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Abstract: Let G = (V(G), E(G)) be a connected graph. An ordered set W ⊂ V(G) is a resolving set
for G if every vertex of G is uniquely determined by its vector of distances to the vertices in W. The
metric dimension of G is the minimum cardinality of a resolving set. In this paper, we characterize
the graphs of metric dimension n− 3 by constructing a special distance matrix, called metric matrix.
The metric matrix makes it so a class of graph and its twin graph are bijective and the class of graph is
obtained from its twin graph, so it provides a basis for the extension of graphs with respect to metric
dimension. Further, the metric matrix gives a new idea of the characterization of extremal graphs
based on metric dimension.
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1. Introduction

Let G = (V(G), V(E)) be a simple connected graph in this paper. The distance between
two vertices u, v ∈ V(G), denoted by d(u, v), is the length of a shortest path between u and
v in G. The diameter of G is denoted by d(G) and d(G) = max{d(u, v)|u, v ∈ V(G)}. Let
W = {w1, w2, · · · , wm} ⊆ V(G) be an ordered set of G, the representation of v ∈ V(G) with respect
to W is the vector r(v|W) = (d(v, w1), d(v, w2), · · · , d(v, wm)). We say that W is a resolving set of G if
r(v|W) 6= r(u|W) for every pair of distinct vertices u, v ∈ V(G). A resolving set of minimum cardinality
is called a metric basis of G. The metric dimension of a graph G, denoted by dim(G), is the cardinality
of a metric basis. For S, W0 ⊆ V(G), we say that the set W0 resolves S if r(v|W0) 6= r(u|W0) for every
pair of distinct vertices u, v ∈ S. Moreover, for distinct vertices u, v, w ∈ V(G), if d(w, u) 6= d(w, v),
then we say that w resolves u and v.

The concepts of resolving set of a graph was first introduced by Slater [1] in 1975 and
independently by Harary and Melter [2] in 1976. The metric dimension of a graph has been widely
studied and a large number of related concepts have been extended (see [3–11]). As a parameter of a
graph, it has been applied to lots of practical problems, such as robot navigation [12], connected joins
in graphs and combinatorial optimization [13], and pharmaceutical chemistry [14].

There have been lots of results about the metric dimension of graphs. Some researchers focus on
characterizations of metric dimension of graph families. For instance, the metric dimension of trees,
cycles and wheels was considered in [14,15], respectively. Moreover, the metric dimension of some
constructions of graphs was given. For example, the metric dimension of cartesian products of graphs
and corona product of graphs was obtained in [16,17], respectively, the effect of vertex or edge deletion
on the metric dimension of graphs was considered in [18] and the metric dimensions of symmetric
graphs obtained by rooted product were given in [19].
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In addition, some graphs with a fixed value of metric dimension have been characterized. Let
G be a graph on n-vertex. In [14], the following conclusions were given: (1) G has metric dimension
1 if and only if G = Pn, where Pn denotes a path on n vertices; (2) G has metric dimension n− 1 if
and only if G = Kn, where Kn denotes a complete graph on n vertices; and (3) all graphs G of metric
dimension n− 2 were characterized (see Lemma 8). In [20,21], all the graphs of metric dimension n− 3
and n− d are characterized, respectively, where d is the diameter of G. Some other results on metric
dimension of a graph are considered in [22–25].

It is interesting to extend a low-order graph to a high-order graph based on the given rulers. In this
paper, we give a novel and effective method on the extension of graphs with respect to metric dimension
and characterize the graphs with metric dimension n− 3 via the method. Hernando et al. [21] gave an
idea of using the twin graph (Definition 1) to characterize the graphs with dimension n− r, that is, to
determine all the twin graphs of these graphs and extend them to corresponding graphs. We define
the metric matrix of a graph (Definition 2) to determine and extend the twin graphs, which is different
from that used by Jannesari and Omoomi [20] and Hernando et al. [21]. Since the metric matrix makes
that a class of graph and its twin graph are bijective, the method makes the proof concise and readable.
In addition, it has certain applicability to some other problems of metric dimension. For instance, it can
be used to consider the graphs with dimension n− 4 and even n− r for r ≥ 5. More importantly, it
can be used as an effective basis for the extension of graphs with respect to metric dimension.

The remainder of this paper is organized as follows. In Section 2, we give some preliminaries,
including definitions, symbols and results used in this paper. In Section 3, we characterize all extremal
graphs of dim(G) = n− 3 and diameter 2 by constructing a special distance matrix and discussing the
structure of graphs.

2. Preliminaries

Let n(G) and G[S] denote the order and the subgraph induced by a subset S ⊆ V(G) of a graph G,
respectively. We say that S is an independent set of G if every pair of vertices in S are nonadjacent in G,
and S is a clique of G if every pair of vertices in S are adjacent in G. The neighborhood of u ∈ V(G) is
denoted by N(u) and N(u) = {v|uv ∈ E(G)}. Let N[u] = N(u) ∪ {u}. We use deg(u), δ(G) to denote
the degree of v and the minimum degree of G, respectively, where deg(u) = |N(u)|. A pair of vertices
u, v ∈ V(G) are twins in G if N(u) = N(v)(uv /∈ E(G)) or N[u] = N[v](uv ∈ E(G)). We say that a
subset Vi of vertices is a twin set of G if its vertices are pairwise twins in G, and a maximal twin set is a
twin class. Clearly, if Vi is a twin set of a graph G, then it is an independent set or a clique of G. The
circumference of a graph G, denoted by c(G), is the length of a longest circle of G.

Definition 1. The twin graph of a graph G, denoted by GT, is the subgraph induced by {v1, v2, . . . , vk}, that is,
GT = G[{v1, v2, . . . , vk}], where vi ∈ Vi for 1 ≤ i ≤ k and V1, V2, . . . , Vk are the all distinct twin classes of G.

Definition 2. For a graph G, let V(GT) = {v1, v2, . . . , vk} and let Vi be the twin class of G with vi ∈ Vi for
1 ≤ i ≤ k, the metric matrix of G is denoted by D = [dij]k×k and

dij =


d(vi, vj), i 6= j,
d(vi, v′i), i = j and |Vi| ≥ 2,

0, i = j and |Vi| = 1,

where v′i ∈ Vi and v′i 6= vi.

Let di denote dii in the following sections. Since Vi is an independent set or a clique of G, we have
di = 0 or 1 or 2. The metric matrix determines different classes of graphs with the same twin graph.

The graph G1 + G2 is obtained from G1 and G2 by adding the edges from every vertex of G1 to
every vertex of G2, which is represented as in Figure 1 in this paper. The union G1 ∪ G2 of G1 and
G2 is the graph whose vertex set and edge set are V(G1) ∪ V(G2) and E(G1) ∪ E(G2), respectively.
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The graph G− v is obtained from G by deleting the vertex v. The graph G− e is obtained from G by
deleting the edge e. Let Ks be the complement of Ks and let K1,m denote a star with m + 1 vertices.

1
G

2
G

Figure 1. G1 + G2.

Unless explicitly noted during the rest of this paper, let Vi be the twin classes of G with vi ∈ Vi,
and if |Vi| ≥ 2, then assume that v′i ∈ Vi and v′i 6= vi.

Lemma 1 ([20]). For a graph G, we have n(GT)− dim(GT) ≤ n(G)− dim(G).

Lemma 2. For a graph G, if vi and vj are twins in GT, then at least one of Vi and Vj have cardinality at least 2.
Moreover, if |Vi| = s ≥ 2, then G[Vi] = Ks when d(vi, vj) = 1 and G[Vi] = Ks when d(vi, vj) = 2.

Proof. Since vi and vj are twins in GT, we have d(u, vi) = d(u, vj) for every u ∈ V(G) \ (Vi ∪ Vj).
Moreover, by the definition of GT, we obtain that vi and vj are not twins in G, so there is x /∈ {vi, vj}
and x ∈ Vi or x ∈ Vj such that d(x, vi) 6= d(x, vj). Thus, at least one of Vi and Vj have cardinality at
least 2. Assume that x ∈ Vi, that is, |Vi| = s ≥ 2. If d(vi, vj) = 1, then d(x, vj) = 1, so d(x, vi) = 2, that
is, G[Vi] = Ks. Otherwise, d(vi, vj) = 2, then d(x, vi) = 1, that is, G[Vi] = Ks.

Corollary 1. For a graph G, if S = {vi1 , vi2 , . . . , vit} is a twin set in GT, then we have that if G[S] = Kt, then
all but one of the sets Vi1 , Vi2,. . . ,Vit have cardinality at least 2 and induce an empty graph, and if G[S] = Kt,
then all but one of the sets Vi1 , Vi2,. . . ,Vit have cardinality at least 2 and induce an complete graph.

Lemma 3 ([21]). Let W be a metric basis of G and let S ⊆ V be a nonempty subset. If S is a twin set of G, then
at most one of the vertices in S is not in W and the set (W \ S) ∪ {s} resolves the set V(G)\S for each s ∈ S.

Let GT and D be the twin graph and the metric matrix of G, respectively. Let S1 = {v′i | vi ∈
V(GT) and di > 0}, S2 = {vi ∈ V(GT) | di = 0}, and U be an arbitrary subset of S2. The matrix DU
is obtained from D by deleting the corresponding rows of all vertices in U and the corresponding
columns of all vertices in S2\U. We can get that r(v | S1 ∪U) = DU(v) for each v ∈ V(GT) \U, where
DU(v) is the row vectors corresponding to v in DU . Moreover, each subset of S2 corresponds to a matrix
DU . Let D = {DU : U ⊆ S2} be the set constituting of all matrix DU . We have the following result.

Lemma 4. For a graph G, dim(G) = n(G)− r if and only if for each U ⊆ S2 the matrix DU has at most r
different row vectors, and there exists a subset U0 ⊆ S2 such that DU0 has exactly r different row vectors.

Proof. Suppose that W and Vi are a metric basis and a twin class of G, respectively. By Lemma 3,
at most one of the vertices in Vi is not in W. Let W0 be a set obtained from W by replacing vi with v for
each vertex v /∈W, where v ∈ Vi. Then W0 is a metric basis of G, and we get that V(G)\W0 ⊆ V(GT)

and S1 ⊆W0. Moreover, we have that (W0 ∩ S2) ∪ S1 resolves V(G) \W0 by Lemma 3.
Necessity. Since dim(G) = n(G)− r, there are exactly r vertices in V(GT) not in W0. Thus the set

S1 ∪U resolves at most r vertices in V(GT)\U for each subset U, which implies that each DU ∈ D has
at most r different row vectors. Let U0 = W0 ∩ S2, then S1 ∪U0 resolves exactly r vertices in V(GT)\U0.
Thus, DU0 has exactly r different row vectors.

Sufficiency. Since each DU ∈ D has at most r different row vectors, S1 ∪ U resolves at most
r vertices in V(GT)\U for each subset U ⊆ S2, then S1 ∪ (W0 ∩ S2) resolves at most r vertices in
V(GT)\(W0 ∩ S2). Thus, dim(G) ≥ n − r. In addition, since there exists DU0 ∈ D with exactly r
different row vectors, S1 ∪ (W0 ∩ S2) resolves at least r vertices in V(GT)\(W0 ∩ S2), so dim(G) ≤ n− r.
Thus, dim(G) = n− r.
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Corollary 2. For a graph G, we have n(G)− dim(G) ≤ n(GT).

Let Di1i2···ik be the matrix consisting of the i1, i2,· · · ,ik columns of the metric matrix D of G.
Let pi1i2···ik be the number of different row vectors without zero element in Di1i2···ik .

Corollary 3. If pi1i2···ik = r, then dim(G) ≤ n(G)− r.

Lemma 5. Let G be a graph of dim(G) = n(G)− r. If the set T is a twin class of GT with |T| = t ≥ 2, then
r = t if n(GT) = t, and r ≥ t + 1 if n(GT) > t.

Proof. Suppose that T = {v1, v2, · · · , vt}. Then G[T] ∼= Kt or Kt. By Corollary 1, assume that |Vi| ≥ 2
for 1 ≤ i ≤ t− 1, then we have that d(vi, v′i) = 2, d(vj, v′i) = 1 when G[T] ∼= Kt, and d(vi, v′i) = 1,
d(vj, v′i) = 2 when G[T] ∼= Kt for 1 ≤ i < j ≤ t. Let W0 = {v′1, v′2, . . . , v′t−1}, then W0 resolves the set
{v1, v2, · · · , vt}. Thus, we have r ≥ t. Since r = n(G)− dim(G) ≤ n(GT) by Corollary 2, if n(GT) = t,
then r = t. If n(GT) > t, then there exists vt+1 ∈ V(GT) \ T. Since vt+1 /∈ T, there is x ∈ V(GT) such
that d(vt+1, x) 6= d(vi, x) for all i ∈ {1, 2, · · · , t}. If x ∈ T, then W0 resolves the set {v1, v2, · · · , vt+1}.
Otherwise, W0 ∪ {x} resolves the set {v1, v2, · · · , vt+1}. Therefore, r ≥ t + 1.

Corollary 4. For a graph G, if GT = K1,m or GT = Km, then dim(G) = n(G)− n(GT).

Lemma 6 ([14]). Let G be a graph of order n(G) > 2 and diameter d, then dim(G) ≤ n(G)− d.

Lemma 7 ([14]). Let G be graph of order n(G) > 2. Then dim(G) = n(G)− 1 if and only if G = Kn.

Lemma 8 ([14]). Let G be graph of order n(G) ≥ 4. Then dim(G) = n(G) − 2 if and only if G = Ks,t

(s, t ≥ 1), G = Ks + Kt (s ≥ 1, t ≥ 2), or G = Ks + (K1 ∪ Kt) (s, t ≥ 1).

Lemma 9. Let G be a graph with dim(G) = n(G)− 3 and a metric basis W. Then there exists a set W0 ⊆W
and |W0| ≤ 2 such that it resolves V(G) \W.

Proof. Suppose that V(G) \W = {v1, v2, v3}. Then there is a vertex w1 ∈ W such that d(w1, v1) 6=
d(w1, v2). If d(w1, vi) 6= d(w1, v3) for i ∈ {1, 2}, then w1 resolves {v1, v2, v3}. Let W0 = {w1},
then we are done. Otherwise, assume that d(w1, v1) = d(w1, v3), then there is w2 ∈ W such that
d(w2, v1) 6= d(w2, v3). Thus, {w1, w2} resolves {v1, v2, v3}. Let W0 = {w1, w2}, then we are done.

3. Extremal Graphs G of dim(G) = n(G)− 3

By Lemma 6, if dim(G) = n(G)− 3, then d(G) ≤ 3. Moreover, if d(G) = 1, then dim(G) = n(G)− 1.
Thus, dim(G) = n(G)− 3 only if d(G) = 2 or 3. Since all the graphs of dim(G) = n(G)− d(G) were
characterized in [21], we only need to consider the graphs of d(G) = 2.

In the following, unless noted otherwise, let D, W be the metric matrix and a resolving set of G,
respectively. Let eij = vivj and Bm = Km or Km .

Lemma 10. Let G be a graph of d(G) = 2 and n(GT) = 3. Then dim(G) = n(G) − 3 if and only if
G = (Ks ∪ Br) + Kt (s, r ≥ 2, t ≥ 1) or G = (Ks ∪ Br) + Kt (s, t ≥ 2, r ≥ 1) or G = (Ks + Kt) + Br (s, t ≥
2, r ≥ 1).

Proof. Suppose that V(GT) = {v1, v2, v3}, there are two cases to be considered as follows.
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Case 1. GT ∼= P3 = v1v2v3. Since v1 and v3 are twins in GT and e13 /∈ E(GT), by Lemma 2, we may
assume that d1 = 1, then

D =

 1 1 2
1 d2 1
2 1 d3

 .

Since there are at most three different row vectors in D, by Lemma 4, dim(G) = n(G) − 3 if and
only if there are exactly three different row vectors in some DU , which implies that (1) d2 = 0 or 1,
d3 = 1 or 2, or (2) d2 = 2, d3 = 0 or 1 or 2. Therefore, G = (Ks ∪ Br) + Kt (s, r ≥ 2, t ≥ 1) or
(Ks ∪ Br) + Kt (s, t ≥ 2, r ≥ 1).

Case 2. GT ∼= C3. Since any two vertices in {v1, v2, v3} are twins in GT, by Corollary 1, we may
assume that d1 = d2 = 2, then

D =

 2 1 1
1 2 1
1 1 d3

 .

Since there are at most three different row vectors in D and p12 = 3, by Lemma 4, dim(G) = n(G)− 3
if and only if d3 = 0 or 1 or 2, which implies that G = (Ks + Kt) + Br (s, t ≥ 2, r ≥ 1).

Lemma 11. Let G be a graph of d(G) = 2 and n(GT) = 4. Then dim(G) = n(G)− 3 if and only if G is one
of the graphs in Figure 2, where a small circle denotes K1 (similarly in the following figures).

rK tK

sK

( )2,;1 ³³ rtsg.1 ( )2, ³ts

tK sK

g.3

rK

tK

sB

( )2;1, ³³ trsg.2

sK

tKrK

( )1;2, ³³ rtsg.4

Figure 2. All graphs of d(G) = 2, n(GT) = 4 and dim(G) = n(G)− 3.

Proof. Let V(GT) = {v1, v2, v3, v4}. There are the following cases to be considered depending on the
circumference of GT.

Case 1. GT is acyclic. In such a case, GT ∼= K1,3. There is no graph G with dim(G) = n(G)− 3 by
Corollary 4.

Case 2. c(GT) = 3. Let C3 = v1v2v3v1, we may assume that GT ∼= C3 ∪ e14. Since v2 and v3 are
twins in GT and e23 ∈ E(GT), by Lemma 2, we may assume that d2 = 2, then

D =


d1 1 1 1
1 2 1 2
1 1 d3 2
1 2 2 d4

 .

By Corollary 3, we obtain that d3 6= 2 and d4 6= 1; if not, p23 = 4 or p24 = 4, which contradicts
dim(G) = n(G)− 3. If d3 = 1, then d1 6= 2 and d4 = 0 ; otherwise, p123 = 4 or p234 = 4. By Lemma
4, dim(G) = n(G)− 3 when d3 = 1, d1 = 0 or 1, d4 = 0; or d3 = 0, d1 = 0 or 1 or 2, d4 = 0 or 2. Thus
dim(G) = n(G)− 3 if and only if (1) d1 = 0 or 1, d2 = 2, d3 = 1, d4 = 0, or (2) d1 = 0 or 1 or 2, d2 = 2,
d3 = 0, d4 = 0 or 2, which implies that G is the graph g.1 or g.2 in Figure 2.

Case 3. c(GT) = 4. Let C4 = v1v2v3v4v1 is a longest circle of GT.
Case 3.1. GT ∼= C4. Since the pairs of vertices v1, v3 and v2, v4 are twins in GT, respectively, we

may suppose that d1 = d2 = 1 by Lemma 2, then
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D =


1 1 2 1
1 1 1 2
2 1 d3 1
1 2 1 d4

 .

By Corollary 3, we have that d3 = d4 = 0; if not, P123 = 4 or P124 = 4. Since dim(G) = n(G)− 3
when d3 = d4 = 0 by Lemma 4, dim(G) = n(G)− 3 if and only if d1 = d2 = 1 and d3 = d4 = 0, which
implies that G is the graph g.3 in Figure 2.

Case 3.2. GT ∼= C4 ∪ e13. Since the pairs of vertices v1, v3 and v2, v4 are twins in GT, respectively,
we may assume that d1 = 2, d2 = 1 by Lemma 2, then

D =


2 1 1 1
1 1 1 2
1 1 d3 1
1 2 1 d4

 .

By Corollary 3, d3 6= 2 and d4 = 0; if not, P123 = 4 or P124 = 4. Since dim(G) = n(G)− 3 when
d3 = 0 or 1, d4 = 0 by Lemma 4, dim(G) = n(G)− 3 if and only of d1 = 2, d2 = 1, d3 = 0 or 1 and
d4 = 0, which implies that G is the graph g.4 in Figure 2.

Case 3.3. GT ∼= K4. There is no graph G with dim(G) = n(G)− 3 by Corollary 4.

Lemma 12. Let G be a graph of d(G) = 2 and n(GT) = 5. Then dim(G) = n(G)− 3 if and only if G is C5

or one of graphs in Figure 3.

tKrK

sK

g.1 ( )2;1, ³³ trs

sK

tKrK

g.4 ( )1,, ³rts

sK

tKrK

g.2 ( )1,, ³rts

g.5 ( )2³s

sK

tK

rKsK

g.3 ( )2,1, ³³ trs

sK

tK

rK

g.6 ( )1;2, ³³ trs

Figure 3. All graphs of d(G) = 2, n(GT) = 5 and dim(G) = n(G)− 3.

Proof. Let V(GT) = {v1, v2, v3, v4, v5}. There are the following cases to be considered depending on
the circumference of GT.

Case 1. GT is acyclic. In such a case, GT ∼= K1,4. There is no graph G with dim(G) = n(G)− 3 by
Corollary 4.

Case 2. c(GT) = 3. Let C3 = v1v2v3v1 be a longest circle of GT, then GT is isomorphic to the graph
(a) or (b) in Figure 4. Since the pairs of vertices v2, v3 and v4, v5 are twins in GT, respectively, we
may assume that |V2| ≥ 2 and |V4| ≥ 2, then, for graph (a), {v′2, v′4} resolves V(GT), and for graph (b),
{v2, v′4} resolves {v1, v3, v4, v5}, a contradiction.
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4
v

1
v

2
v

3
v

5
v

a

4
v

1
v

2
v

3
v

5
v

b

Figure 4. Graphs of d(G) = 2, n(G) = 5 and c(G) = 3. For a, v4 and v5 are nonadjacent; for b, v4 and
v5 are adjacent.

Case 3. c(GT) = 4. Let C4 = v1v2v3v4v1 be a longest circle of GT. Then v5 is nonadjacent to two
adjacent vertices of C4; otherwise, c(GT) = 5.

Case 3.1. The vertex v5 is exactly adjacent to one vertex of C4. Then GT is isomorphic to the graph
(a) or (b) in Figure 5.

3
v

4
v

1
v

2
v

5
v

a

3
v

4
v

1
v

2
v

5
v

b

Figure 5. Vertex v5 is exactly adjacent to one vertex of C4. For a, v2 and v4 are nonadjacent; for b, v2

and v4 are adjacent.

For Figure 5a, since v2 and v4 are twins in GT, we may assume that d2 = 1, then

D =


d1 1 1 1 1
1 1 1 2 2
1 1 d3 1 2
1 2 1 d4 2
1 2 2 2 d5

 .

By Corollary 3, we have that d1 6= 2, d3 6= 2 and d4 = d5 = 0. Otherwise, if d1 = 2, then p123 ≥ 4;
if d3 = 2, then p23 = 4; and if d4 6= 0 or d5 6= 0, then p245 ≥ 4, which is a contradiction. Since
dim(G) = n(G)− 3 when d1 = 0 or 1, d3 = 0 or 1 and d4 = d5 = 0 by Lemma 4, dim(G) = n(G)− 3 if
and only if G is the graph g.1 in Figure 3.

For Figure 5b, since {v2, v3, v4} is a twin set of GT, by Lemma 5, dim(G) < n(G)− 3. Thus, there
is no G with dim(G) = n(G)− 3.

Case 3.2. The vertex v5 is exactly adjacent to two vertices of C4. Then c(G) = 4 if and only if GT is
isomorphic to the graph (a) or (b) in Figure 6. Since {v1, v3, v5} is a twin set of GT, dim(G) < n(G)− 3
by Lemma 5.

a

3
v

4
v

1
v

2
v

5
v

3
v

4
v

1
v

2
v

5
v

 b

Figure 6. Vertex v5 is exactly adjacent to two vertices of C4. For a, v2 and v4 are nonadjacent; for b, v2

and v4 are adjacent.
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Case 4. c(GT) = 5. Let C5 = v1v2v3v4v5v1 be a longest circle in GT. Since 5 ≤ |E(GT)| ≤ 10, we
consider the five subcases as follows.

Case 4.1. |E(GT)| = 5. We obtain that GT ∼= C5, then

D =


d1 1 2 2 1
1 d2 1 2 2
2 1 d3 1 2
2 2 1 d4 1
1 2 2 1 d5

 .

By Corollary 3, d1 = 0. Otherwise, if d1 = 1, then p12 ≥ 4; and if d1 = 2, then p13 ≥ 4. By the
symmetry of GT, di = 0 (2 ≤ i ≤ 5). Since dim(C5) = 2, dim(G) = n(G)− 3 if and only if G ∼= C5.

Case 4.2. |E(GT)| = 6. We obtain that c(GT) = 5 if and only if GT is isomorphic to Figure 7, then

D =


d1 1 2 2 1
1 d2 1 2 1
2 1 d3 1 2
2 2 1 d4 1
1 1 2 1 d5

 .

4
v

1
v

3
v

2
v

5
v

Figure 7. Graph G of d(G) = 2, n(G) = c(G) = 5 and |E(G)| = 6.

By Corollary 3, we have that di 6= 2 (1 ≤ i ≤ 5) and d3, d4 6= 1. Otherwise, if d1 = 2 or d3 = 2,
then p13 ≥ 4; if d2 = 2, then p12 ≥ 4; if d3 = 1, then p23 ≥ 4. By the symmetry of GT, we get that
d4 6= 1 or 2 and d5 6= 2. Since dim(G) = n(G)− 3 when di = 0 or 1 (i = 1, 2, 5) and d3 = d4 = 0 by
Lemma 4, dim(G) = n(G)− 3 if and only if G is the graph g.2 in Figure 3.

Case 4.3. |E(GT)| = 7. We obtain that c(GT) = 5 if and only if GT is isomorphic to the graph (a) or
(b) in Figure 8.

4
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1
v
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v

2
v

5
v

a

4
v
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v

3
v

2
v

5
v

 b

Figure 8. Graphs of d(G) = 2, n(G) = c(G) = 5 and |E(G)| = 7. For a, there are two edges without
common vertices in C5; for b, there are two edges with a common vertex in C5.

For Figure 8a, since the pairs of vertices v1, v2 and v3, v5 are twins in GT, respectively, we may
assume that d1 = 2 and d3 = 1, then {v′1, v2, v′3} resolves {v1, v3, v4, v5}, which is a contradiction.
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For Figure 8b, since

D =


d1 1 1 1 1
1 d2 1 2 2
1 1 d3 1 2
1 2 1 d4 1
1 2 2 1 d5

 ,

by Corollary 3, di 6= 2 (2 ≤ i ≤ 5). Otherwise, if d2 = 2 or d3 = 2, then p25 ≥ 4 or p23 ≥ 4. By the
symmetry of GT, we get that d4, d5 6= 2.

If d1 = 0 or 1, then d2 = 0 or 1. Assume d2 = 1, then d4 = d5 = 0, if not, p245 = 4. In this case,
d3 = 0 or 1 by Lemma 4. Now we assume that d2 = 0. By the symmetry of GT, we may assume that
d5 = 0; if not, it is the same as d2 = 1. By Lemma 4, we have that d3 = d4 = 0 or 1.

If d1 = 2, then di = 0 for 2 ≤ i ≤ 5. Otherwise, if d2 = 1, then p124 = 4; if d3 = 1, then p123 = 4;
if d4 = 1, then p134 = 4; and if d5 = 1, then p145 = 4.

Thus, we have that dim(G) = n(G)− 3 when (1) d2 = 1, di = 0 or 1 (i = 1, 3), d4 = d5 = 0,
(2) di = 0 or 1 (i = 1, 3, 4), d2 = d5 = 0, or (3) d1 = 2, di = 0 (2 ≤ i ≤ 5), which implies that
dim(G) = n(G)− 3 if and only if G is one of the graphs g.3, g.4 and g.5 in Figure 3.

Case 4.4. |E(GT)| = 8. We obtain that c(GT) = 5 if and only if GT is isomorphic to the graph (a) or
(b) in Figure 9.

For Figure 9a, since the pairs of vertices v1, v2 and v3, v5 are twins in GT, respectively, we may
assume that d1 = d3 = 1, then {v′1, v′3, v4} resolves {v1, v2, v3, v5}, which contradicts dim(G) =

n(G)− 3.
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v

2
v

5
v

 a

4
v

1
v

3
v

2
v

5
v

 b

Figure 9. Graphs of d(G) = 2, n(G) = c(G) = 5 and |E(G)| = 8. For a, v3 and v5 are adjacent; for b, v2

and v4 are adjacent.

For Figure 9b, the pairs of vertices v1, v2 and v3, v5 are twins in GT, respectively, we may assume
that d1 = d3 = 2, then

D =


1 1 1 2 1
1 d2 1 1 1
1 1 1 1 2
2 1 1 d4 1
1 1 2 1 d5

 .

By Corollary 3, we obtain that d4 = d5 = 0 and d2 6= 2. Otherwise, if d4 6= 0, then p134 = 4, by the
symmetry of GT, d5 = 0; and if d2 = 2, then p125 = 4. By Lemma 4, we get that dim(G) = n(G)− 3
when d1 = d3 = 1, d2 = 0 or 1, d4 = d5 = 0, which implies that G is the graph g.6 in Figure 3.

Case 4.5. |E(GT)| ≥ 9. We obtain that GT is isomorphic to K5− e or K5. By Lemma 5 and Corollary
4, there is no graph G with dim(G) = n(G)− 3.

Lemma 13. Let G be a graph with d(G) = 2 and dim(G) = n(G)− 3. If GT = G, then n(G) ≤ 5.

Proof. Since GT = G, there are no twins in G. Let V(G) = {v1, v2, · · · , vn}. We consider the both cases
n(G) > 6 and n(G) = 6.
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Case 1. n(G) > 6. By Lemma 9, we may assume that W0 = {v1, v2} resolves {v3, v4, v5}. Since
dim(G) = n(G)− 3, r(v6|W0), r(v7|W0) ∈ {r(v3|W0), r(v4|W0), r(v5|W0)}.

Case 1.1. r(v6|W0) 6= r(v7|W0). We may assume that r(v6|W0) = r(v3|W0) and r(v7|W0) =

r(v4|W0). Since there are no twins in G, there exists x ∈ V(G) such that d(v6, x) 6= d(v3, x). Then
x = v5; if not, {v1, v2, x} resolves {v3, v4, v5, v6} or {v3, v5, v6, v7}. Similarly, d(v4, v5) 6= d(v7, v5).
Thus {v1, v2, v5} resolves {v3, v4, v6, v7}, which contradicts dim(G) = n(G)− 3.

Case 1.2. r(v6|W0) = r(v7|W0). We may assume that r(v6|W0) = r(v7|W0) = r(v3|W0). Since there
are no twins in G, there exists x ∈ V(G) such that x resolves two vertices in {v3, v6, v7}. Assume that
d(v6, x) 6= d(v3, x), then x ∈ {v4, v5}; if not, {v1, v2, x} resolves {v3, v4, v5, v6}, which is a contradiction.
Thus {v4, v5} resolves both {v3, v6, v7} and {v1, v2}, it becomes case 1.1.

Case 2. n(G) = 6. We first prove that δ(G) ≥ 2. Assume for a contradiction that deg(v1) = 1.
We may assume that e12 ∈ E(G). Since d(G) = 2, N(v2) = {v1, v3, v4, v5, v6}. Since v1 and v3 are not
twins, we may assume that e34 ∈ E(G). Similarly, assume that e35 /∈ E(G), e45 ∈ E(G), e36 /∈ E(G) and
e56 ∈ E(G). In such a case, e46 /∈ E(G), otherwise v5 and v6 are twins. Thus, {v3, v6} is a resolving set
of G, then dim(G) = n(G)− 4, which is a contradiction.

Now we construct G. Let P3 = v1v2v3 be a shortest path of length 2 of G. Since v1 and v3 are
not twins, we may assume that e14 /∈ E(G) and e34 ∈ E(G). There are two subcases to be considered
as follows.

Case 2.1. e24 ∈ E(G). Since v3 and v4 are not twins, we may assume that e35 /∈ E(G) and
e45 ∈ E(G). There are four subcases to be considered by the adjacency relationship between v5 and v1,
v2 as fallows.

Case 2.1.1. e15 ∈ E(G), e25 /∈ E(G). We obtain that the metric matrix of G− v6 is

D =


0 1 2 2 1
1 0 1 1 2
2 1 0 1 2
2 1 1 0 1
1 2 2 1 0

 .

The distance from v6 to vi and vj (1 ≤ i < j ≤ 5) is denoted by (vi, vj|d(vi, v6), d(vj, v6)). For
dim(G) = n(G)− 3 = 3, by Corollary 3, any one of (v1, v3|2, 2), (v1, v5|1, 1), (v2, v3|2, 1), (v2, v4|2, 2),
(v3, v4|1, 2) and (v3, v5|2, 2) does not hold. Hence there is at least one of v1 and v3 adjacent to v6.
If e16 ∈ E(G), then e56 /∈ E(G), e36 ∈ E(G) and e26, e46 ∈ E(G), which implies that v2 and v6 are
twins. If e36 ∈ E(G), then e16 /∈ E(G), e26, e46 ∈ E(G). If e56 ∈ E(G) then v4 and v6 are twins; and if
e56 /∈ E(G), then v3 and v6 are twins. Therefore, there is no graph G with dim(G) = n(G)− 3.

Case 2.1.2. e15 /∈ E(G), e25 ∈ E(G). Since v3 and v5 are not twins, d(v3, v6) 6= d(v5, v6). We may
assume that e36 /∈ E(G), e56 ∈ E(G). Since δ(G) ≥ 2, deg(v1) ≥ 2, and we get that e16 ∈ E(G). Then
{v1, v3} is a resolving set of G. Thus dim(G) = 4, which is a contradiction.

Case 2.1.3. e15, e25 ∈ E(G). The metric matrix of G− v6 is

D =


0 1 2 2 1
1 0 1 1 1
2 1 0 1 2
2 1 1 0 1
1 1 2 1 0

 .

By Corollary 3, we obtain that any one of (v1, v3|2, 2), (v1, v5|1, 2), (v3, v4|1, 2) and (v4, v5|2, 2)
does not holds. Hence there is at least one of v1 and v3 adjacent to v6. Assume that e16 ∈ E(G), which
implies that e56 ∈ E(G). For e36, if e36 ∈ E(G), then e46 ∈ E(G), which implies that v2 and v6 are
twins, therefore e36 /∈ E(G). For e26 and e46, if e26 ∈ E(G), e46 /∈ E(G), then v1 and v6 are twins; if
e26, e46 ∈ E(G), then v5 and v6 are twins; if e26 /∈ E(G), e46 ∈ E(G), then {v1, v6} is a resolving set of G,
and if e26, e46 /∈ E(G), then d(v3, v6) = 3. Thus, there is no graph G with dim(G) = n(G)− 3.
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Case 2.1.4. e15, e25 /∈ E(G). Since d(v1, v5) ≤ 2, e16, e56 ∈ E(G). Then {v1, v5} is a resolving set of
G, which contradicts dim(G) = 3.

Case 2.2. e24 /∈ E(G). Since d(v1, v4) ≤ 2, we may assume that e15, e45 ∈ E(G). There are three
subcases to be considered as follows.

Case 2.2.1. e25 ∈ E(G), e35 /∈ E(G) or e25 /∈ E(G), e35 ∈ E(G). Then the graph G− v6 is isomorphic
to that of case 2.1.1.

Case 2.2.2. e25, e35 ∈ E(G). Then the graph G− v6 is isomorphic to that of case 2.1.3.
Case 2.2.3. e25, e35 /∈ E(G). Since there are no twins in G and δ(G) ≥ 2, v6 must be adjacent to two

adjacent vertices. Assume that e16, e26 ∈ E(G), then {v1, v2} is a resolving set of G, which contradicts
dim(G) = 3.

Thus, there is no graph G with dim(G) = n(G)− 3 and we are done.

Lemma 14. Let G be a graph with d(G) = 2 and dim(G) = n(G)− 3, then n(GT) ≤ 5.

Proof. Suppose instead that G is a graph with d(G) = 2, dim(G) = n(G)− 3 and n(GT) ≥ 6. Now
we prove that dim(GT) = n(GT)− 3. Since dim(G) = n(G)− 3, dim(GT) ≥ n(GT)− 3 by Lemma 1.
If dim(GT) = n(GT) − 1, then by Lemma 7, we have GT = Kn(GT)

. By Corollary 4, we get that
dim(G) = n(G)− n(GT), which is a contradiction. If dim(GT) = n(GT)− 2, then GT = Ks,t (s, t ≥ 1)
or Ks + Kt (s ≥ 1, t ≥ 2) or Ks + (K1 ∪ Kt) (s, t ≥ 1) by Lemma 8. Since n(GT) ≥ 6, s + t ≥ 5, which
contradicts dim(G) = n(G)− 3 by Lemma 5. Thus, dim(GT) = n(GT)− 3.

For n(GT) ≥ 6, by Lemma 13, there exist twins in GT. Assume that v1, v2 are twins in GT and
|V1| ≥ 2, then v′1 resolves v1 and v2 by Lemma 2. Moreover, by Lemma 5, the size of every twin
set of GT is no more than 2. Thus, for each v ∈ V(GT) and v /∈ {v1, v2}, v1, v2 and v are not twins.
Let W(GT) be a metric basis of GT and V(GT) \W(GT) = {u1, u2, u3}. By Lemma 8, there exists
W0 = {w1, w2} ⊂W(GT) such that W0 resolves {u1, u2, u3}. Since v1 and v2 are twins in GT, there is at
most one of v1 and v2 in {u1, u2, u3}. Similarly, there is at most one of v1 and v2 in W0.

Then we prove that one of v1 and v2 is in {u1, u2, u3} and the other is in W0. Assume that
v1, v2 /∈ {u1, u2, u3}, then v1, v2 ∈ W(GT). If v1, v2 /∈ W0, then r(v1|W0) = r(v2|W0) ∈ {r(u1|W0),
r(u2|W0), r(u3|W0)}. We may assume that r(v1|W0) = r(v2|W0) = r(u1|W0), then {w1, w2, v′1}
resolves {u2, u3, v1, v2}, which is a contradiction. Otherwise, we may assume that v1 = w1, then
{v′1, w2} resolves {u1, u2, u3} and {v1, v2}. Without loss of generality suppose that r(vi|{v′1, w2}) =
r(ui|{v′1, w2}) for i ∈ {1, 2}. Since the pairs u1, v1 and u2, v2 are not twins in GT, then {v′1, w2, u3}
resolves {u1, u2, v1, v2}, the argument is similar to that of the case 1.1 of Lemma 13, which is a
contradiction. Thus, there is one of v1 and v2 in {u1, u2, u3}. We may assume that v1 ∈ {u1, u2, u3},
then v2 ∈W0; otherwise, {v′1, w1, w2} resolves {u1, u2, u3, v2}, which is a contradiction.

Thus, we have that at most two pairs of vertices are twins in GT and dim(GT − v1) = n(GT −
v1) − 2. Moreover, for x1, x2 /∈ {v1, v2}, if x1 and x2 are twins in GT − v1, it easy to see that they
are twins in GT. Thus, there is at most one pair of vertices that are twins in GT − v1. By Lemma
8, GT − v1 = Ks,t (s, t ≥ 1) or Ks + Kt (s ≥ 1, t ≥ 2) or Ks + (K1 ∪ Kt) (s, t ≥ 1). Since n(GT) ≥ 6,
n(GT − v1) ≥ 5. Thus, s + t ≥ 4, there are at most two pairs of vertices are twins in GT − v1, which is a
contradiction. Therefore, the assumption n(GT) ≥ 6 does not hold and we are done.

Theorem 1. For a graph G, dim(G) = n(G)− 3 and d(G) = 2 if and only if G is (Ks ∪ Br) + Kt (s, r ≥
2, t ≥ 1), (Ks ∪ Br) + Kt (s, t ≥ 2, r ≥ 1), G = (Ks + Kt) + Br (s, t ≥ 2, r ≥ 1), C5 or one of the graphs in
Figures 2 and 3.

Proof. It holds by Lemmas 10, 11, 12 and 14.

Remark 1. This method can help us to address the extension problem of a given graph with respect to metric
dimension. It is theoretically realized the characterization of extremal graphs with dim(G) = n(G)− r for any
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r > 0. In addition, we also find that the problem will become more and more difficult with the increase of r based
on the proof of the case r = 3.

4. Conclusions

In this paper, by constructing the metric matrix of G, we make a necessary and sufficient condition
of dim(G) = n(G)− r and characterize the graphs of dim(G) = n(G)− 3 via this condition. Moreover,
we give a new idea for the extension of graphs based on metric dimension.
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