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Abstract: Very recently, the incomplete Pochhammer ratios were defined in terms of the incomplete
beta function By(x, z). With the help of these incomplete Pochhammer ratios, we introduce new
incomplete Gauss, confluent hypergeometric, and Appell’s functions and investigate several properties
of them such as integral representations, derivative formulas, transformation formulas, and recurrence
relations. Furthermore, incomplete Riemann-Liouville fractional integral operators are introduced. This
definition helps us to obtain linear and bilinear generating relations for the new incomplete Gauss
hypergeometric functions.
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1. Introduction and Preliminaries

In recent years, some extensions of the well-known special functions have been considered by
several authors (see, for example, [1–9]). The familiar incomplete gamma functions γ(s, x) and Γ(s, x) are
defined by:

γ(s, x) :=
∫ x

0
ts−1e−tdt (Re(s) > 0; x = 0)

and
Γ(s, x) :=

∫ ∞

x
ts−1e−tdt (x = 0; Re(s) > 0 when x = 0),

respectively. They satisfy the following decomposition formula:

γ(s, x) + Γ(s, x) = Γ(s) (Re(s) > 0) . (1)

The function Γ(s) and its incomplete versions γ(s, x) and Γ(s, x) play important roles in the study of
analytical solutions of a variety of problems in diverse areas of science and engineering.

The widely-used Pochhammer symbol (λ)ν (λ, ν ∈ C) is defined, in general, by:

(λ)ν :=
Γ (λ + ν)

Γ (λ)
=

{
1 (ν = 0; λ ∈ C\ {0})
λ (λ + 1) ... (λ + ν− 1) (ν ∈ N; λ ∈ C)

}
(2)
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In terms of the incomplete gamma functions γ(s, x) and Γ(s, x), the incomplete Pochhammer symbols
(λ; x)ν and [λ; x]ν (λ; ν ∈ C; x = 0) were defined as follows [10]:

(λ; x)ν :=
γ(λ + ν, x)

Γ (λ)
(λ, ν ∈ C; x = 0) (3)

and:

[λ; x]ν :=
Γ (λ + ν, x)

Γ (λ)
(λ, ν ∈ C; x = 0) . (4)

In view of (1), these incomplete Pochhammer symbols (λ; x)ν and [λ; x]ν satisfy the following
decomposition relation:

(λ; x)ν + [λ; x]ν = (λ)ν (λ, ν ∈ C; x = 0) , (5)

where (λ)ν is the Pochhammer symbol given by (2).
The incomplete Gauss hypergeometric functions were defined by means of the incomplete gamma

functions as follows [10]:

2γ1

[
(a, x) . b ;

c ;
z

]
:=

∞

∑
n=0

(a; x)n(b)n

(c)n

zn

n!
(6)

and:

2Γ1

[
(a, x) . b ;

c ;
z

]
:=

∞

∑
n=0

[a; x]n(b)n

(c)n

zn

n!
. (7)

After this work, incomplete hypergeometric functions have become a fruitful topic of research in
recent years [4,5,9,11–20].

Fractional derivative and integral operators are another important topic of research in recent years.
They have found applications in many diverse areas of mathematical, physical, and engineering problems;
good summaries of these applications may be found in [21–26] and recently in [27]. The use of fractional
derivative operators in obtaining generating relations for some special functions can be found in [6,9,28–30].

In fractional calculus, there are two important differential operators: the Riemann-Liouville and
Liouville-Caputo fractional derivatives. In a recent paper [12], which covered work done after the work
herein, we introduced incomplete Liouville-Caputo fractional derivative operators and focused on their use
in special function theory. For the definitions in [12], we considered the same incomplete Riemann-Liouville
integral as in (60) and (61) of this paper, but the operators introduced there were of the Liouville-Caputo
type and not of the Riemann-Liouville type like those in the current work. The difference between
Liouville-Caputo and Riemann-Liouville is very important for applications to differential equations,
because the required initial conditions are of different types between these two cases.

In the present paper, we introduce new incomplete hypergeometric functions with the aid of
incomplete Pochhammer ratios and investigate certain properties of them. Moreover, we introduce
incomplete Riemann-Liouville fractional integral operators, and we obtain some generating relations
for these new incomplete hypergeometric functions with the aid of these new defined operators.
The organization of the paper is as follows.

In Section 2, the incomplete Pochhammer ratios are introduced by using the incomplete beta function,
and some derivative formulas involving these new incomplete Pochhammer ratios are investigated.
In Section 3, new incomplete Gauss hypergeometric functions and confluent hypergeometric functions are
introduced with the help of these incomplete Pochhammer ratios, and integral representations, derivative
formulas, transformation formulas, and recurrence relations are obtained for them. In Section 4, we
define new incomplete Appell’s functions F1[a, b, c; d; x, z; y], F1{a, b, c; d; x, z; y}, F2[a, b, c; d, e; x, z; y], and
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F2{a, b, c; d, e; x, z; y} and obtain their integral representations. In Section 5, we introduce incomplete
Riemann-Liouville fractional integral operators and show that the incomplete Riemann-Liouville fractional
integrals of some elementary functions give the new incomplete functions defined in Sections 3 and 4.
Finally, in the last section, we obtain linear and bilinear generating relations for the incomplete
hypergeometric functions.

2. The Incomplete Pochhammer Ratio

The incomplete beta function is defined by:

By(x, z) :=
∫ y

0
tx−1(1− t)z−1dt, Re(x) > Re(z) > 0, 0 ≤ y < 1 (8)

and can be expressed in terms of the Gauss hypergeometric function:

By(x, z) :=
yx

x 2F1(x, 1− z; 1 + x; y). (9)

The incomplete Pochhammer ratios [b, c; y]n and {b, c; y}n are introduced in terms of the incomplete
beta function By(x, z) as follows [12]:

[b, c; y]n :=
By (b + n, c− b)

B (b, c− b)
(10)

and:

{b, c; y}n :=
B1−y(c− b, b + n)

B(b, c− b)
(11)

where 0 ≤ y < 1. They satisfy the following relation:

[b, c; y]n + {b, c; y}n =
(b)n
(c)n

. (12)

In view of (9), we have the following relations:

[b, c; y]n :=
1

B(b, c− b)
yb+n

b + n 2F1(b + n, 1− c + b; b + n + 1; y) (13)

and:

{b, c; y}n :=
1

B(b, c− b)
(1− y)c−b

c− b 2F1(c− b, 1− b− n; 1 + c− b; 1− y). (14)

In the following theorem, we investigate the nth derivatives of the incomplete beta function by means
of incomplete Pochhammer ratios.

Theorem 1. The following derivative formulas hold true:

[b, c; y]n =
(−1)n Γ (c)

Γ (c− b + n) Γ (b)
yb+n dn

dyn

[
y−bBy(b, c− b + n)

]
, (15)

and:

{b, c; y}n =
Γ(b + n)

Γ(b + 2n)
1

B(b, c− b)
(1− y)c−b dn

dyn ((1− y)−c+b+nB1−y(c− b− n, b + 2n)). (16)
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Proof. Using (8) and (10), we immediately obtain the following equation:

[b, c; y]n =
yb+n

B(b, c− b)

∫ 1

0
ub+n−1(1− uy)c−b−1du.

On the other hand, we have:

y−bBy(b, c− b + n) =
∫ 1

0
ub−1(1− uy)c−b+n−1du. (17)

Taking derivatives n times on both sides of (17) with respect to y, we can obtain a derivative formula for
the incomplete beta function [b, c; y]n asserted by (15). Formula (16) can be proven in a similar way.

3. The New Incomplete Gauss and Confluent Hypergeometric Functions

In this section, we introduce new incomplete Gauss and confluent hypergeometric functions by:

2F1(a, [b, c; y]; x) :=
∞

∑
n=0

(a)n[b, c; y]n
xn

n!
, (18)

2F1(a, {b, c; y} ; x) :=
∞

∑
n=0

(a)n {b, c; y}n
xn

n!
, (19)

1F1([a, b; y]; x) :=
∞

∑
n=0

[a, b; y]n
xn

n!
, (20)

and:

1F1({a, b; y} ; x) :=
∞

∑
n=0
{a, b; y}n

xn

n!
(21)

where 0 ≤ y < 1.
An immediate consequence of (12) and the definitions (18), (19), (20), and (21) is the following

decomposition formulas:

2F1(a, [b, c; y]; x) + 2F1(a, {b, c; y} ; x) = 2F1(a, b; c; x) (22)

and:

1F1([a, b; y]; x) + 1F1({a, b; y} ; x) = 1F1(a; b; x). (23)

Theorem 2. The following integral representation holds true:

2F1(a, [b, c; y], x) =
yb

B(b, c− b)

∫ 1

0
ub−1(1− uy)c−b−1(1− xuy)−adu, (24)

Re(c) > Re(b) > 0, |arg(1− x)| < π).

Proof. Replacing the incomplete Pochhammer ratio [b, c; y]n in the definition (18) by its integral
representation given by (8) and interchanging the order of summation and integral, which is permissible
under the conditions given in the hypothesis of the Theorem, we find:

2F1(a, [b, c; y], x) =
1

B(b, c− b)

∫ y

0
tb−1(1− t)c−b−1(1− xt)−adt, (25)
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which can be written as follows:

2F1(a, [b, c; y], x) =
yb

B(b, c− b)

∫ 1

0
ub−1(1− uy)c−b−1(1− xuy)−adu. (26)

In a similar way, we have the following theorem:

Theorem 3. The following integral representation holds true:

2F1(a, {b, c; y} , x) =
(1− y)c−b

B(b, c− b)

∫ 1

0
uc−b−1(1− u(1− y))b−1(1− x + xu(1− y))−adu,

Re(c) > Re(b) > 0, |arg(1− x)| < π. (27)

Theorem 4. The following result holds true:

2F1(a, [b, c; y], 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−ayb

B(b, c− b)(c− a− b) 2F1(c− a, 1; 1 + c− b− a; 1− y). (28)

Proof. Putting x = 1 in (22), we obtain:

2F1(a, [b, c; y], 1) = 2F1(a, b; c; 1)− 2F1(a, {b, c; 1− y} , 1) (29)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−a

B(b, c− b)

∫ 1

0
uc−b−a−1(1− u(1− y))b−1du.

Using Euler’s integral representation for (29), we have:

2F1(a, [b, c; y], 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) −

(1−y)c−b−a

B(b,c−b)(c−b−a) 2F1(1− b, c− b− a; 1 + c− b− a; 1− y). (30)

Using transformation formula:

2F1(α, β; γ; z) = (1− z)γ−β−α
2F1(γ− α, γ− β; γ; z), (31)

in (30), we obtain:

2F1(1− b, c− b− a; 1 + c− b− a; 1− y) = yb
2F1(c− a, 1; 1 + c− b− a; 1− y). (32)

Considering (32) in (30), we get:

2F1(a, [b, c; y], 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−ayb

B(b, c− b)(c− b− a) 2F1(c− a, 1; 1 + c− b− a; 1− y). (33)

Theorem 5. The following result holds true:

2F1(a, {b, c; y} , 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−ayb

B(b, c− b)b 2F1(c− a, 1; b + 1; y). (34)
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Theorem 6. The following integral representations hold true:

1F1([a, b; y], x) =
ya

B(a, b− a)

∫ 1

0
ua−1(1− uy)b−a−1exuydu, Re(b) > Re(a) > 0 (35)

and:

1F1({a, b; y} , x) =
(1− y)b−a

B(a, b− a)

∫ 1

0
ub−a−1(1− u(1− y))a−1e(1−u(1−y))xdu, Re(b) > Re(a) > 0. (36)

Proof. Replacing the incomplete Pochhammer ratio [a, b; y]n in the definition (20) by its integral
representation given by (8), we are led to the desired result (35). Formula (36) can be proven in a
similar way.

Theorem 7. The following integral representation holds true:

∫ 1

0
yk−1

2F1(a, [b, c− k; y]; x)dy =
1
k

[
2F1(a, b; c− k; x)− Γ (c− k) Γ (b + k)

Γ (b) Γ (c) 2F1(a, b + k; c; x)
]

, k ∈ N.

(37)

Proof. It is known that from Euler’s formula that:

2F1(a, b + k; c; x) =
1

B(b + k, c− b− k)

∫ 1

0
yb+k−1(1− y)c−b−k−1(1− xy)−ady, k ∈ N.

Taking u = yk and the remaining part as dv and applying the integration by parts, we get:

2F1(a, b + k; c; x) =
Γ (b) Γ (c)

Γ (c− k) Γ (b + k)

[
2F1(a, b; c− k; x)− k

∫ 1

0
yk−1

2F1(a, [b, c− k; y], x)dy
]

.

By rearranging the terms, we get the result.

Corollary 1. Taking k = 1 in Theorem 7, we get the following result:

∫ 1

0
2F1(a, [b, c− 1; y], x)dy = 2F1(a, b; c− 1; x)− b

c− 1 2F1(a, b + 1; c; x). (38)

Theorem 8. The following integral representation holds true:

∫ 1

0
yk−1

2F1(a, [b, c; y], x)dy =
1
k

Γ (c) Γ (c− b + k)
Γ (c− b) Γ (c + k) 2F1(a, b; c + k; x). (39)

Proof. It is known that:

2F1(a, b; c + k; x) =
1

B(b, c− b + k)

∫ 1

0
yb−1(1− y)c−b+k−1(1− xy)−ady.

Taking u = (1− y)k and the rest as dv and using integration by parts, we get the result.

Corollary 2. Taking k = 1 in Theorem 9, we get the following result:

2F1(a, b; c + 1; x) =
c

c− b

∫ 1

0
2F1(a, [b, c; y], x)dy. (40)



Mathematics 2019, 7, 483 7 of 18

Theorem 9. The following derivative formula holds true:

dn

dxn (2F1(a, [b, c; y]; x)) =
(a)n(b)n

(c)n
2F1(a + n, [b + n, c + n; y]; x). (41)

Proof. Using (25), differentiating on both sides with respect to x, we obtain:

d
dx

(2F1(a, [b, c; y]; x)) =
a

B(b, c− b)

∫ y

0
tb(1− t)c−b−1(1− xt)−a−1dt

=
a

B(b, c− b)

∫ y

0
t(b+1)−1(1− t)(c+1)−(b+1)−1(1− xt)−(a+1)dt

=
ab
c

1
B(b + 1, c− b)

∫ y

0
t(b+1)−1(1− t)(c+1)−(b+1)−1(1− xt)−(a+1)dt

=
ab
c 2F1(a + 1, [b + 1, c + 1; y]; x

which is (41) for n = 1. The general result follows by the principle of mathematical induction on n.

Theorem 10. The following derivative formula holds true:

dn

dxn (1F1([a, b; y]; x)) =
(a)n

(b)n
1F1([a + n, b + n; y]; x). (42)

Theorem 11. We have the following difference formula for 2F1(a, [b, b + h; y]; x):

b + h− 1
B(b, h)

yb−1(1− y)h−1(1− xy)−a = 2F1(a, [b, b + h− 1; y]; x) + (43)

2F1(a, [b− 1, b + h− 1; y]; x)− ax(b + h− 1) 2F1(a + 1, [b, b + h; y]; x).

Proof. Recalling that the Mellin transform operator is defined by:

M { f (t) : s} :=
∫ ∞

0
ts−1 f (t)dt, Re(s) > 0,

we observe that 2F1(a, [b, b + h; y]; x) is the Mellin transform of the function:

f (t : x; y, a; h) = H(y− t)(1− t)h−1(1− xt)−a,

where:

H(t) =

{
1 if t > 0
0 if t < 0

,

is the Heaviside unit function. Observing the fact that:

2F1(a, [b, b + h; y]; x) :=
M { f (t : x; y, a; h) : b}

B(b, h)
, (44)

we can write that:

∂

∂t
( f (t : x; y, a; h)) = −[(y− t)(1− t)h−1(1− xt)−a + (h− 1)H(y− t)(1− t)h−2(1− xt)−a] (45)

+ ax(1− xt)−a−1H(y− t)(1− t)h−1,



Mathematics 2019, 7, 483 8 of 18

where ∂
∂t (H(t)) = δ(t− t0),

δ(t− t0) =

{
∞ if t = t0

0 if t 6= t0
,

is the Dirac delta function. Applying the Mellin transform on both sides (45) and using (44) and the
fact that:

M
{

f ′(t) : x
}
= (1− x)M { f (t) : x− 1} ,

we have:

b + h− 1
B(b, h)

yb−1(1− y)h−1(1− xy)−a = 2F1(a, [b, b + h− 1; y]; x)

+ 2F1(a, [b− 1, b + h− 1; y]; x)− ax(b + h− 1) 2F1(a + 1, [b, b + h; y]; x).

This completes the proof.

In the following theorems, we give transformation formulas:

Theorem 12. The following transformation formula holds true:

2F1(a, [β, γ; y]; z) = (1− z)−a
2F1(a, {γ− β, γ; 1− y} ;

z
z− 1

), |arg(1− z)| < π. (46)

Proof. Using (25), we obtain:

2F1(a, [β, γ; y]; z) =
(1− z)−a

B(β, γ− β)

∫ 1

1−y
(1− s)β−1sγ−β−1

(
1− z

z− 1
s
)−a

ds. (47)

The substitution s = 1− t in (47) leads to:

2F1(a, [β, γ; y]; z) =
(1− z)−a

B(β, γ− β)

∫ y

0
tβ−1(1− t)γ−β−1

(
1− z(1− t)

z− 1

)−a
dt

= (1− z)−a
2F1(a, {γ− β, γ; 1− y} ;

z
z− 1

).

Theorem 13. The following transformation formula holds true:

2F1(a, {β, γ; y} ; z) = (1− z)−a
2F1(a, [γ− β, γ; 1− y];

z
z− 1

), |arg(1− z)| < π. (48)

Theorem 14. The following transformation formulas hold true:

1F1({α, β; 1− y} ; z) = ez
1F1([β− α, β; y] ;−z) (49)

and:
1F1([α, β; y] ; z) = ez

1F1 ({β− α, β; 1− y} ;−z) . (50)

Proof. The proofs of (49) and (50) are direct consequences of Theorem 6.
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4. The Incomplete Appell’s Functions

In this section, we introduce the incomplete Appell’s functions F1[a, b, c; d; x, z; y], F1{a, b, c; d; x, z; y},
F2[a, b, c; d, e; x, z; y], and F2{a, b, c; d, e; x, z; y} by:

F1[a, b, c; d; x, z; y] :=
∞

∑
m,n=0

[a, d; y]m+n(b)m(c)n
xm

m!
zn

n!
, max{|x| , |z|} < 1 (51)

and:

F1{a, b, c; d; x, z; y} :=
∞

∑
m,n=0

{a, d; y}m+n(b)m(c)n
xm

m!
zn

n!
, max{|x| , |z|} < 1 (52)

and:

F2[a, b, c; d, e; x, z; y] :=
∞

∑
m,n=0

(a)m+n[b, d; y]m[c, e; y]n
xm

m!
zn

n!
, |x|+ |z| < 1 (53)

and:

F2{a, b, c; d, e; x, z; y} :=
∞

∑
m,n=0

(a)m+n{b, d; y}m{c, e; y}n
xm

m!
zn

n!
, |x|+ |z| < 1. (54)

Remark 1. For the reader’s convenience, we show how the convergence domains are obtained for the functions
defined in (51)–(54). We just give the proof of (51). The other three definitions can be proven in a similar manner.
Considering the absolute value:

∣∣∣F1[a, b, c; d; x, z; y]
∣∣∣ ≤ ∞

∑
m,n=0

∣∣∣∣[a, d; y]m+n(b)m(c)n
xm

m!
zn

n!

∣∣∣∣
≤

∞

∑
m,n=0

∣∣∣[a, d; y]m+n

∣∣∣ ∣∣∣∣(b)m(c)n
xm

m!
zn

n!

∣∣∣∣
=

∞

∑
m,n=0

∣∣∣∣ 1
B(a, d− a)

∫ y

0
ta+m+n−1(1− t)d−a−1dt

∣∣∣∣ ∣∣∣∣(b)m(c)n
xm

m!
zn

n!

∣∣∣∣
≤

∞

∑
m,n=0

1
B(a, d− a)

∫ 1

0

∣∣∣ta+m+n−1(1− t)d−a−1dt
∣∣∣ ∣∣∣∣(b)m(c)n

xm

m!
zn

n!

∣∣∣∣
=

∞

∑
m,n=0

B(a + m + n, d− a)
B(a, d− a)

∣∣∣∣(b)m(c)n
xm

m!
zn

n!

∣∣∣∣ ,

where the final series is the one corresponding to absolute convergence of the series for F1(a, b, c; d; x, z). Therefore,
the series for F1[a, b, c; d; x, z; y] is absolutely convergent under the same conditions as the one for F1(a, b, c; d; x, z).

We proceed by obtaining the integral representations of the functions F1[a, b, c; d; x, z; y],
F1{a, b, c; d; x, z; y}, F2[a, b, c; d, e; x, z; y], and F2{a, b, c; d, e; x, z; y}.

Theorem 15. For the incomplete Appell’s functions F1[a, b, c; d; x, z; y] and F1{a, b, c; d; x, z; y}, we have the
following integral representation:

F1[a, b, c; d; x, z; y] =
ya

B(a, d− a)

∫ 1

0
ua−1(1− uy)d−a−1(1− xuy)−b(1− zuy)−cdu, (55)

Re(d) > 0, Re(a) > 0, Re(b) > 0, Re(c) > 0, |arg (1− x)| < π, |arg (1− z)| < π.
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and:

F1{a, b, c; d; x, z; y} =
(1− y)d−a

B(a, d− a)
×
∫ 1

0
ud−a−1(1− u(1− y))a−1

(1− x(1− u(1− y)))−b(1− z(1− u(1− y)))−cdu, Re(d) > 0,

Re(a) > 0, Re(b) > 0, Re(c) > 0, |arg (1− x)| < π, |arg (1− z)| < π. (56)

Proof. Replacing the integral representation for the incomplete beta function, which is given by (8),
we find that:

F1[a, b, c; d; x, z; y] =
1

B(a, d− a)

∫ y

0
ta−1(1− t)d−a−1(1− xt)−b(1− zt)−cdt,

which can be written as:

F1[a, b, c; d; x, z; y] =
ya

B(a, d− a)

∫ 1

0
ua−1(1− uy)d−a−1(1− xuy)−b(1− zuy)−cdu;

whence the result. Formula (56) can be proven in a similar way.

Theorem 16. For the incomplete Appell’s functions F2[a, b, c; d, e; x, z; y] and F2{a, b, c; d, e; x, z; y}, we have the
following integral representation:

F2[a, b, c; d, e; x, z; y] =
yb+c

B(b, d− b)B(c, e− c)

×
∫ 1

0

∫ 1

0
ub−1(1− uy)d−b−1vc−1(1− vy)e−c−1(1− xuy− zvy)−adudv,

Re(d) > Re(a) > Re(b) > Re(c) > Re(m) > 0, |arg (1− x− z)| < π. (57)

and:

F2{a, b, c; d, e; x, z; y}

=
(1− y)d−b+e−c

B(b, d− b)B(c, e− c)

∫ 1

0

∫ 1

0
ud−b−1(1− u(1− y))b−1ve−c−1(1− v(1− y))c−1

(1− x(1− u(1− y))− z(1− v(1− y)))−adudv,

Re(d) > 0, Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(e) > 0, |arg (1− x− z)| < π. (58)

Proof. Replacing the integral representation for the incomplete beta function, which is given by (8), we get:

F2[a, b, c; d, e; x, z; y] =
1

B(b, d− b)B(c, e− c)

×
∞

∑
m,n=0

∫ y

0

∫ y

0
(a)m+ntb+m−1(1− t)d−b−1sc+n−1(1− s)e−c−1 xm

m!
zn

n!
dtds.

Considering the fact that the series involved are uniformly convergent and we have a right to interchange
the order of summation and integration, we get:
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F2[a, b, c; d, e; x, z; y] =
1

B(b, d− b)B(c, e− c)

×
∫ y

0

∫ y

0
tb−1(1− t)d−b−1sc−1(1− s)e−c−1(1− xt− zs)−adtds,

=
yb+c

B(b, d− b)B(c, e− c)

×
∫ 1

0

∫ 1

0
ub−1(1− uy)d−b−1vc−1(1− vy)e−c−1(1− xuy− zvy)−adudv.

Formula (58) can be proven in a similar way.

5. Incomplete Riemann-Liouville Fractional Integral Operators

In this section, we introduce and investigate the incomplete Riemann-Liouville fractional integral
operators. The Riemann-Liouville fractional integral of order µ is defined by:

Dµ
z { f (z)} :=

1
Γ (−µ)

∫ z

0
f (t)(z− t)−µ−1dt, Re(µ) < 0. (59)

Now, we define the incomplete Riemann-Liouville fractional integral operators Dµ
z [ f (z); y] and

Dµ
z { f (z); y} by:

Dµ
z [ f (z); y] : =

z−µ

Γ (−µ)

∫ y

0
f (uz)(1− u)−µ−1du (60)

: =
z−µy

Γ (−µ)

∫ 1

0
f (ywz)(1− wy)−µ−1dw, Re(µ) < 0.

and its counterpart is by:

Dµ
z { f (z); y} : =

z−µ

Γ (−µ)

∫ 1

y
f (uz)(1− u)−µ−1du (61)

: =
z−µ

Γ (−µ)

∫ 1−y

0
f ((1− t)z)t−µ−1dt, Re(µ) < 0.

Remark 2. If y = 1, then (60) is equivalent to the standard Riemann-Liouville fractional integral (59). If y = 0,
then (61) is equivalent to the standard Riemann-Liouville fractional integral (59). Thus, the original definition (59)
is a particular case of both types of the incomplete Riemann-Liouville fractional integral.

We start our investigation by calculating the incomplete fractional integrals of some
elementary functions.

Theorem 17. Let Re(λ) > −1, Re(µ) < 0. Then:

Dµ
z [zλ; y] =

By(λ + 1,−µ)

Γ (−µ)
zλ−µ. (62)
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Proof. Using (60) and (8), we get:

Dµ
z [zλ; y] =

z−µ

Γ (−µ)

∫ y

0
(uz)λ(1− u)−µ−1du

=
By(λ + 1,−µ)

Γ (−µ)
zλ−µ;

whence the result.

Theorem 18. Let Re(λ) > −1, Re(µ) < 0. Then:

Dµ
z {zλ; y} =

B1−y(−µ, λ + 1)
Γ (−µ)

z−µ+λ. (63)

Theorem 19. Let Re(λ) > 0, Re(α) > 0, Re(µ) < 0 and |z| < 1. Then:

Dλ−µ
z [zλ−1(1− z)−α; y] =

Γ (λ)

Γ (µ)
zµ−1

2F1(α, [λ, µ; y] ; z), (64)

and:

Dλ−µ
z {zλ−1(1− z)−α; y} = Γ (λ)

Γ (µ)
zµ−1

2F1(α, {λ, µ; y}; z). (65)

Proof. Direct calculations yield:

Dλ−µ
z [zλ−1(1− z)−α; y] =

zµ−λ

Γ (µ− λ)

∫ y

0
(uz)λ−1(1− uz)−α(1− u)µ−λ−1du

=
zµ−λy

Γ (µ− λ)

∫ 1

0
(yz)λ−1wλ−1(1− ywz)−α(1− wy)µ−λ−1dw

=
zµ−1yλ

Γ (µ− λ)

∫ 1

0
wλ−1(1− ywz)−α(1− wy)µ−λ−1dw.

By (24), we can write:

Dλ−µ
z [zλ−1(1− z)−α; y] =

zµ−1

Γ (µ− λ)
B(λ, µ− λ)2F1(α, [λ, µ; y] ; z)

=
Γ (λ)

Γ (µ)
zµ−1

2F1(α, [λ, µ; y] ; z).

Hence, the proof is completed. Formula (65) can be proven in a similar way.

Theorem 20. Let Re(λ) > Re(µ) > 0, Re(α) > 0, Re(β) > 0; |az| < 1 and |bz| < 1. Then:

Dλ−µ
z [zλ−1(1− az)−α(1− bz)−β; y] =

Γ (λ)

Γ (µ)
zµ−1F1[λ, α, β; µ; az, bz; y], (66)

and:

Dλ−µ
z {zλ−1(1− az)−α(1− bz)−β; y} = Γ (λ)

Γ (µ)
zµ−1F1{λ, α, β; µ; az, bz; y}. (67)
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Proof. We have:

Dλ−µ
z [zλ−1(1− az)−α(1− bz)−β; y]

=
zµ−λ

Γ (µ− λ)

∫ y

0
(uz)λ−1(1− auz)−α(1− buz)−β(1− u)µ−λ−1du

=
zµ−λy

Γ (µ− λ)

∫ 1

0
(yw)λ−1(z)λ−1(1− aywz)−α(1− bywz)−β(1− wy)µ−λ−1dw

=
zµ−1yλ

Γ (µ− λ)

∫ 1

0
wλ−1(1− aywz)−α(1− bywz)−β(1− wy)µ−λ−1dw.

By (55), we can write:

Dλ−µ
z [zλ−1(1− az)−α(1− bz)−β; y] =

zµ−1

Γ (µ− λ)
B(λ, µ− λ)F1[λ, α, β; µ; az, bz; y]

=
Γ (λ)

Γ (µ)
zµ−1F1[λ, α, β; µ; az, bz; y];

whence the result. Formula (67) can be proven in a similar way.

Theorem 21. Let Re(λ) > Re(µ) > 0, Re(α) > 0, Re(β) > 0, Re(γ) > 0;
∣∣ t

1−z

∣∣ < 1and |t| + |z| < 1.
We have:

Dλ−µ
z [zλ−1(1− z)−α

2F1(α. [β, γ; y] ;
t

1− z
); y] =

Γ (λ)

Γ (µ)
zµ−1F2[α, β, λ; γ, µ; t, z; y], (68)

and:

Dλ−µ
z {zλ−1(1− z)−α

2F1(α. [β, γ; y] ;
t

1− z
); y} = Γ (λ)

Γ (µ)
zµ−1F2{α, β, λ; γ, µ; t, z; y}. (69)

Proof. Using Theorem 19 and (53), we get:

Dλ−µ
z [zλ−1(1− z)−α

2F1(α. [β, γ; y] ;
t

1− z
); y]

= Dλ−µ
z [zλ−1(1− z)−α 1

B(β, γ− β)

∞

∑
n=0

(α)n By(β + n, γ− β)

n!

(
t

1− z

)n
; y]

=
1

B(β, γ− β)
Dλ−µ

z [zλ−1
∞

∑
n=0

(α)n By(β + n, γ− β)
tn

n!
(1− z)−α−n; y]

=
1

B(β, γ− β)

∞

∑
m,n=0

By(β + n, γ− β)
tn

n!
(α)n (α + n)m

m!
Dλ−µ

z [zλ−1+m; y]

=
1

B(β, γ− β)

∞

∑
m,n=0

By(β + n, γ− β)
tn

n!
(α)n+m

m!
By(λ + m, µ− λ)

Γ(µ− λ)
zµ+m−1

=
Γ (λ)

Γ (µ)
zµ−1F2[α, β, λ; γ, µ; t, z; y].

Hence, the proof is complete. Formula (69) can be proven in a similar way.
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6. Generating Functions

Now, we obtain linear and bilinear generating relations for the incomplete hypergeometric functions
2F1(a, [b, c; y] ; x) by following the methods described in [2]. We start with the following theorem:

Theorem 22. For the incomplete hypergeometric functions, we have:

∞

∑
n=0

(λ)n

n! 2F1(λ + n, [α, β; y] ; z)tn = (1− t)−λ
2F1(λ, [α, β; y] ;

z
1− t

) (70)

and:
∞

∑
n=0

(λ)n

n! 2F1(λ + n, {α, β; y}; z)tn = (1− t)−λ
2F1(λ, {α, β; y}; z

1− t
) (71)

where |z| < min{1, |1− t|} and Re(λ) > 0, Re(β) > Re(α) > 0.

Proof. Considering the elementary identity:

[(1− z)− t]−λ = (1− t)−λ

[
1− z

1− t

]−λ

and expanding the left-hand side, we have for |t| < |1− z| that:

(1− z)−λ
∞

∑
n=0

(λ)n

n!

(
t

1− z

)n
= (1− t)−λ

[
1− z

1− t

]−λ

.

Now, multiplying both sides of the above equality by zα−1 and applying the incomplete fractional integral
operator Dα−β

z [ f (z); y] on both sides, we can write:

Dα−β
z

[
∞

∑
n=0

(λ)n

n!
(1− z)−λ

(
t

1− z

)n
zα−1; y

]
= (1− t)−λDα−β

z

[
zα−1

[
1− z

1− t

]−λ

; y

]
.

Interchanging the order, which is valid for Re(α) > 0 and |t| < |1− z| , we get:

∞

∑
n=0

(λ)n

n!
Dα−β

z

[
zα−1(1− z)−λ−n; y

]
tn = (1− t)−λDα−β

z

[
zα−1

[
1− z

1− t

]−λ

; y

]
.

Using Theorem 21, we get the desired result. Formula (71) can be proven in a similar way.

The following theorem gives another linear generating relation for the incomplete
hypergeometric functions.

Theorem 23. For the incomplete hypergeometric functions, we have:

∞

∑
n=0

(λ)n

n! 2F1(ρ− n, [α, β; y] ; z)tn = (1− t)−λF1[α, ρ, λ; β; z;
−zt
1− t

; y] (72)

and:
∞

∑
n=0

(λ)n

n! 2F1(ρ− n, {α, β; y} ; z)tn = (1− t)−λF1{α, ρ, λ; β; z;
−zt
1− t

; y} (73)
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where Re(λ) > 0, Re(ρ) > 0, Re(β) > Re(α) > 0; |t| < 1
1+|z| .

Proof. Considering:

[1− (1− z)t]−λ = (1− t)−λ

[
1 +

zt
1− t

]−λ

and expanding the left-hand side, we have for |t| < |1− z| that:

∞

∑
n=0

(λ)n

n!
(1− z)ntn = (1− t)−λ

[
1− −zt

1− t

]−λ

.

Now, multiplying both sides of the above equality by zα−1(1− z)−ρ and applying the fractional integral
operator Dα−β

z [ f (z); y] on both sides, we get:

Dα−β
z

[
∞

∑
n=0

(λ)n

n!
zα−1(1− z)−ρ+ntn; y

]
= (1− t)−λDα−β

z

[
zα−1(1− z)−ρ

[
1− −zt

1− t

]−λ

; y

]
.

Interchanging the order, which is valid for Re(α) > 0 and |zt| < |1− t| , we get:

∞

∑
n=0

(λ)n

n!
Dα−β

z

[
zα−1(1− z)−(ρ−n); y

]
tn = (1− t)−λDα−β

z

[
zα−1(1− z)−ρ

[
1− −zt

1− t

]−λ

; y

]
.

Using Theorem 21 and 22, we get the desired result. The generating relation (73) can be proven in a
similar way.

Finally, we have the following bilinear generating relation for the incomplete
hypergeometric functions.

Theorem 24. For the incomplete hypergeometric functions, we have:

∞

∑
n=0

(λ)n

n! 2F1(γ, [−n, δ; y] ; x) 2F1(γ, [λ + n, β; y] ; z)tn = (1− t)−λF2[λ, α, γ; β, δ;
z

1− t
;
−xt
1− t

; y] (74)

and:

∞

∑
n=0

(λ)n

n! 2F1(γ, {−n, δ; y} ; x) 2F1(γ, {λ + n, β; y}; z)tn = (1− t)−λF2{λ, α, γ; β, δ;
z

1− t
;
−xt
1− t

; y} (75)

where Re(λ) > 0, Re(γ) > 0, Re(β) > 0, Re(δ) > 0, Re(α) > 0; |t| < 1−|z|
1+|x| , and |z| < 1.

Proof. Replacing t by (1− x)t in (70), multiplying the resulting equality by xγ−1, and then applying the
incomplete fractional integral operator Dγ−δ

x [ f (x); y], we get:

Dγ−δ
x

[
∞

∑
n=0

(λ)n

n!
xγ−1

2F1(λ + n, [α, β; y] ; z)(1− x)ntn; y

]

= Dγ−δ
x

[
(1− (1− x)t)−λxγ−1

2F1(λ, [α, β; y] ;
z

1− (1− x)t
); y
]

.
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Interchanging the order, which is valid for |z| < 1,
∣∣∣ 1−x

1−z t
∣∣∣ < 1 and

∣∣ z
1−t

∣∣+ ∣∣ xt
1−t

∣∣ < 1, we can write that:

∞

∑
n=0

(λ)n

n!
Dγ−δ

x

[
xγ−1(1− x)n; y

]
2F1(λ + n, [α, β; y] ; z)

= (1− t)−λDγ−δ
x

[
xγ−1(1− −xt

1− t
) 2F1(λ, [α, β; y] ;

z
1−t

1− −xt
1−t

); y

]
.

Using Theorems 21 and 23, we get (74). The generating relation (75) can be proven in a similar way.

In the following remark, first of all, we obtained a series formula for the Gauss hypergeometric
functions as an application of Theorem 22. Similar results can be obtained for Theorem 23 and 24.
Furthermore, we showed that the result obtained in (70) coincides with usual case when y→ 1−.

Remark 3. Using the relation that is given by (13) in Equation (70), we have:

1
B(α, β− α)

∞

∑
n,k=0

(λ)n (λ + n)k
yα+k

α + k 2F1 (α + k, 1− β + α; α + k + 1; y)
zk

k!
tn

n!
(76)

=
(1− t)−λ

B(α, β− α)

∞

∑
m=0

(λ)m
m!

(
z

1− t

)m yα+m

α + m 2
F1 (α + m, 1− β + α; α + m + 1; y) (77)

which is a series identity between the Gauss hypergeometric functions. If we take y = 1 in the above identity and use
the following relation:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

we obtain:

∞

∑
n=0

(λ)n

n! 2F1(λ + n, α, β; z)tn = (1− t)−λ
2F1(λ, α, β;

z
1− t

) (78)

7. Conclusions

Recently, in [27], various applications of fractional calculus were exhibited in areas ranging from
engineering to life sciences. For the applications of fractional calculus, we should also recommend the
references of the paper [27] and, in particular, the book [21].

In the present paper, we introduced the incomplete versions of Riemann-Liouville integral operators.
Approaching the problems mentioned in [27] using these incomplete operators may give rise to interesting
perspectives on solving these problems. For instance, in a nonlocal fractional process, which occurs on an
interval, but whose behavior changes in the middle, it may be useful to consider splitting the domain into
subintervals and integrating from both sides separately using incomplete fractional operators.

These operators have already been used to define Liouville-Caputo-type incomplete fractional
derivatives in [12]. Furthermore, for the incomplete Riemann-Liouville fractional integrals defined here,
their analyticity properties have been investigated in [31]. Some of these, such as a transformation property
on the domains of the functions concerned, may also lend themselves well to applications.

Incomplete Pochhammer ratios were defined in (10) and (11) by using the incomplete beta functions.
Several properties of these functions were obtained. Incomplete hypergeometric functions were
introduced with the help of these incomplete Pochhammer ratios, and certain properties such as integral
representations, derivative formulas, transformation formulas, and recurrence relations were investigated.
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Furthermore, incomplete Riemann-Liouville fractional integral operators were defined. The incomplete
Riemann-Liouville fractional integrals for the some elementary functions were given. Linear and bilinear
generating relations for incomplete hypergeometric functions were obtained.
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