{\phi}(u_{n}, u_{n+1}) &\leq \sqrt{\eta(d_{\phi}(u_{n-1}, u_{n}))} \sqrt{\eta(d_{\phi}(u_{n-2}, u_{n-1}))} d_{\phi}(u_{n-2}, u_{n-1}) \dots \\ & \dots \leq \sqrt{\eta(d_{\phi}(u_{n-1}, u_{n}))} \dots \sqrt{\eta(d_{\phi}(u_{0}, u_{1}))}] d_{\phi}(u_{0}, u_{1}). \end{aligned}$$

From (25), we can choose $\delta > 0$ and $\alpha \in (0, 1)$ such that

$$\eta(t) < \alpha^2$$
, for $t \in (0, \delta)$.

Let *N* be such that $d_{\phi}(u_{n-1}, u_n) < \delta$ for $n \ge N$. From (27), we have

$$d_{\phi}(u_n, u_{n+1}) \leq \alpha d_{\phi}(u_{n-1}, u_n) \leq \dots$$

$$\leq \alpha^{n-N+1} d_{\phi}(u_{N-1}, u_n).$$

Hence from the inequality (27), we get

$$d_{\phi}(u_{n}, u_{n+1}) \leq \alpha^{n-N+1} [\sqrt{\eta(d_{\phi}(u_{N-2}, u_{N-1}))} \dots \sqrt{\eta(d_{\phi}(u_{0}, u_{1}))}] d_{\phi}(u_{0}, u_{1}) \\ < \alpha^{n-N+1} d_{\phi}(u_{0}, u_{1}).$$
(28)

Therefore from the triangle inequality and (28) for any $m \in \mathbb{N}$ with m > n, we have

$$d_{\phi}(u_{n}, u_{n+m}) \leq \phi(u_{n}, u_{n+m})d_{\phi}(u_{n}, u_{n+1}) + \phi(u_{n}, u_{n+m})\phi(u_{n+1}, u_{n+m})d_{\phi}(u_{n+1}, u_{n+2}) + \cdots + \phi(u_{n}, u_{n+m})\phi(u_{n+1}, u_{n+m}) \dots \phi(u_{n+m-1}, u_{n+m}) \\ d_{\phi}(u_{n+m-1}, u_{n+m}),$$

$$d_{\phi}(u_{n}, u_{n+m}) \leq \alpha^{n-N+1} [\phi(u_{n}, u_{n+m}) + \alpha^{2} \phi(u_{n}, u_{n+m}) \phi(u_{n+1}, u_{n+m}) + \dots + \alpha^{m-n-1} \phi(u_{n}, u_{n+m}) \phi(u_{n+1}, u_{n+m}) \dots \phi(u_{n+m-1}, u_{n+m})] d_{\phi}(u_{0}, u_{1}),$$

Mathematics 2019, 7, 478

$$d_{\phi}(u_{n}, u_{n+m}) \leq \alpha^{n-N+1} [\phi(u_{1}, u_{n+m})\phi(u_{2}, u_{n+m}) \dots \phi(u_{n}, u_{n+m}) + \phi(u_{1}, u_{n+m}) \phi(u_{2}, u_{n+m}) \dots \phi(u_{n+m-1}, u_{n+m})] d_{\phi}(u_{0}, u_{1}).$$

Since $\lim_{n,m\to\infty} \phi(u_n, u_m)\alpha < 1$, the series $\sum_{j=1}^{\infty} \alpha^j \prod_{i=1}^j \phi(u_j, u_{n+m})$ converges by the ratio test for each $m \in \mathbb{N}$. Let

$$S = \sum_{j=1}^{\infty} \alpha^{j} \prod_{i=1}^{j} \phi(u_{i}, u_{n+m}), \quad S_{n} = \sum_{j=1}^{n} \alpha^{j} \prod_{i=1}^{j} \phi(u_{i}, u_{n+m}).$$

Thus for $m \in \mathbb{N}$ with m > n, the above inequality implies

$$d_{\phi}(u_n, u_{n+m}) \le \alpha^{n-N+1}[S_{m-1} - S_n].$$

By letting $n \to \infty$, we conclude that $\{u_n\}_{n=1}^{\infty}$ is a Cauchy sequence in **U**. As **U** is complete, there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$. Since $u_n \in Fu_{n-1}$, it follows from (24) that

$$d_{\phi}(u_n, Fu_n) \leq \eta(d_{\phi}(u_{n-1}, u_n))d_{\phi}(u_{n-1}, u_n)$$

$$< d_{\phi}(u_{n-1}, u_n).$$

Letting $n \to \infty$, from the above inequality we have

$$\lim_{n\to\infty}d_{\phi}(u_n,Fu_n)=0$$

Suppose $f(u) = d_{\phi}(u, Fu)$ is *F* orbitally semi-continuous at *u*,

$$d_{\phi}(u, Fu) = f(u) \leq \lim_{n \to \infty} \inf f(u_n) = \lim_{n \to \infty} \inf d_{\phi}(u_n, Fu_n) = 0.$$

Hence $u \in Fu$, since Fu is closed. Conversely let us suppose that u is a fixed point of F ($u \in Fu$), then $f(u) = 0 \leq \lim_{n \to \infty} \inf f(u_n)$. Hence f is F orbitally semi-continuous at u. \Box

Remark 2. Theorem 10 improves Theorem 1, since F may take values in $CLB(\mathbf{U})$. Since $d_{\phi}(v, Fv) \leq H(Fu, Fv)$ for $v \in Fu$. We have the following corollary.

Corollary 2. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space and $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$ be such that

$$\mathbf{H}_{\Phi}(Fu,Fv) \leq \eta(d_{\phi}(u,v))d_{\phi}(u,v), \text{ for each } u \in \mathbf{U} \text{ and } v \in Fu,$$

where $\eta: (0, \infty) \to (0, 1]$ is such that

$$\limsup_{s \to t^+} \eta(s) < 1, \text{ for all } t \in [0, \infty).$$

Then

- (*i*) there exist an orbit $\{u_n\}_{n=0}^{\infty}$ of F for each $u_0 \in \mathbf{U}$ and $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$;
- (ii) *u* is a fixed point of *F*, if and only if the function $f(u) = d_{\phi}(u, Fu)$ is *F*-orbitally lower semi-continuous at *u*.

Remark 3. Theorem 7 extends Nadler's fixed point theorem when U is the extended b-metric space.

Remark 4. Theorem 8 is a generalization of 7. The following example shows that generalization.

Example 2. Let $\mathbf{U} = \{\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots\} \cup \{0, 1\}$ and $d_{\phi} : \mathbf{U} \times \mathbf{U} \rightarrow [0, \infty)$ be a mapping defined as $d_{\phi}(u_1, u_2) = (u_1 - u_2)^2$, for $u_1, u_2 \in \mathbf{U}$, where $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$ is a mapping defined by $\phi(u_1, u_2) = u_1 + u_2 + 2$. Then (\mathbf{U}, d_{ϕ}) is a complete extended b-metric space. Define $F : \mathbf{U} \rightarrow C\mathcal{LB}(\mathbf{U})$ as

$$F(u) = \begin{cases} \left\{ \frac{1}{2^{n+1}}, 1 \right\}, & u = \frac{1}{2^n}, n = 0, 1, 2, \dots \\ \left\{ 0, \frac{1}{2} \right\}, & u = 0. \end{cases}$$

In a sense of Theorem 7, clearly F is not contractive, in fact

$$\mathbf{H}_{\Phi}\left(F\left(\frac{1}{2^{n}}\right),F(0)\right) = \frac{1}{2} \ge \frac{1}{2^{2n}} = d_{\phi}(u_{1},u_{2}), \quad \text{for } n = 1, 2, 3, \dots$$

On the other way,

$$f(u) = \begin{cases} \left(\frac{1}{2^{n+1}}\right)^2, & u = \frac{1}{2^n}, n = 1, 2, \dots \\ u, & u = 0, 1 \end{cases}$$

Hence f *is continuous, so it is clearly lower semi-continuous. Furthermore there exists* $v \in I_{0.7}^u$ *for any* $u \in \mathbf{U}$ *such that*

$$d_{\phi}(v,F(v)) = \frac{1}{4}d_{\phi}(u,v).$$

Thus the existence of a fixed point follows from Theorem 8. Hence Theorem 8 is a generalization of Theorem 7.

Remark 5. Theorem 9 is an extension of Theorem 8. In fact, let us consider a constant map $\eta = c$, where 0 < c < q. Thus the hypotheses of Theorem 9 are fulfilled. On the other hand, there exists a map which fulfills the hypotheses of Theorem 9, but does not fulfill the hypotheses of Theorem 8. See the following example:

Example 3. Let $\mathbf{U} = [0,1]$ and $d_{\phi} : \mathbf{U} \times \mathbf{U} \to [0,\infty)$ be a mapping defined as $d_{\phi}(u_1, u_2) = (u_1 - u_2)^2$, for $u_1, u_2 \in \mathbf{U}$, where $\phi : \mathbf{U} \times \mathbf{U} \to [1, \infty)$ is a mapping defined by $\phi(u_1, u_2) = u_1 + u_2 + 2$. Then (\mathbf{U}, d_{ϕ}) is a complete extended b-metric space. Let $F : \mathbf{U} \to C\mathcal{LB}(\mathbf{U})$ be such that

$$F(u) = \begin{cases} \left\{ \frac{1}{2^{u^2}} \right\}, & u \in [0, \frac{15}{32}) \cup \left(\frac{15}{32}, 1\right], \\ \left\{ \frac{17}{96}, \frac{1}{4} \right\}, & u = \frac{15}{32}. \end{cases}$$

Let $q = \frac{3}{4}$ *and let* $\eta : [0, \infty) \to [0, q)$ *be of the form*

$$\eta(t) = \begin{cases} \frac{3}{2}t, & \text{for } t \in [0, \frac{7}{24}) \cup (\frac{7}{24}, \frac{1}{2}), \\ \frac{425}{768}, & \text{for } t = \frac{7}{24}, \\ \frac{1}{2}, & \text{for } t = [\frac{1}{2}, \infty). \end{cases}$$

Since

$$f(u) = \begin{cases} (u - \frac{1}{2}u^2)^2, & \text{for } u \in [0, \frac{15}{32}) \cup (\frac{15}{32}, 1], \\ \frac{49}{1024}, & \text{for } u = \frac{15}{32}. \end{cases}$$

Obviously f is a lower semi-continuous. Further, for any $u \in [0, \frac{15}{32}) \cup (\frac{15}{32}, 1]$ and $v = \frac{1}{2}u^2$, we have

 $qd_{\phi}(u,v) \leq d_{\phi}(u,Fu),$

and

$$d_{\phi}(v, Fv) \leq \eta(d_{\phi}(u, v))d_{\phi}(u, v).$$

Of course these both inequalities hold for $u = \frac{15}{32}$ *and* $v = \frac{17}{96}$ *. Hence all the hypotheses of Theorem 9 are satisfied and the fixed point of F is* {0}*. Next let us suppose that, if* $q \in (0, \frac{3}{4}]$ *and* $p \in (0, 1)$ *is such that* p < q*, then, for* u = 1*, we have* v = 1/2 *and consequently*

$$d_{\phi}\left(\frac{1}{2}, F\left(\frac{1}{2}\right)\right) > pd_{\phi}\left(1, \frac{1}{2}\right).$$

If $q \in (3/4, 1)$ and $p \in (0, 1)$ is such that p < q, then for $u = \frac{15}{32}$, we have $Fu = \{\frac{17}{96}, \frac{1}{4}\}$. Thus, in the case $v = \frac{17}{96}$, we obtain

$$qd_{\phi}\left(\frac{15}{32},\frac{17}{96}\right) > d_{\phi}\left(\frac{15}{32},F\left(\frac{15}{32}\right)\right),$$

and, in the case $v = \frac{1}{4}$, we have

$$d_{\phi}\left(\frac{1}{4}, F\left(\frac{1}{4}\right)\right) > pd_{\phi}\left(\frac{15}{32}, \frac{1}{4}\right).$$

Hence hypotheses of Theorem 8 are not fulfilled.

Remark 6. Theorem 10 is an extension of (Theorem 2.1, [10]) for the case when F is a multi-valued mapping from U to CLB(U) and hence generalizes Theorems 4 and 5 and also the results of [2,5,7,22].

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Funding: The fourth author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Pompeiu, D. Sur la continuite des fonctions de variables complexes. Ann. Fac. Sci. Toulouse 1905, 7, 264–315.
- 2. Nadler, S.B., Jr. Multi-valued contraction mappings. Not. Am. Math. Soc. 1967, 14, 930. [CrossRef]
- 3. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff Metric and Nadler's Fixed Point Theorem on Partial Metric Spaces. *Topol. Appl.* **2012**, *159*, 3234–3242. [CrossRef]
- 4. Aydi, H.; Abbas, M.; Vetro, C. Common Fixed points for multivalued generalized contractions on partial metric spaces. *RACSAM* 2014, *108*, 483–501. [CrossRef]
- 5. Reich, S. Fixed points of contractive functions. Boll. Unione Mater. Ital. 1972, 4, 26–42.
- 6. Mizoguchi, N.; Takahashi, W. Fixed point theorem for multivalued mappings on complete metric space. *J. Math. Anal. Appl.* **1989**, *141*, 177–188. [CrossRef]
- 7. Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. *J. Math. Anal. Appl.* **2006**, *317*, 103–112. [CrossRef]
- 8. Hicks, T.L.; Rhoades, B.E. A Banach type fixed point theorem. *Math. Jpn.* 1979, 24, 327–330.
- 9. Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. *J. Math. Anal. Appl.* **2007**, *334*, 132–139. [CrossRef]
- 10. Kamran, T. Mizoguchi-Takahashi's type fixed point theorem. *Comput. Math. Appl.* **2009**, *57*, 507–511. [CrossRef]
- 11. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37.
- 12. Bourbaki, N. Topologie Generale; Hermann: Paris, France, 1974.
- 13. Czerwik, S. Contraction mappings in *b*-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
- 14. Czerwik, S. Nonlinear set-valued contraction mappings in *b*-metric spaces. *Atti Sem. Mater. Fis. Univ. Modena* **1998**, 46, 263–276.
- 15. Kamran, T.; Samreen, M.; UL Ain, Q. A generalization of *b*-metric space and some fixed point theorems. *Mathematics* **2017**, *5*, 19. [CrossRef]
- 16. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. *Mathematics* **2018**, *6*, 194. [CrossRef]

- 18. Kiran, Q.; Alamgir, N.; Mlaiki, N.; Aydi, H. On some new fixed point results in complete extended *b*-metric spaces. *Mathematics* **2019**, in press.
- 19. Samreen, M.; Kamran, T.; Postolache, M. Extended *b*-metric space, extended *b*-comparison function and nonlinear contractions. *Univ. Politeh. Buchar. Sci. Bull. Ser. A* **2018**, *4*, 21–28.
- 20. Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in *b*-metric spaces via new fixed point theorem. *Nonlinear Anal. Model. Control* **2017**, *22*, 17–30. [CrossRef]
- 21. Subashi, L.; Gjini, N. Some results on extended *b*-metric spaces and Pompeiu-Hausdorff metric. *J. Progres. Res. Math.* **2017**, *12*, 2021–2029.
- 22. Suzuki, T. Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 2007. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).