Article

A Mizoguchi-Takahashi Type Fixed Point Theorem in Complete Extended b-Metric Spaces

Nayab Alamgir ${ }^{1}$, Quanita Kiran ${ }^{2, *}$ (D) Hassen Aydi ${ }^{3,4, *(D)}$ and Aiman Mukheimer ${ }^{5}$ (D)
1 School of Natural Sciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; nayab@sns.nust.edu.pk
2 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
3 Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
4 China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
5 Department of Mathematics and General Sciences, Prince Sultan University Riyadh, Riyadh 11586, Saudi Arabia; mukheimer@psu.edu.sa
* Correspondence: quanita.kiran@seecs.edu.pk (Q.K.); hassen.aydi@isima.rnu.tn (H.A.)

Received: 13 April 2019; Accepted: 24 May 2019; Published: 26 May 2019

Abstract

In this paper, we prove a new fixed point theorem for a multi-valued mapping from a complete extended b-metric space \mathbf{U} into the non empty closed and bounded subsets of \mathbf{U}, which generalizes Nadler's fixed point theorem. We also establish some fixed point results, which generalize our first result. Furthermore, we establish Mizoguchi-Takahashi's type fixed point theorem for a multi-valued mapping from a complete extended b-metric space \mathbf{U} into the non empty closed and bounded subsets of \mathbf{U} that improves many existing results in the literature.

Keywords: complete extended b-metric space; Hausdorff metric; fixed point theorems

1. Introduction

Throughout this paper, $\left(\mathbf{U}, d_{\phi}\right)$ is an extended b-metric space. We denote by $\mathcal{C} \mathcal{L}(\mathbf{U})$ the set of all subsets of \mathbf{U} that are non empty and closed, by $\mathcal{C} \mathcal{L} \mathcal{B}(\mathbf{U})$ the set of all subsets of \mathbf{U} that are non empty closed and bounded and by $\mathcal{K}(\mathbf{U})$ the set of all subsets of \mathbf{U} that are non empty compacts.

An element $u^{\prime} \in \mathcal{U}$ is called a fixed point of a multi-valued map $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$ if $u^{\prime} \in F u^{\prime}$. An orbit for a mapping $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$ at a point $u_{0} \in \mathbf{U}$ denoted by $O(F)$ is a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ in \mathbf{U} such that $u_{n+1} \in F u_{n}$. A mapping $f: \mathbf{U} \rightarrow \mathbb{R}$ is said to be F-orbitally lower semi-continuous if for any sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ in $O(F)$ and $u \in \mathbf{U}, u_{n} \rightarrow u$ implies $f(u) \leq \lim _{n \rightarrow \infty} \inf f\left(u_{n}\right)$.

Define a function $f: \mathbf{U} \rightarrow \mathbb{R}$ as $f(u)=d_{\phi}(u, F u)$. For a constant $q \in(0,1)$, define the set $I_{q}^{u} \subset \mathbf{U}$ as

$$
I_{q}^{u}=\left\{v \in F u \mid q d_{\phi}(u, v) \leq d_{\phi}(u, F u)\right\} .
$$

The Pompeiu-Hausdorff distance measuring the distance between the subsets of a metric space was initiated by D. Pompeiu in [1]. The fixed point theory of set-valued contractions was initiated by Nadler [2], but later many authors extrapolated it multi directionally (see [3,4]).

Theorem 1 (Reich [5]). Let (\mathbf{U}, d) be a complete metric space and let $F: \mathbf{U} \rightarrow \mathcal{K}(\mathbf{U})$. Assume that there exists a map $\eta:[0, \infty) \rightarrow[0,1)$ such that

$$
\lim _{s \rightarrow t^{+}} \eta(s)<1, \text { for all } t \in(0, \infty),
$$

and

$$
\mathbf{H}(F u, F v) \leq \eta(d(u, v)) d(u, v), \quad \text { for all } u, v \in \mathbf{U}
$$

Then F has a fixed point.
In [5] Reich raised the question if the above theorem is also true for $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$. In [6], Mizoguchi and Takahashi gave supportive solution to the conjecture of [5] under the hypothesis $\limsup _{s \rightarrow t^{+}} \eta(s)<1$, for all $t \in[0, \infty)$. In particular, they proved the following result:

Theorem 2 (Mizoguchi, Takahashi [6]). Let (\mathbf{U}, d) be a complete metric space and let $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$. Assume that there exists a map $\eta:[0, \infty) \rightarrow[0,1)$ such that

$$
\lim \sup _{s \rightarrow t^{+}} \eta(s)<1, \text { for all } t \in[0, \infty)
$$

and

$$
\mathbf{H}(F u, F v) \leq \eta(d(u, v)) d(u, v), \text { for all } u, v \in \mathbf{U}, u \neq v
$$

Then F has a fixed point.
In [7], Feng and Liu extended Nadler's fixed point theorem, other than the direction of Reich and Takahashi. They proved a theorem as follows:

Theorem 3 (Feng, Liu [7]). Let (\mathbf{U}, d) be a complete metric space and let $F: \mathbf{U} \rightarrow \mathcal{C L B}(\mathbf{U})$. Assume that:
(i) The map $f: \mathbf{U} \rightarrow \mathbb{R}$ defined by $f(u)=d(u, F u), u \in \mathbf{U}$, is lower semi-continuous;
(ii) There exist $p, q \in(0,1), p<q$ such that for all $u \in \mathbf{U}$ there exists $v \in\{v \in F u \mid q d(u, v) \leq$ $d(u, F u)\}$ satisfying

$$
d(v, F v) \leq p d(u, v)
$$

Then F has a fixed point.
Hicks and Rhodes [8] and Klim and Wardowski [9] proved the following results:
Theorem 4 ([8]). Let (\mathbf{U}, d) be a complete metric space and let $g: \mathbf{U} \rightarrow \mathbf{U}, 0 \leq h<1$. Suppose there exists q such that

$$
d\left(g v, g^{2} v\right) \leq h d(v, g v), \text { for every } y \in\left\{x, g x, g^{2} x, \ldots\right\}
$$

Then
(i) $\lim _{n} g^{n} x=q$ exists;
(ii) $d\left(g^{n} x, q\right) \leq \frac{h^{n}}{1-h} d(x, g x)$;
(iii) q is a fixed point of g iff $G(x)=d(x, g x)$ is g-orbitally lower semi-continuous at q.

Theorem 5 ([9]). Let (\mathbf{U}, d) be a complete metric space and let $F: \mathbf{U} \rightarrow \mathcal{K}(\mathbf{U})$. Assume that the following conditions hold:
(i) The map $f: \mathbf{U} \rightarrow \mathbb{R}$ defined by $f(u)=d(u, F u), u \in \mathbf{U}$, is lower semi-continuous;
(ii) There exists a map $\eta:[0, \infty) \rightarrow[0,1)$ such that

$$
\lim _{s \rightarrow t^{+}} \eta(s)<1, \text { for all } t \in(0, \infty)
$$

and for all $u \in \mathbf{U}$ there exists $v \in\{v \in F u: d(u, v) \leq d(u, F u)\}$ satisfying

$$
d(v, F v) \leq \eta(d(u, v)) d(u, v)
$$

Then F has a fixed point.
In 2007, Kamran [10] logically presented Mizoguchi-Takahashi's type fixed point theorem, that simply generalizes Theorems 4 and 5 .

The idea of generalizing metric spaces into b-metric spaces was initiated from the works of Bakhtin [11], Bourbaki [12], and Czerwik [13,14]. In [15], the notion of b-metric space was generalized further by introducing the concept of extended b-metric spaces (see also [16-18]) as follows:

Definition 1 ([15]). Let \mathbf{U} be a non empty set and $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$. A function $d_{\phi}: \mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ is called an extended b-metric, if for all $u_{1}, u_{2}, u_{3} \in \mathbf{U}$ it satisfies:
(i) $d_{\phi}\left(u_{1}, u_{2}\right)=0$ if and only if $u_{1}=u_{2}$,
(ii) $d_{\phi}\left(u_{1}, u_{2}\right)=d_{\phi}\left(u_{2}, u_{1}\right)$,
(iii) $d_{\phi}\left(u_{1}, u_{3}\right) \leq \phi\left(u_{1}, u_{3}\right)\left[d_{\phi}\left(u_{1}, u_{2}\right)+d_{\phi}\left(u_{2}, u_{3}\right)\right]$.

The pair $\left(\mathbf{X}, d_{\phi}\right)$ is called an extended b-metric space.
Remark 1 ([15]). Every b-metric space is an extended b-metric space with a constant function $\phi\left(x_{1}, x_{2}\right)=s$, for $s \geq 1$, but its converse is not true in general.

Example 1. Let $\mathbf{U}=\{u \in \mathbb{R}: u \geq 1\}$. Define $d_{\phi}: \mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ and $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ as follows:

$$
d_{\phi}\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{2}\right)^{2}, \phi\left(u_{1}, u_{2}\right)=1+u_{1}+u_{2}
$$

for all $u_{1}, u_{2} \in \mathbf{U}$. Then $\left(\mathbf{U}, d_{\phi}\right)$ is an extended b-metric space.
For more examples and recent results see [19]. Also, in [20] Muhammad Usman Ali et al. established fixed point results for new F-contractions of Hardy-Rogers type in the setting of b-metric space and proved the existence theorem for Volterra-type integral inclusion. Their results generalized many existence results in the literature. Finally in [21], authors introduced the notion of a generalized Pompeiu-Hausdorff metric induced by the extended b-metric as follows:

Definition 2. ([21]) Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ is bounded. Then for all $\mathbf{A}, \mathbf{B} \in \mathcal{C} \mathcal{L B}(\mathbf{U})$, where $\mathcal{C} \mathcal{L B}(\mathbf{U})$ denotes the family of all non empty closed and bounded subsets of \mathbf{U}, the Hausdorff-Pompieu metric on $\mathcal{C} \mathcal{L B}(\mathbf{U})$ induced by d_{ϕ} is defined by

$$
\mathbf{H}_{\Phi}(\mathbf{A}, \mathbf{B})=\max \left\{\sup _{a \in \mathbf{A}} d_{\phi}(a, \mathbf{B}), \sup _{b \in \mathbf{B}} d_{\phi}(b, \mathbf{A})\right\}
$$

where for every $a \in \mathbf{A}, d_{\phi}(a, \mathbf{B})=\inf \left\{d_{\phi}(a, b): b \in \mathbf{B}\right\}$ and $\Phi: \mathcal{C} \mathcal{L B}(\mathbf{U}) \times \mathcal{C} \mathcal{L B}(\mathbf{U}) \rightarrow[1, \infty)$ is such that

$$
\Phi(\mathbf{A}, \mathbf{B})=\sup \{\phi(a, b): a \in \mathbf{A}, b \in \mathbf{B}\} .
$$

Theorem 6. ([21]) Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space. Then $\left(\mathcal{C L B}(\mathbf{U}), \mathbf{H}_{\Phi}\right)$ is an extended Hausdorff-Pompieu b-metric space.

In this paper, we extend Nadler's fixed point theorem for the extended b-metric space. Moreover, we improve Mizoguchi-Takahashi's type fixed point theorem (Theorem 1.2, [10]) for the extended b-metric space when F is a multi-valued mapping from \mathbf{U} to $\mathcal{C L B}(\mathbf{U})$. Our results generalize Theorems 4 and 5 in the setting of extended b-metric spaces which in turn generalize many existing results including Theorems 1-3.

2. Main Results

We start with the following lemma.
Lemma 1. Let $\mathbf{X}, \mathbf{Y} \in \mathcal{C} \mathcal{L B}(\mathbf{U})$, then for every $\eta>0$ and $y \in \mathbf{Y}$ there exists $x \in \mathbf{X}$ such that

$$
d_{\phi}(x, y) \leq \mathbf{H}_{\Phi}(\mathbf{X}, \mathbf{Y})+\eta
$$

Proof. By definition of the Hausdorff metric, for $\mathbf{X}, \mathbf{Y} \in \mathcal{C \mathcal { L B }}(\mathbf{U})$ and for any $y \in \mathbf{Y}$, we have

$$
d_{\phi}(\mathbf{X}, y) \leq \mathbf{H}_{\Phi}(\mathbf{X}, \mathbf{Y})
$$

By the definition of an infimum, we can let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence in \boldsymbol{X} such that

$$
\begin{equation*}
d_{\phi}\left(y, x_{n}\right)<d_{\phi}(y, \mathbf{X})+\eta, \text { where } \eta>0 \tag{1}
\end{equation*}
$$

We know that \mathbf{X} is closed and bounded, so there exists $x \in \mathbf{X}$ such that $x_{n} \rightarrow x$. Therefore by (1), we have

$$
d_{\phi}(x, y)<d_{\phi}(\mathbf{X}, y)+\eta \leq \mathbf{H}_{\Phi}(\mathbf{X}, \mathbf{Y})+\eta
$$

Theorem 7. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space. If $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$ satisfies the inequality

$$
\begin{equation*}
\mathbf{H}_{\Phi}(F u, F v) \leq \eta d_{\phi}(u, v), \text { for all } u, v \in \mathbf{U} \tag{2}
\end{equation*}
$$

where $\eta \in[0,1)$ is a real constant such that $\lim _{n, m \rightarrow \infty} \eta \phi\left(u_{n}, u_{m}\right)<1$, then F has a fixed point.
Proof. Let us consider $\eta>0$. Let $u_{0} \in \mathbf{U}$ and choose $u_{1} \in F u_{0}$. Since $\left.F u_{0}, F u_{1} \in \mathcal{C} \mathcal{L B} \mathbf{U}\right)$ and $u_{1} \in F u_{0}$, then by Lemma 1, there exists $u_{2} \in F u_{1}$ such that

$$
d_{\phi}\left(u_{1}, u_{2}\right) \leq \mathbf{H}_{\Phi}\left(F u_{0}, F u_{1}\right)+\eta
$$

Now since $\left.F u_{1}, F u_{2} \in \mathcal{C \mathcal { L B }}\right)$ and $u_{2} \in F u_{1}$, there is a point $u_{3} \in F u_{2}$ such that

$$
d_{\phi}\left(u_{2}, u_{3}\right) \leq \mathbf{H}_{\Phi}\left(F u_{1}, F u_{2}\right)+\eta^{2} .
$$

Continuing in this fashion, we obtain a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ of elements of \mathbf{U} such that $u_{n+1} \in F u_{n}$ and

$$
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \mathbf{H}_{\Phi}\left(F u_{n-1}, F u_{n}\right)+\eta^{n}, \text { for all } n \geq 1
$$

By (2), we note that

$$
\begin{aligned}
d_{\phi}\left(u_{n}, u_{n+1}\right) & \leq \eta d_{\phi}\left(u_{n-1}, u_{n}\right)+\eta^{n} \\
& \leq \eta\left(\eta d_{\phi}\left(u_{n-2}, u_{n-1}\right)+\eta^{n-1}\right)+\eta^{n} \\
& \leq \eta^{2} d_{\phi}\left(u_{n-2}, u_{n-1}\right)+2 \eta^{n}
\end{aligned}
$$

Continuing in this way, we have

$$
\begin{equation*}
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \eta^{n} d_{\phi}\left(u_{0}, u_{1}\right)+n \eta^{n}, \text { for all } n \geq 1 \tag{3}
\end{equation*}
$$

By the triangle inequality and (3) for $m>n$, we have

$$
\begin{aligned}
d_{\phi}\left(u_{n}, u_{m}\right) \leq & \phi\left(u_{n}, u_{m}\right)\left[\eta^{n} d_{\phi}\left(u_{0}, u_{1}\right)+n \eta^{n}\right]+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right)\left[\eta^{n+1} d_{\phi}\left(u_{0}, u_{1}\right)\right. \\
& \left.+(n+1) \eta^{n+1}\right]+\ldots \ldots+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right) \\
& {\left[\eta^{m-1} d_{\phi}\left(u_{0}, u_{1}\right)+(m-1) \eta^{m-1}\right], } \\
d_{\phi}\left(u_{n}, u_{m}\right) \leq & d_{\phi}\left(u_{0}, u_{1}\right)\left[\phi\left(u_{n}, u_{m}\right) \eta^{n}+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \eta^{n+1}+\ldots+\phi\left(u_{n}, u_{m}\right)\right. \\
& \left.\phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right) \eta^{m-1}\right]+\left[\phi\left(u_{n}, u_{m}\right) n \eta^{n}+\phi\left(u_{n}, u_{m}\right)\right. \\
& \phi\left(u_{n+1}, u_{m}\right)(n+1) \eta^{n+1}+\ldots+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \\
& \left.\phi\left(u_{m-1}, u_{m}\right)(m-1) \eta^{m-1}\right], \\
d_{\phi}\left(u_{n}, u_{m}\right) \leq & d_{\phi}\left(u_{0}, u_{1}\right)\left[\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots \phi\left(u_{n}, u_{m}\right) \eta^{n}+\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots\right. \\
& \phi\left(u_{n+1}, u_{m}\right) \eta^{n+1}+\ldots+\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots \phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \\
& \left.\phi\left(u_{m-1}, u_{m}\right) \eta^{m-1}\right]+\left[\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots \phi\left(u_{n}, u_{m}\right) n \eta^{n}+\phi\left(u_{1}, u_{m}\right)\right. \\
& \phi\left(u_{2}, u_{m}\right) \ldots \phi\left(u_{n+1}, u_{m}\right)(n+1) \eta^{n+1}+\ldots+\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots \\
& \left.\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right)(m-1) \eta^{m-1}\right] .
\end{aligned}
$$

Since $\lim _{n, m \rightarrow \infty} \phi\left(u_{n+1}, u_{m}\right) \eta<1$, the series

$$
\sum_{n=1}^{\infty} \eta^{n} \prod_{i=1}^{n} \phi\left(u_{i}, u_{m}\right) \text { and } \sum_{n=1}^{\infty} n \eta^{n} \prod_{i=1}^{n} \phi\left(u_{i}, u_{m}\right)
$$

converges by the ratio test for each $m \in \mathbb{N}$. Let

$$
S=\sum_{n=1}^{\infty} \eta^{n} \prod_{i=1}^{n} \phi\left(u_{i}, u_{m}\right), \quad S_{n}=\sum_{j=1}^{n} \eta^{j} \prod_{i=1}^{j} \phi\left(u_{i}, u_{m}\right)
$$

and

$$
S^{\prime}=\sum_{n=1}^{\infty} n \eta^{n} \prod_{i=1}^{n} \phi\left(u_{i}, u_{m}\right), S_{n}^{\prime}=\sum_{j=1}^{n} j \eta^{j} \prod_{i=1}^{j} \phi\left(u_{i}, u_{m}\right)
$$

Thus for $m>n$, the above inequality implies

$$
d_{\phi}\left(u_{n}, u_{m}\right) \leq d_{\phi}\left(u_{0}, u_{1}\right)\left[S_{m-1}-S_{n}\right]+\left[S_{m-1}^{\prime}-S_{n}^{\prime}\right]
$$

By letting $n \rightarrow \infty$, we conclude that $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since \mathbf{U} is complete, there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$ (so $\lim _{n \rightarrow \infty} u_{n+1}=u$). Now by the triangle inequality

$$
\begin{aligned}
d_{\phi}(F u, u) & \leq \phi(F u, u)\left[d_{\phi}\left(F u, u_{n}\right)+d_{\phi}\left(u_{n}, u\right)\right] \\
& \leq \phi(F u, u)\left[\eta d_{\phi}\left(u, u_{n-1}\right)+d_{\phi}\left(u_{n}, u\right)\right] .
\end{aligned}
$$

This implies that

$$
\begin{gathered}
d_{\phi}(F u, u) \leq 0 \text { as } n \rightarrow \infty \\
d_{\phi}(F u, u)=0 .
\end{gathered}
$$

Hence u is a fixed point of F.
Theorem 8. Let us consider a multi-valued mapping $F: \mathbf{U} \rightarrow \mathcal{C L B}(\mathbf{U})$, where $\left(\mathbf{U}, d_{\phi}\right)$ is a complete extended b-metric space. Furthermore, let us consider that the following two conditions hold:
(i) The map $f: \mathbf{U} \rightarrow \mathbb{R}$ defined by $f(u)=d_{\phi}(u, F u), u \in \mathbf{U}$, is lower semi-continuous;
(ii) There exist $p, q \in(0,1), p<q$ such that for all $u \in \mathbf{U}$ there exists $v \in I_{q}^{u}$ satisfying

$$
d_{\phi}(v, F v) \leq p d_{\phi}(u, v)
$$

Moreover $\lim _{n, m \rightarrow \infty} \alpha \phi\left(u_{n}, u_{m}\right)<1$, for all $\alpha \in(0,1)$. Then F has a fixed point in \mathbf{U}.
Proof. As $F u \in \mathcal{C} \mathcal{L B}(\mathbf{U})$ for any $u \in \mathbf{U}, I_{q}^{u}$ is non void for any constant $q \in(0,1)$. For some arbitrary point $u_{0} \in \mathbf{U}$, there exists $u_{1} \in I_{q}^{u_{0}}$ such that

$$
d_{\phi}\left(u_{1}, F u_{1}\right) \leq p d_{\phi}\left(u_{0}, u_{1}\right)
$$

And, for $u_{1} \in \mathbf{U}$, there exists $u_{2} \in I_{q}^{u_{1}}$ satisfying

$$
d_{\phi}\left(u_{2}, F u_{2}\right) \leq p d_{\phi}\left(u_{1}, u_{2}\right)
$$

Continuing in this fashion, we can get an iterative sequence $\left\{u_{n}\right\}_{u=0}^{\infty}$, where $u_{n+1} \in I_{q}^{u_{n}}$ and

$$
d_{\phi}\left(u_{n+1}, F u_{n+1}\right) \leq p d_{\phi}\left(u_{n}, u_{n+1}\right), \quad n=0,1,2, \cdots
$$

Now we will prove that $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. On the one hand,

$$
\begin{equation*}
d_{\phi}\left(u_{n+1}, F u_{n+1}\right) \leq p d_{\phi}\left(u_{n}, u_{n+1}\right), \quad n=0,1,2, \cdots \tag{4}
\end{equation*}
$$

On the other hand, $u_{n+1} \in I_{q}^{u_{n}}$ implies

$$
q d_{\phi}\left(u_{n}, u_{n+1}\right) \leq d_{\phi}\left(u_{n}, F u_{n}\right), \quad n=0,1,2, \cdots
$$

By the above two equations, we have

$$
\begin{align*}
d_{\phi}\left(u_{n+1}, u_{n+2}\right) & \leq \frac{p}{q} d_{\phi}\left(u_{n}, u_{n+1}\right), \quad n=0,1,2, \cdots, \tag{5}\\
d_{\phi}\left(u_{n+1}, F u_{n+1}\right) & \leq \frac{p}{q} d_{\phi}\left(u_{n}, F u_{n}\right), \quad n=0,1,2, \cdots .
\end{align*}
$$

By inequality (5), it is easy to prove that

$$
\begin{align*}
d_{\phi}\left(u_{n}, u_{n+1}\right) & \leq \frac{p^{n}}{q^{n}} d_{\phi}\left(u_{0}, u_{1}\right), \quad n=0,1,2, \cdots \\
d_{\phi}\left(u_{n}, F u_{n}\right) & \leq \frac{p^{n}}{q^{n}} d_{\phi}\left(u_{0}, F u_{0}\right), \quad n=0,1,2, \cdots \tag{6}
\end{align*}
$$

Let $\alpha=\frac{p}{q}$. Since $p<q$ we have $\alpha=\frac{p}{q}<1$. By taking $n \rightarrow \infty$ in (6), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{\phi}\left(u_{n}, F u_{n}\right)=0 \tag{7}
\end{equation*}
$$

By the triangle inequality and (6), for $m, n \in \mathbb{N}, m>n$

$$
\begin{gathered}
d_{\phi}\left(u_{n}, u_{m}\right) \leq \phi\left(u_{n}, u_{m}\right)\left[d_{\phi}\left(u_{n}, u_{n+1}\right)+d_{\phi}\left(u_{n+1}, u_{m}\right)\right] \\
d_{\phi}\left(u_{n}, u_{m}\right) \leq \phi\left(u_{n}, u_{m}\right) d_{\phi}\left(u_{n}, u_{n+1}\right)+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right)\left[d_{\phi}\left(u_{n+1}, u_{n+2}\right)+d_{\phi}\left(u_{n+2}, u_{m}\right)\right]
\end{gathered}
$$

$$
\left.\begin{array}{rl}
d_{\phi}\left(u_{n}, u_{m}\right) \leq & \phi\left(u_{n}, u_{m}\right) d_{\phi}\left(u_{n}, u_{n+1}\right)+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) d_{\phi}\left(u_{n+1}\right)+\cdots \cdots \\
& +\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right) d_{\phi}\left(u_{m-1}, u_{m}\right),
\end{array}\right\} \begin{aligned}
& d_{\phi}\left(u_{n}, u_{m}\right) \leq \quad \phi\left(u_{n}, u_{m}\right) \alpha^{n} d_{\phi}\left(u_{0}, u_{1}\right)+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \alpha^{n+1} d_{\phi}\left(u_{0}, u_{1}\right)+\cdots \cdots \\
&+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right) \alpha^{m-1} d_{\phi}\left(u_{0}, u_{1}\right), \\
& d_{\phi}\left(u_{n}, u_{m}\right) \leq d_{\phi}\left(u_{0}, u_{1}\right)\left[\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots \phi\left(u_{n}, u_{m}\right) \alpha^{n}+\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots\right. \\
& \phi\left(u_{n+1}, u_{m}\right) \alpha^{n+1}+\ldots+\phi\left(u_{1}, u_{m}\right) \phi\left(u_{2}, u_{m}\right) \ldots \phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \\
&\left.\ldots \phi\left(u_{m-1}, u_{m}\right) \alpha^{m-1}\right] .
\end{aligned}
$$

Since $\alpha<1$ so $\lim _{n, m \rightarrow \infty} \alpha \phi\left(u_{n}, u_{m}\right)<1$. Therefore the series $\sum_{n=1}^{\infty} \alpha^{n} \prod_{i=1}^{n} \phi\left(u_{i}, u_{m}\right)$ converges by ratio test for all $m \in \mathbb{N}$. Let

$$
S=\sum_{n=1}^{\infty} \alpha^{n} \prod_{i=1}^{n} \phi\left(u_{i}, u_{m}\right), \quad \text { and } \quad S_{n}=\sum_{j=1}^{n} \alpha^{j} \prod_{i=1}^{j} \phi\left(u_{i}, u_{m}\right) .
$$

Thus for $m>n$ the above inequality implies

$$
d_{\phi}\left(u_{n}, u_{m}\right) \leq d_{\phi}\left(u_{0}, u_{1}\right)\left[S_{m-1}-S_{n}\right] .
$$

By taking $n \rightarrow \infty$, we conclude that $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. As \mathbf{U} is complete, there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$.

On the other hand as f is lower semi-continuous, so from (7) we have

$$
0 \leq f(u) \leq \lim _{n \rightarrow \infty} \inf f\left(u_{n}\right)=0
$$

Hence $f(u)=d_{\phi}(u, F u)=0$. Finally, by the closeness of $F u$, we have $u \in F u$.
Theorem 9. Let us consider a multi-valued mapping $F: \mathbf{U} \rightarrow \mathcal{C L B}(\mathbf{U})$, where $\left(\mathbf{U}, d_{\phi}\right)$ is a complete extended b-metric space. Furthermore, let us consider that the following two conditions hold:
(i) The map $f: \mathbf{U} \rightarrow \mathbb{R}$ defined by $f(u)=d_{\phi}(u, F u), u \in \mathbf{U}$, is lower semi-continuous;
(ii) There exist $q \in(0,1)$ and $\eta:[0, \infty) \rightarrow[0, q)$ such that

$$
\begin{equation*}
\lim _{s \rightarrow t^{+}} \eta(s)<q, \text { for all } t \in[0, \infty) \tag{8}
\end{equation*}
$$

and for all $u \in \mathbf{U}$, there exists $v \in I_{q}^{u}$ satisfying

$$
\begin{equation*}
d_{\phi}(v, F v) \leq \eta\left(d_{\phi}(u, v)\right) d_{\phi}(u, v), \text { for all } u \in \mathbf{U} \text { and } v \in F u . \tag{9}
\end{equation*}
$$

Moreover $\lim _{n, m \rightarrow \infty} \alpha \phi\left(u_{n}, u_{m}\right)<1$, for all $\alpha \in(0,1)$. Then F has a fixed point in \mathbf{U}.
Proof. Let us assume that F has no fixed point, so $d_{\phi}(u, F u)>0$ for each $u \in \mathbf{U}$. Since $F u \in \mathcal{C L B}(\mathbf{U})$, for any $u \in \mathbf{U}, I_{q}^{u}$ is non void for any constant $q \in(0,1)$. If $v=u$ then $u \in F u$, which is a contradiction. Hence for all $q \in(0,1)$ and $u \in \mathbf{U}$, there exist $v \in T u$ with $u \neq v$ such that

$$
\begin{equation*}
q d_{\phi}(u, v) \leq d_{\phi}(u, F u) \tag{10}
\end{equation*}
$$

Let us take an arbitrary point $u_{0} \in \mathbf{U}$. By (10) and (ii), there exists $u_{1} \in F u_{0}$ with $u_{1} \neq u_{0}$, satisfying

$$
\begin{equation*}
q d_{\phi}\left(u_{0}, u_{1}\right) \leq d_{\phi}\left(u_{0}, F u_{0}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{\phi}\left(u_{1}, F u_{1}\right) \leq \eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right) d_{\phi}\left(u_{0}, u_{1}\right), \quad \eta\left(d_{\phi}\left(u_{0}, u_{1}\right)<q\right. \tag{12}
\end{equation*}
$$

From (11) and (12), we have

$$
\begin{aligned}
d_{\phi}\left(u_{0}, F u_{0}\right)-d_{\phi}\left(u_{1}, F u_{1}\right) & \geq q d_{\phi}\left(u_{0}, u_{1}\right)-\eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right) d_{\phi}\left(u_{0}, u_{1}\right) \\
& \geq\left[q-\eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)\right] d_{\phi}\left(u_{0}, u_{1}\right)>0 .
\end{aligned}
$$

Further, for u_{1}, there exists $u_{2} \in F u_{1}, u_{2} \neq u_{1}$, such that

$$
\begin{equation*}
q d_{\phi}\left(u_{1}, u_{2}\right) \leq d_{\phi}\left(u_{1}, F u_{1}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{\phi}\left(u_{2}, F u_{2}\right) \leq \eta\left(d_{\phi}\left(u_{1}, u_{2}\right)\right) d_{\phi}\left(u_{1}, u_{2}\right), \quad \eta\left(d_{\phi}\left(u_{1}, u_{2}\right)<q .\right. \tag{14}
\end{equation*}
$$

By (13) and (14), we have

$$
\begin{aligned}
d_{\phi}\left(u_{1}, F u_{1}\right)-d_{\phi}\left(u_{2}, F u_{2}\right) & \geq q d_{\phi}\left(u_{1}, u_{2}\right)-\eta\left(d_{\phi}\left(u_{1}, u_{2}\right)\right) d_{\phi}\left(u_{1}, u_{2}\right) \\
& \geq\left[q-\eta\left(d_{\phi}\left(u_{1}, u_{2}\right)\right)\right] d_{\phi}\left(u_{1}, u_{2}\right)>0 .
\end{aligned}
$$

Furthermore from (12) and (13)

$$
d_{\phi}\left(u_{1}, u_{2}\right) \leq \frac{1}{q} d_{\phi}\left(u_{1}, F u_{1}\right) \leq \frac{1}{q} \eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right) d_{\phi}\left(u_{0}, u_{1}\right)<d_{\phi}\left(u_{0}, u_{1}\right)
$$

Continuing in this fashion, for $u_{n}, n>1$, there exists $u_{n+1} \in F u_{n}, u_{n+1} \neq u_{n}$ satisfying

$$
\begin{equation*}
q d_{\phi}\left(u_{n}, u_{n+1}\right) \leq d_{\phi}\left(u_{n}, F u_{n}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{\phi}\left(u_{n+1}, F u_{n+1}\right) \leq \eta\left(d_{\phi}\left(u_{n}, u_{n+1}\right)\right) d_{\phi}\left(u_{n}, u_{n+1}\right), \quad \eta\left(d_{\phi}\left(u_{n}, u_{n+1}\right)<q\right. \tag{16}
\end{equation*}
$$

From (15) and (16), we have

$$
\begin{aligned}
d_{\phi}\left(u_{n}, F u_{n}\right)-d_{\phi}\left(u_{n+1}, F u_{n+1}\right) & \geq q d_{\phi}\left(u_{n}, u_{n+1}\right)-\eta\left(d_{\phi}\left(u_{n}, u_{n+1}\right)\right) d_{\phi}\left(u_{n}, u_{n+1}\right) \\
& \geq\left[q-\eta\left(d_{\phi}\left(u_{n}, u_{n+1}\right)\right)\right] d_{\phi}\left(u_{n}, u_{n+1}\right)>0
\end{aligned}
$$

and

$$
\begin{equation*}
d_{\phi}\left(u_{n}, u_{n+1}\right)<d_{\phi}\left(u_{n-1}, u_{n}\right) \tag{17}
\end{equation*}
$$

From above both equations, it follows that the sequences $\left\{d_{\phi}\left(u_{n}, F u_{n}\right)\right\}$ and $\left\{d_{\phi}\left(u_{n}, u_{n+1}\right)\right\}$ are decreasing, and hence convergent. Now from (8), there exists $q^{\prime} \in[0, q)$ such that $\lim _{n \rightarrow \infty} \sup \eta\left(d_{\phi}\left(u_{n}, u_{n+1}\right)\right)=q^{\prime}$. Therefore for any $q_{0} \in\left(q^{\prime}, q\right)$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\eta\left(d_{\phi}\left(u_{n}, u_{n+1}\right)\right)<q_{0}, \text { for all } n>n_{0} \tag{18}
\end{equation*}
$$

Consequently from (15) and (16), we have

$$
\begin{equation*}
d_{\phi}\left(u_{n}, u_{n+1}\right)<\alpha d_{\phi}\left(u_{n-1}, u_{n}\right) \tag{19}
\end{equation*}
$$

where $\alpha=\frac{q_{0}}{q}$ and $n>n_{0}$. Furthermore, from (15)-(17), for $n>n_{0}$, we have

$$
\begin{aligned}
d_{\phi}\left(u_{n}, F u_{n}\right) \leq & \eta d_{\phi}\left(u_{n-1}, u_{n}\right) \leq \frac{\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right)}{q} d_{\phi}\left(u_{n-1}, F u_{n-1}\right) \\
\leq & \ldots \leq \frac{\left(\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right) \ldots \eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)\right.}{q^{n}} d_{\phi}\left(u_{0}, F u_{0}\right) \\
= & \frac{\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right) \ldots \eta\left(d_{\phi}\left(u_{n_{0}+1}, u_{n_{0}+2}\right)\right)}{q^{n-n_{0}}} \\
& \times \frac{\eta\left(d_{\phi}\left(u_{n_{0}}, u_{n_{0}+1}\right)\right) \ldots \eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)}{q^{n_{0}}} d_{\phi}\left(u_{0}, F u_{0}\right) \\
< & \left(\frac{q_{0}}{q}\right)^{n-n_{0}} \frac{\eta\left(d_{\phi}\left(u_{n_{0}}, u_{n_{0}+1}\right)\right) \ldots \eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)}{q^{n_{0}}} d_{\phi}\left(u_{0}, F u_{0}\right) .
\end{aligned}
$$

Since $q_{0}<q$, clearly $\lim _{n \rightarrow \infty}\left(\frac{q_{0}}{q}\right)^{n-n_{0}}=0$. This gives

$$
\lim _{n \rightarrow \infty} d_{\phi}\left(u_{n}, F u_{n}\right)=0
$$

Let $m>n>n_{0}$, from the triangle inequality and (19), we have

$$
\begin{aligned}
& d_{\phi}\left(u_{n}, u_{m}\right) \leq \phi\left(u_{n}, u_{m}\right) d_{\phi}\left(u_{n}, u_{n+1}\right)+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) d_{\phi}\left(u_{n+1}\right)+\cdots \cdots \\
&+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right) d_{\phi}\left(u_{m-1}, u_{m}\right), \\
& d_{\phi}\left(u_{n}, u_{m}\right) \leq \quad \phi\left(u_{n}, u_{m}\right) \alpha^{n} d_{\phi}\left(u_{0}, u_{1}\right)+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \alpha^{n+1} d_{\phi}\left(u_{0}, u_{1}\right)+\cdots \cdots \\
&+\phi\left(u_{n}, u_{m}\right) \phi\left(u_{n+1}, u_{m}\right) \ldots \phi\left(u_{m-1}, u_{m}\right) \alpha^{m-1} d_{\phi}\left(u_{0}, u_{1}\right) .
\end{aligned}
$$

By using the analogous procedure as in Theorem 8 , there exists a Cauchy sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ such that $u_{n+1} \in F u_{n}, u_{n+1} \neq u_{n}$. As \mathbf{U} is complete, therefore there exists $u \in \mathbf{U}$ such that $u_{n} \rightarrow u$. By (i), we obtain

$$
0 \leq d_{\phi}(u, F u) \leq \lim _{n \rightarrow \infty} \inf d_{\phi}\left(u_{n}, F u_{n}\right)=0
$$

By the closedness of $F u$, we have $u \in F u$, which contradicts our assumption that F has no fixed point.

Corollary 1. Let $F: \mathbf{U} \rightarrow \mathcal{K}(\mathbf{U})$ be a multi-valued mapping, where $\left(\mathbf{U}, d_{\phi}\right)$ is a complete extended b-metric space. Furthermore, let us consider that the following conditions hold:
(i) The map $f: \mathbf{U} \rightarrow \mathbb{R}$ defined by $f(u)=d_{\phi}(u, F u), u \in \mathbf{U}$, is lower semi-continuous;
(ii) There exists $\eta:[0, \infty) \rightarrow[0,1)$ such that

$$
\lim _{s \rightarrow t^{+}} \eta(s)<1, \text { for all } t \in[0, \infty)
$$

and for all $u \in \mathbf{U}$, there exists $v \in I_{1}^{u}$ satisfying

$$
d_{\phi}(v, F v) \leq \eta\left(d_{\phi}(u, v)\right) d_{\phi}(u, v), \text { for all } u \in \mathbf{U} \text { and } v \in F u .
$$

Moreover $\lim _{n, m \rightarrow \infty} \alpha \phi\left(u_{n}, u_{m}\right)<1$, for all $\alpha \in(0,1)$. Then F has a fixed point in \mathbf{U}.

Proof. Let us assume that F has no fixed point, so $d_{\phi}(u, F u)>0$ for any $u \in \mathbf{U}$. Since $F u \in \mathcal{K}(\mathbf{U})$ for any $u \in \mathbf{U}, I_{1}^{u}$ is non empty. If $v=u$ then $u \in F u$, which is a contradiction. Hence for all $u \in \mathbf{U}$, there exists $v \in F u$ with $u \neq v$ such that

$$
\begin{equation*}
d_{\phi}(u, v) \leq d_{\phi}(u, F u) \tag{20}
\end{equation*}
$$

Let us consider an arbitrary point $u_{0} \in \mathbf{U}$. From (20), by using the analogous procedure as in Theorem 9, we obtain the existence of a Cauchy sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ such that $u_{n+1} \in F u_{n}$, $u_{n+1} \neq u_{n}$, satisfying

$$
d_{\phi}\left(u_{n}, u_{n+1}\right)=d_{\phi}\left(u_{n}, F u_{n}\right)
$$

and

$$
d_{\phi}\left(u_{n}, F u_{n}\right) \leq \eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right) d_{\phi}\left(u_{n-1}, u_{n}\right), \quad \eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right)<1
$$

Since \mathbf{U} is complete, there exists $u \in \mathbf{U}$ such that $u_{n} \rightarrow u$. By (i), we obtain

$$
0 \leq d_{\phi}(u, F u) \leq \lim _{n \rightarrow \infty} \inf d_{\phi}\left(u_{n}, F u_{n}\right)=0
$$

By the closedness of $F u$, we have $u \in F u$, which contradicts our assumption that F has no fixed point.

Lemma 2. Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space. Then for any $u \in \mathbf{U}$ and $\alpha>1$, there exists an element $x \in \mathbf{X}$, where $\mathbf{X} \in \mathcal{C} \mathcal{L B}(\mathbf{U})$ such that

$$
\begin{equation*}
d_{\phi}(u, x) \leq \alpha d_{\phi}(u, \mathbf{X}) \tag{21}
\end{equation*}
$$

Proof. Let us suppose that $d_{\phi}(u, \mathbf{X})=0$ then $u \in \mathbf{X}$, since \mathbf{X} is a closed subset of \mathbf{U}. Further, let us suppose that $x=u$, so (21) holds. Now, suppose that $d_{\phi}(u, \mathbf{X})>0$ and choose

$$
\begin{equation*}
\epsilon=(\alpha-1) d_{\phi}(u, \mathbf{X}) \tag{22}
\end{equation*}
$$

Then using the definition of $d_{\phi}(u, \mathbf{X})$, there exists $x \in \mathbf{X}$ such that

$$
\begin{equation*}
d_{\phi}(u, x) \leq d_{\phi}(u, \mathbf{X})+\epsilon, \quad \text { where } \epsilon>0 \tag{23}
\end{equation*}
$$

By putting (22) in (23), we get

$$
d_{\phi}(u, x) \leq \alpha d_{\phi}(u, \mathbf{X})
$$

Theorem 10. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space and $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$ be a multi-valued mapping satisfying

$$
\begin{equation*}
d_{\phi}(v, F v) \leq \eta\left(d_{\phi}(u, v)\right) d_{\phi}(u, v), \text { for all } u \in \mathbf{U} \text { and } v \in F u \tag{24}
\end{equation*}
$$

where $\eta:(0, \infty) \rightarrow[0,1)$ such that

$$
\begin{equation*}
\lim \sup _{s \rightarrow t^{+}} \eta(s)<1, \text { for all } t \in[0, \infty) \tag{25}
\end{equation*}
$$

Moreover, let us suppose that $\lim _{n, m \rightarrow \infty} \alpha \phi\left(u_{n}, u_{m}\right)<1$, for all $\alpha \in(0,1)$. Then
(i) There exists an orbit $\left\{u_{n}\right\}_{n=0}^{\infty}$ of F for each $u_{0} \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$ for $u \in \mathbf{U}$;
(ii) u is a fixed point of F, if and only if the function $f(u)=d_{\phi}(u, F u)$ is F-orbitally lower semi-continuous at u.

Proof. Let us assume $u_{0} \in \mathbf{U}$ and choose $u_{1} \in F u_{0}$, since $F u_{0} \neq 0$. If $u_{0}=u_{1}$, then u_{0} is a fixed point of F. Let $u_{0} \neq u_{1}$, by taking $\alpha=\frac{1}{\sqrt{\eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)}}$, it follows from Lemma 2 that there exists $u_{2} \in F u_{1}$ such that

$$
d_{\phi}\left(u_{1}, u_{2}\right) \leq \frac{1}{\sqrt{\eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)}} d_{\phi}\left(u_{1}, F u_{1}\right) .
$$

Continuing in this fashion, we produce a sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ of points in \mathbf{U} such that $u_{n+1} \in F u_{n}$ and

$$
\begin{equation*}
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \frac{1}{\sqrt{\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right)}} d_{\phi}\left(u_{n}, F u_{n}\right) \tag{26}
\end{equation*}
$$

Now assume that $u_{n-1} \neq u_{n}$, for otherwise u_{n-1} is fixed point of F. Using (24), it follows from (26) that

$$
\begin{align*}
d_{\phi}\left(u_{n}, u_{n+1}\right) & \leq \sqrt{\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right)} d_{\phi}\left(u_{n-1}, u_{n}\right) \tag{27}\\
& <d_{\phi}\left(u_{n-1}, u_{n}\right)
\end{align*}
$$

Hence $\left\{d_{\phi}\left(u_{n}, u_{n+1}\right)\right\}$ is a decreasing sequence, so it is converges to some non-negative real number. Let a be the limit of $\left\{d_{\phi}\left(u_{n}, u_{n+1}\right)\right\}$. Clearly, $a=0$, for otherwise by taking limits in (27), we obtain $a \leq \sqrt{c} a$, where $c=\lim \sup _{s \rightarrow a^{+}} \eta(s)$. From (27), we have

$$
\begin{aligned}
& d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \sqrt{\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right)} \sqrt{\eta\left(d_{\phi}\left(u_{n-2}, u_{n-1}\right)\right)} d_{\phi}\left(u_{n-2}, u_{n-1}\right) \ldots \\
&\left.\ldots \leq \sqrt{\eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right)} \cdots \sqrt{\eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)}\right] d_{\phi}\left(u_{0}, u_{1}\right)
\end{aligned}
$$

From (25), we can choose $\delta>0$ and $\alpha \in(0,1)$ such that

$$
\eta(t)<\alpha^{2}, \text { for } t \in(0, \delta) .
$$

Let N be such that $d_{\phi}\left(u_{n-1}, u_{n}\right)<\delta$ for $n \geq N$. From (27), we have

$$
\begin{aligned}
d_{\phi}\left(u_{n}, u_{n+1}\right) & \leq \alpha d_{\phi}\left(u_{n-1}, u_{n}\right) \leq \ldots \\
& \leq \alpha^{n-N+1} d_{\phi}\left(u_{N-1}, u_{n}\right)
\end{aligned}
$$

Hence from the inequality (27), we get

$$
\begin{align*}
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq & \alpha^{n-N+1}\left[\sqrt{\eta\left(d_{\phi}\left(u_{N-2}, u_{N-1}\right)\right)} \cdots \sqrt{\eta\left(d_{\phi}\left(u_{0}, u_{1}\right)\right)}\right] d_{\phi}\left(u_{0}, u_{1}\right) \\
& <\alpha^{n-N+1} d_{\phi}\left(u_{0}, u_{1}\right) \tag{28}
\end{align*}
$$

Therefore from the triangle inequality and (28) for any $m \in \mathbb{N}$ with $m>n$, we have

$$
\begin{aligned}
d_{\phi}\left(u_{n}, u_{n+m}\right) \leq & \phi\left(u_{n}, u_{n+m}\right) d_{\phi}\left(u_{n}, u_{n+1}\right)+\phi\left(u_{n}, u_{n+m}\right) \phi\left(u_{n+1}, u_{n+m}\right) d_{\phi}\left(u_{n+1}, u_{n+2}\right)+ \\
& \ldots \cdots+\phi\left(u_{n}, u_{n+m}\right) \phi\left(u_{n+1}, u_{n+m}\right) \ldots \phi\left(u_{n+m-1}, u_{n+m}\right) \\
& d_{\phi}\left(u_{n+m-1}, u_{n+m}\right), \\
d_{\phi}\left(u_{n}, u_{n+m}\right) \leq & \begin{array}{l}
\alpha^{n-N+1}\left[\phi\left(u_{n}, u_{n+m}\right)+\alpha^{2} \phi\left(u_{n}, u_{n+m}\right) \phi\left(u_{n+1}, u_{n+m}\right)+\cdots \cdots+\alpha^{m-n-1}\right. \\
\\
\left.\phi\left(u_{n}, u_{n+m}\right) \phi\left(u_{n+1}, u_{n+m}\right) \ldots \phi\left(u_{n+m-1}, u_{n+m}\right)\right] d_{\phi}\left(u_{0}, u_{1}\right),
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
d_{\phi}\left(u_{n}, u_{n+m}\right) \leq & \alpha^{n-N+1}\left[\phi\left(u_{1}, u_{n+m}\right) \phi\left(u_{2}, u_{n+m}\right) \ldots \phi\left(u_{n}, u_{n+m}\right)+\phi\left(u_{1}, u_{n+m}\right)\right. \\
& \left.\phi\left(u_{2}, u_{n+m}\right) \ldots \phi\left(u_{n+m-1}, u_{n+m}\right)\right] d_{\phi}\left(u_{0}, u_{1}\right)
\end{aligned}
$$

Since $\lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right) \alpha<1$, the series $\sum_{j=1}^{\infty} \alpha^{j} \prod_{i=1}^{j} \phi\left(u_{j}, u_{n+m}\right)$ converges by the ratio test for each $m \in \mathbb{N}$. Let

$$
S=\sum_{j=1}^{\infty} \alpha^{j} \prod_{i=1}^{j} \phi\left(u_{i}, u_{n+m}\right), \quad S_{n}=\sum_{j=1}^{n} \alpha^{j} \prod_{i=1}^{j} \phi\left(u_{i}, u_{n+m}\right) .
$$

Thus for $m \in \mathbb{N}$ with $m>n$, the above inequality implies

$$
d_{\phi}\left(u_{n}, u_{n+m}\right) \leq \alpha^{n-N+1}\left[S_{m-1}-S_{n}\right]
$$

By letting $n \rightarrow \infty$, we conclude that $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbf{U}. As \mathbf{U} is complete, there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. Since $u_{n} \in F u_{n-1}$, it follows from (24) that

$$
\begin{aligned}
d_{\phi}\left(u_{n}, F u_{n}\right) \leq & \eta\left(d_{\phi}\left(u_{n-1}, u_{n}\right)\right) d_{\phi}\left(u_{n-1}, u_{n}\right) \\
& <d_{\phi}\left(u_{n-1}, u_{n}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, from the above inequality we have

$$
\lim _{n \rightarrow \infty} d_{\phi}\left(u_{n}, F u_{n}\right)=0
$$

Suppose $f(u)=d_{\phi}(u, F u)$ is F orbitally semi-continuous at u,

$$
d_{\phi}(u, F u)=f(u) \leq \lim _{n \rightarrow \infty} \inf f\left(u_{n}\right)=\lim _{n \rightarrow \infty} \inf d_{\phi}\left(u_{n}, F u_{n}\right)=0
$$

Hence $u \in F u$, since $F u$ is closed. Conversely let us suppose that u is a fixed point of $F(u \in F u)$, then $f(u)=0 \leq \lim _{n \rightarrow \infty} \inf f\left(u_{n}\right)$. Hence f is F orbitally semi-continuous at u.

Remark 2. Theorem 10 improves Theorem 1, since F may take values in $\mathcal{C} \mathcal{L B}(\mathbf{U})$. Since $d_{\phi}(v, F v) \leq$ $H(F u, F v)$ for $v \in F u$. We have the following corollary.

Corollary 2. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space and $F: \mathbf{U} \rightarrow \mathcal{C} \mathcal{L B}(\mathbf{U})$ be such that

$$
\mathbf{H}_{\Phi}(F u, F v) \leq \eta\left(d_{\phi}(u, v)\right) d_{\phi}(u, v), \text { for each } u \in \mathbf{U} \text { and } v \in F u
$$

where $\eta:(0, \infty) \rightarrow(0,1]$ is such that

$$
\lim \sup _{s \rightarrow t^{+}} \eta(s)<1, \text { for all } t \in[0, \infty)
$$

Then
(i) there exist an orbit $\left\{u_{n}\right\}_{n=0}^{\infty}$ of F for each $u_{0} \in \mathbf{U}$ and $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$;
(ii) u is a fixed point of F, if and only if the function $f(u)=d_{\phi}(u, F u)$ is F-orbitally lower semi-continuous at u.

Remark 3. Theorem 7 extends Nadler's fixed point theorem when \mathbf{U} is the extended b-metric space.
Remark 4. Theorem 8 is a generalization of 7. The following example shows that generalization.

Example 2. Let $\mathbf{U}=\left\{\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots\right\} \cup\{0,1\}$ and $d_{\phi}: \mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ be a mapping defined as $d_{\phi}\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{2}\right)^{2}$, for $u_{1}, u_{2} \in \mathbf{U}$, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ is a mapping defined by $\phi\left(u_{1}, u_{2}\right)=u_{1}+u_{2}+2$. Then $\left(\mathbf{U}, d_{\phi}\right)$ is a complete extended b-metric space. Define $F: \mathbf{U} \rightarrow \mathcal{C L B}(\mathbf{U})$ as

$$
F(u)= \begin{cases}\left\{\frac{1}{2^{n+1}}, 1\right\}, & u=\frac{1}{2^{n}}, n=0,1,2, \ldots \\ \left\{0, \frac{1}{2}\right\}, & u=0 .\end{cases}
$$

In a sense of Theorem 7, clearly Fis not contractive, in fact

$$
\mathbf{H}_{\Phi}\left(F\left(\frac{1}{2^{n}}\right), F(0)\right)=\frac{1}{2} \geq \frac{1}{2^{2 n}}=d_{\phi}\left(u_{1}, u_{2}\right), \quad \text { for } n=1,2,3, \ldots
$$

On the other way,

$$
f(u)= \begin{cases}\left(\frac{1}{2^{n+1}}\right)^{2}, & u=\frac{1}{2^{n}}, n=1,2, \ldots \\ u, & u=0,1\end{cases}
$$

Hence f is continuous, so it is clearly lower semi-continuous. Furthermore there exists $v \in I_{0.7}^{u}$ for any $u \in \mathbf{U}$ such that

$$
d_{\phi}(v, F(v))=\frac{1}{4} d_{\phi}(u, v) .
$$

Thus the existence of a fixed point follows from Theorem 8. Hence Theorem 8 is a generalization of Theorem 7.
Remark 5. Theorem 9 is an extension of Theorem 8. In fact, let us consider a constant map $\eta=c$, where $0<c<q$. Thus the hypotheses of Theorem 9 are fulfilled. On the other hand, there exists a map which fulfills the hypotheses of Theorem 9, but does not fulfill the hypotheses of Theorem 8. See the following example:

Example 3. Let $\mathbf{U}=[0,1]$ and $d_{\phi}: \mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ be a mapping defined as $d_{\phi}\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{2}\right)^{2}$, for $u_{1}, u_{2} \in \mathbf{U}$, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ is a mapping defined by $\phi\left(u_{1}, u_{2}\right)=u_{1}+u_{2}+2$. Then $\left(\mathbf{U}, d_{\phi}\right)$ is a complete extended b-metric space. Let $F: \mathbf{U} \rightarrow \mathcal{C L B}(\mathbf{U})$ be such that

$$
F(u)= \begin{cases}\left\{\frac{1}{2^{2}}\right\}, & u \in\left[0, \frac{15}{32}\right) \cup\left(\frac{15}{32}, 1\right], \\ \left\{\frac{17}{96^{2}}, \frac{1}{4}\right\}, & u=\frac{15}{32} .\end{cases}
$$

Let $q=\frac{3}{4}$ and let $\eta:[0, \infty) \rightarrow[0, q)$ be of the form

$$
\eta(t)= \begin{cases}\frac{3}{2} t, & \text { for } t \in\left[0, \frac{7}{24}\right) \cup\left(\frac{7}{24}, \frac{1}{2}\right), \\ \frac{425}{756}, & \text { for } t=\frac{7}{24}, \\ \frac{1}{2}, & \text { for } t=\left[\frac{1}{2}, \infty\right) .\end{cases}
$$

Since

$$
f(u)= \begin{cases}\left(u-\frac{1}{2} u^{2}\right)^{2}, & \text { for } u \in\left[0, \frac{15}{32}\right) \cup\left(\frac{15}{32}, 1\right] \\ \frac{49}{1024}, & \text { for } u=\frac{1}{32} .\end{cases}
$$

Obviously f is a lower semi-continuous. Further, for any $u \in\left[0, \frac{15}{32}\right) \cup\left(\frac{15}{32}, 1\right]$ and $v=\frac{1}{2} u^{2}$, we have

$$
q d_{\phi}(u, v) \leq d_{\phi}(u, F u),
$$

and

$$
d_{\phi}(v, F v) \leq \eta\left(d_{\phi}(u, v)\right) d_{\phi}(u, v) .
$$

Of course these both inequalities hold for $u=\frac{15}{32}$ and $v=\frac{17}{96}$. Hence all the hypotheses of Theorem 9 are satisfied and the fixed point of F is $\{0\}$. Next let us suppose that, if $q \in\left(0, \frac{3}{4}\right]$ and $p \in(0,1)$ is such that $p<q$, then, for $u=1$, we have $v=1 / 2$ and consequently

$$
d_{\phi}\left(\frac{1}{2}, F\left(\frac{1}{2}\right)\right)>p d_{\phi}\left(1, \frac{1}{2}\right)
$$

If $q \in(3 / 4,1)$ and $p \in(0,1)$ is such that $p<q$, then for $u=\frac{15}{32}$, we have $F u=\left\{\frac{17}{96}, \frac{1}{4}\right\}$. Thus, in the case $v=\frac{17}{96}$, we obtain

$$
q d_{\phi}\left(\frac{15}{32}, \frac{17}{96}\right)>d_{\phi}\left(\frac{15}{32}, F\left(\frac{15}{32}\right)\right)
$$

and, in the case $v=\frac{1}{4}$, we have

$$
d_{\phi}\left(\frac{1}{4}, F\left(\frac{1}{4}\right)\right)>p d_{\phi}\left(\frac{15}{32}, \frac{1}{4}\right)
$$

Hence hypotheses of Theorem 8 are not fulfilled.
Remark 6. Theorem 10 is an extension of (Theorem 2.1, [10]) for the case when F is a multi-valued mapping from \mathbf{U} to $\mathcal{C} \mathcal{L B}(\mathbf{U})$ and hence generalizes Theorems 4 and 5 and also the results of [2,5,7,22].

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.
Funding: The fourth author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pompeiu, D. Sur la continuite des fonctions de variables complexes. Ann. Fac. Sci. Toulouse 1905, 7, 264-315.
2. Nadler, S.B., Jr. Multi-valued contraction mappings. Not. Am. Math. Soc. 1967, 14, 930. [CrossRef]
3. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff Metric and Nadler's Fixed Point Theorem on Partial Metric Spaces. Topol. Appl. 2012, 159, 3234-3242. [CrossRef]
4. Aydi, H.; Abbas, M.; Vetro, C. Common Fixed points for multivalued generalized contractions on partial metric spaces. RACSAM 2014, 108, 483-501. [CrossRef]
5. Reich, S. Fixed points of contractive functions. Boll. Unione Mater. Ital. 1972, 4, 26-42.
6. Mizoguchi, N.; Takahashi, W. Fixed point theorem for multivalued mappings on complete metric space. J. Math. Anal. Appl. 1989, 141, 177-188. [CrossRef]
7. Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 2006, 317, 103-112. [CrossRef]
8. Hicks, T.L.; Rhoades, B.E. A Banach type fixed point theorem. Math. Jpn. 1979, 24, 327-330.
9. Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132-139. [CrossRef]
10. Kamran, T. Mizoguchi-Takahashi's type fixed point theorem. Comput. Math. Appl. 2009, 57, 507-511. [CrossRef]
11. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26-37.
12. Bourbaki, N. Topologie Generale; Hermann: Paris, France, 1974.
13. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5-11.
14. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mater. Fis. Univ. Modena 1998, 46, 263-276.
15. Kamran, T.; Samreen, M.; UL Ain, Q. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [CrossRef]
16. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [CrossRef]
17. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics 2018, 6, 320. [CrossRef]
18. Kiran, Q.; Alamgir, N.; Mlaiki, N.; Aydi, H. On some new fixed point results in complete extended b-metric spaces. Mathematics 2019, in press.
19. Samreen, M.; Kamran, T.; Postolache, M. Extended b-metric space, extended b-comparison function and nonlinear contractions. Univ. Politeh. Buchar. Sci. Bull. Ser. A 2018, 4, 21-28.
20. Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17-30. [CrossRef]
21. Subashi, L.; Gjini, N. Some results on extended b-metric spaces and Pompeiu-Hausdorff metric. J. Progres. Res. Math. 2017, 12, 2021-2029.
22. Suzuki, T. Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 2007. [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
