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Abstract: For inventory models with unknown distribution demand, during shortages, researchers
used the first and the second moments to derive an upper bound for the worst case, that is the
min-max distribution-free procedure for inventory models. They applied an iterative method to
generate a sequence to obtain the optimal order quantity. A researcher developed a three-sequence
proof for the convergence of the order quantity sequence. We directly provide proof for the original
order quantity sequence. Under our proof, we can construct an increasing sequence and a decreasing
sequence that both converge to the optimal order quantity such that we can obtain the optimal
solution within the predesigned threshold value.
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1. Introduction

In this paper, we directly prove that the iterative sequence proposed by Gallego [1] is convergent.
Gallego [1] provided an upper bound to estimate the shortage during the lead time for stochastic
demand inventory models, where the distribution of the demand is unknown but the first and the
second moments are known. Gallego [1] focused on proving his upper bound as a good estimation
without paying attention to the existence and uniqueness of the optimal solution. His new inventory
model is complicated so that no closed formula for the optimal solution could be found. Moreover,
his optimal solution is expressed by an implicit relation to imply a sequence solution. Additionally,
Gallego [1] did not prove his sequence to converge toward its optimal solution. Since the publication of
his approach, it has been cited 47 times. These papers can be classified into the following four categories:

(a) The construction of new inventory models: Qi et al. [2], Şen and Talebian [3], Wang et al. [4],
Kumar and Goswami [5], Sarkar et al. [6], Yu and Zhai [7], Qin and Kar [8], Yu and Zhen [9],
Moon et al. [10], Tajbakhsh [11], Gallego and ŞAhin [12], Perakis and Roeis [13], Ahmed et al. [14],
Levin et al. [15], Mostard et al. [16], Alfares and Elmorra [17], Lin [18], Hariga and Ben-Daya [19],
Talluri and Van Ryzin [20], and Gallego [21].

(b) The development of new solution procedures: Fu et al. [22], Postek et al. [23], Zhou et al. [24],
Wu and Warsing [25], Popescu [26], Gallego et al. [27], Chung et al. [28], Puerto and Fernández [29],
Tyworth and O’Neill [30], Moon and Choi [31], Moon and Yun [32], and Baganha et al. [33].

(c) The application to solve decision-making problems: Du et al. [34], Wright [35], Wang et al. [36],
Das and Maiti [37], Puerto and Rodríguez-Chía [38], Fricker and Goodhart [39], Vairaktarakis [40],
Hariga [41], Hariga and Ben-Daya [42], and Platt et al. [43].

(d) The improvement of existing solution approaches: Tuan [44], Lin [45], Ruiz-Torres and Mahmoodi [46],
Hung et al. [47], Lin et al. [48], and Lin and Chu [49].
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Papers in categories (a), (b) and (c) did not discuss the solution procedure of Gallego [1], and
so papers in categories (a), (b) and (c) are beyond the realm of our discussion. Only publications
in category (d) are in the scope of our discussion, therefore an outline of their results is provided.
There are three papers, Moon and Gallego [50], Wu and Ouyang [51] and Tung et al. [52] that are worthy
of mentioning even they did not cite Gallego [1] in their references. For distribution-free inventory
models, Gallego [1] used order quantity Q and reorder point R as decision variables. On the other hand,
Moon and Gallego [50] applied order quantity Q and safety factor k as decision variables. Wu and
Ouyang [51] extended Moon and Gallego [50] with defective items and provided an iterative sequence
solution approach. Moreover, Tung et al. [52] showed that the optimal solution for inventory models
of Wu and Ouyang [51] exists and is unique. Lin and Chu [49] verified that the optimal solution may
not occur on the boundary for inventory models with a service-level constraint. Lin et al. [48] showed
the existence and uniqueness of the optimal solution for the first partial derivative system proposed
by Gallego [1] and Moon and Gallego [50]. Lin et al. [48] also showed that the iterative sequence
solution of Wu and Ouyang [51] cannot be executed. Hung et al. [47] proved that the minimum may
not happen on the boundary for inventory models with a service-level constraint. Ruiz-Torres and
Mahmoodi [46] used simulation to show that their findings are much closer to the target service level
which reduces the total holding cost. Lin [45] constructed a three-sequence method to prove the
convergence of the sequence derived by Gallego [1]. We can claim that up to now, Lin [45] is the only
paper that had provided proof for the convergence problem of Gallego [1] and Moon and Gallego [50].
However, her approach is too tedious that contains three sequences. In this paper, we will present
a direct derivation for the original sequence proposed by Gallego [1]. Tuan [44] studied the restriction
proposed by Gallego [1] to find a more general condition such that the term by term examination in the
iterative algorithm proposed by Gallego [1] becomes unnecessary. Tuan [44] also pointed out that the
direct proof for the original sequence proposed by Gallego [1] for its convergence will be an interesting
research topic in the future. Thus, it motivates us to simplify the three-sequence approach of Lin [45]
back to the original sequence generated by the expression of Gallego [1].

From the above discussion, we know that none of the aforementioned papers directly discussed
the convergence for the iterative method proposed by Gallego [1]. The purpose of this paper is directly
to verify that Gallego’s iterative method is convergent.

2. Notation and Assumptions

To be compatible with Gallego [1], since our main concern is to prove the convergence of the
sequence generated by Gallego [1], we adopted the same notation and assumptions of Gallego [1].

Notation

D = average demand per unit of time.
h = inventory carrying cost per item per unit of time.
K = the fixed ordering cost per order.
Q = order quantities per order.
R = reorder point.
π = unit shortage cost.
µ = mean of the lead time demand.
σ2 = the variance of the lead time demand.

Assumptions

1. Backorder cost is proportional to the number of items back ordered and not to the time for which
they are outstanding.

2. F is the cumulative distribution of the lead time demand. F has known finite first and second
moments with mean µ and variance σ2 and then makes no assumptions on the distribution form
of F.
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3. The inventory model is continuously reviewed. Replenishments are made when the inventory
level drops to the reorder point R.

3. Recap of Three Related Papers

We recall the objective function for the stochastic inventory model with distribution-free demand
in Gallego [1] as follows

C(Q, ∆) =
KD
Q

+ h
(Q

2
+ ∆

)
+
πD
2Q

(√
∆2 + σ2 − ∆

)
. (1)

Remark 1. In Lin et al. [48], they considered the same objective function, however, there was a typo in
Lin et al. [48], and so the denominator of the third term in Equation (1) was typed as “Q” which should be
revised to “2Q”.

Gallego [1] took the partial derivatives with respect to Q and ∆ then he canceled out ∆ to
merge ∂

∂Q C(Q, ∆) = 0 and ∂
∂∆ C(Q, ∆) = 0 into one Equation with a single variable, Q, to derive the

next formula:

Q =

√
2KD

h
+

Dπσ
h

√
hQ

πD− hQ
(2)

under the condition πD ≥ 2hQ.
Gallego [1] had mentioned that based on Equation (2) an iterative method will generate a convergent

sequence which will converge to the optimal solution. However, up to now, except for Lin [45], none had
discussed the convergence problem proposed by Gallego [1].

Lin et al. [48] pointed out that the restriction should be revised from πD ≥ 2hQ to πD > 2hQ,
which they then used to prove that there is a unique root for the partial derivative system. However,
they did not discuss theconvergence of the iterative method of Gallego [1].

Based on Moon and Gallego [50] and Tung et al. [52], Lin [45] developed three sequences: (ki),
(Qi) and (di), with the initial point k0 = 0, and three relations:

Qn+1 =

(
B1 + B2

(√
1 + k2

n − kn

))1/2

(3)

with B1 = 2D
hδ

A + ci(Li−1 − L) +
i−1∑
j=1

c j
(
b j − a j

) and B2 = Dσ
hδ (π+ π0(1− β))

√
L,

dn+1 =
1
2

(
1− β+

D(π+ π0(1− β))
hQn+1(1− E(p))

)
(4)

and

kn+1 =
dn+1 − 1√
2dn+1 − 1

, (5)

with δ = 1 − 2E(p) +E(p2) +2(h1/h)E(p(1 − p)),where h1 is the holding cost for non-defective items, h is
the holding cost for defective items, and p is the defective rate in an order lot. In Gallego [1], there are
no defective items, then p = 0 to imply that (p) = 0, (p2) = 0 and E(p(1 − p)) = 0. Hence, δ = 1.

Lin [45] proved that (dn) and (kn) are increasing sequences and (Qn) is a decreasing sequence
bounded below by zero, so (Qn) converges and then both (dn) and (kn) are convergent.
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4. Our Improvement

The purpose of this paper is to provide proof that the following sequence

Qn+1 =

√
2KD

h
+

Dπσ
h

√
hQn

πD− hQn
, (6)

under the condition (Qn) proposed by Gallego [1] that (Qn) indeed converges, and the value it
converges to is the optimal solution. Hence, we can derive the convergence of Gallego’s iterative
method by the original sequence to simplify the three-sequence approach proposed by Lin [45].
We mention our main result in the following theorem.

Theorem 1. The ordering quantity sequence, proposed by Gallego [1], converges to its interior optimal solution.

Proof of Theorem 1. From the restriction of πD > 2hQn, we know that

hQn

Dπ− hQn
< 1. (7)

Using the restriction of πD > 2hQn, we derive an upper bound for the sequence (Qn) as,

Qn <
Dπ
2h

. (8)

On the other hand, we know that there is a natural lower bound for (Qn) as,

0 < Qn. (9)

From Equation (6), we derive that,

Q2
n+1 −Q2

n =
Dπσ

h

 1√
(Dπ/hQn) − 1

−
1√

(Dπ/hQn−1) − 1

. (10)

By Equations (9) and (10), Qn+1 > Qn is equivalent to:√
Dπ

hQn−1
− 1 >

√
Dπ
hQn

− 1 (11)

that is,
Qn > Qn−1 (12)

to derive that (Qn) is increasing, if Q1 > Q0.
Similarly, we know that Qn+1 < Qn, if Q1 < Q0 to imply that (Qn) is decreasing.
For a selected initial point Q0, there are three conditions: (a) Q0 > Q1, (b) Q0 < Q1, and (c) Q0 = Q1

that may occur.
For condition (a), from Q1 < Q0, (Qn) is a decreasing sequence bound below by zero so it converges

to its greatest lower bound.
In the following, we will prove that the greatest lower bound is greater than zero. Owing to

Qn > 0 so we have lim
n→∞

Qn ≥ 0. By the way of contradiction, we assume that lim
n→∞

Qn = 0.
It implies that lim

n→∞
Qn+1 = 0 and we compute the limit of Equation (6) for n→∞ , then it yields

that 0 =
√

2KD
h which is a contradiction so our assumption of lim

n→∞
Qn = 0 is not valid. Hence, we obtain

that lim
n→∞

Qn > 0.
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Owing to lim
n→∞

Qn satisfies Equation (2), lim
n→∞

Qn is the optimal solution since Lin et al. [48] showed
the existence and uniqueness of the optimal solution.

For condition (b), because Q0 < Q1, (Qn) is an increasing sequence bound above by
√

2
h (KD + πσ),

therefore, it converges to its least upper bound. By the same reasoning for the decreasing sequence,
lim

n→∞
Qn is the optimal solution.

For condition (c), because Q0 = Q1, this yields that (Qn) is a constant sequence so it converges to
Q0 which satisfies Equation (2) so it is the optimal solution.

Now, we combine the above findings to derive that for all three conditions (Qn) converges. and
converges to the optimal solution.

By an analytical approach with calculus, Lin et al. [48] have already proved that there is a unique
solution for the interior minimum.

Because of the limit point, lim
n→∞

Qn, satisfies the partial derivative system so it must be the optimal

solution. Therefore, (Qn) converges to the optimal solution, for all three conditions. �

5. Numerical Examples

We will present two numerical examples to illustrate that the sequence of ordering quantity, (Qn),
depending on the initial point, can be a decreasing sequence or an increasing sequence. However,
Gallego [1] and Lin et al. [48] did not provide numerical examples in their paper, so that we refer to
Lin [45] to decide the following data: K = 200, D = 600, h = 20, π = 50 and σ = 7 for our numerical
examples. We know that πD/2h is an upper bound and 0 is a lower bound for the ordering quantity.

From Table 1, we construct a decreasing sequence that is a support for our analytical result as
Q1 < Q0, then we generate a decreasing sequence.

Table 1. A decreasing sequence.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

750 150 124.499 123.122 123.044 123.040 123.039 123.039

For our second numerical example with respect to condition (b), we assume that Q0 = 0 and
using Equation (6) to derive the iterative sequence. The computation results are listed in the following
Table 2.

Table 2. An increasing sequence.

Q0 Q1 Q2 Q3 Q4 Q5 Q6

0 109.545 122.259 122.995 123.037 123.039 123.039

From Table 2, we construct an increasing sequence that is numerical evidence for our analytical
result as Q1 > Q0 then we derive an increasing sequence.

From Table 1, the decreasing sequence, we derive that the limit is less than or equal to 123.039.
From Table 2, the increasing sequence, we obtain that the limit is greater than or equal to 123.039.
Hence, we find that the optimal order quantity, Q = 123.039 up to the third decimal place.

Let us recall the order quantity sequence derived by Lin [45], where Q1 = 271.444019,
Q2 = 179.201796, Q3 = 171.872873, Q4 = 171.206597, Q5 = 171.145237, Q6 = 171.139579, Q7 = 171.139060,
Q8 = 171.139014, and Q9 = 171.139014.

From the above sequence, usually researchers have observed that the sequence decreases very
slowly until Q8 = Q9 such that they have accepted the optimal order quantity is 171.139014, up to the
sixth decimal place.



Mathematics 2019, 7, 484 6 of 10

We may hypothetically assume that Q10 = 170.142368, Q11 = 170.141352, Q12 = 170.141351,
and Q13 = 170.141351, that is the decreasing rate becomes very slow from Q6 to Q9, and then decreased
again from Q10 to Q13. Hence, only apply a decreasing sequence, researchers did not know where the
optimal solution is.

On the other hand, we can construct two sequences: in Table 1, a decreasing sequence, and in
Table 2, an increasing sequence, such that we can derive the limit, that is, the optimal order quantity
without any doubts.

In [45], the numerical data is different from our results, because Lin [45] considered inventory
models with partial back order. In Gallego [1] and this paper, shortages are fully back order.

In the following, we develop an algorithm to decide a sequence solution, denoted as Q∆,
to approximate the optimal order quantity, Q∗, within the pre-designed threshold value. We assume
that Q0 = 0 and Q1 =

√
πD/2h, and then for n = 0, 1, 2, . . .,

Q2n+2 =

√
2KD

h
+

Dπσ
h

√
hQ2n

πD− hQ2n
, (13)

and

Q2n+3 =

√√√
2KD

h
+

Dπσ
h

√
hQ2n+1

πD− hQ2n+1
(14)

Owing to Q0 = 0< Q2 =
√

2KD/h, we derive that (Q2n) is an increasing sequence. Next, to check
Q1 > Q3, we need the following lemma.

Lemma 1. For inventory models proposed by Gallego [1], we claim that,

8hK + 4hπσ < π2D (15)

Proof of Lemma 1. If Q1 =
√
πD/2h, then we compute that,

4h2

D

(
Q2

1 −Q2
3

)
= π2D− (8hK + 4hπσ). (16)

With the data K = 200, D = 600, h = 20, π = 50 and σ = 7 from Lin [45], we derive that,

8hK + 4hπσ = 6× 104, (17)

and
π2D = 15× 107 (18)

such that the inequality in Equation (15) is reasonable. �

Based on our Lemma, we imply that Q1 > Q3 and then (Q2n+1) is a decreasing sequence.
We construct our algorithm in the following.
Step 1: For a given threshold value, ε, we assume that Q0 = 0 and Q1 =

√
πD/2h.

Step 2: We check the distance between Q2n and Q2n+1, and assume

m = min
{
n : Q2n+1 −Q2n < ε

}
(19)

Step 3: Our approximated solution, denoted as Q∆, is defined as

Q∆ =
1
2
(Q2m + Q2m+1). (20)
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We demonstrate our algorithm for a threshold value ε = 10−6. We list the decreasing sequence
(Q2n+1) in Table 3 and the increasing sequence (Q2n) in Table 4.

Table 3. A decreasing sequence to the sixth decimal place.

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15

750 150 124.498996 123.121659 123.044093 123.039467 123.039453 123.039452

Table 4. An increasing sequence to the sixth decimal place.

Q0 Q2 Q4 Q6 Q8 Q10 Q12 Q14

0 109.544512 122.258644 122.995305 123.036959 123.039311 123.039444 123.039452

We compute Q1 −Q0, Q3 −Q2, . . . , Q13 −Q12 = 9× 10−6 > ε, until Q15 −Q14 = 0 < ε such that
we derive our approximated order quantity,

Q∆ =
1
2
(Q14 + Q15) = 123.039452. (21)

We consider the problem of what factor or parameters affect the speed of the convergence rate for
the sequence generated by the iterative procedure proposed by Gallego [1].

We compute that:

Q2
n+2 −Q2

n+1 = πDσ
h

(√
hQn+1

πD−hQn+1
−

√
hQn

πD−hQn

)
= πDσ

h

(√
hQn+1

πD−hQn+1
+

√
hQn

πD−hQn

)−1(
hQn+1

πD−hQn+1
−

hQn
πD−hQn

)
= πDσ

h

(√
hQn+1

πD−hQn+1
+

√
hQn

πD−hQn

)−1(
πDh(Qn+1−Qn)

(πD−hQn+1)(πD−hQn)

)
.

(22)

Based on Equation (22), when n is big enough, we derive that,

∣∣∣Qn+2 −Qn+1
∣∣∣ ≈ π2D2σ

4((πD− hQ∗)Q∗)1.5h0.5

∣∣∣Qn+1 −Qn
∣∣∣. (23)

First, we derive
π2D2σ

4((πD− hQ∗)Q∗)1.5h0.5
= 0.056464. (24)

Next, we refer to Table 4, and find that,

Q10 −Q8

Q8 −Q6
= 0.056469, (25)

Q12 −Q10

Q10 −Q8
= 0.056464, (26)

and
Q14 −Q12

Q12 −Q10
= 0.056464. (27)

If we compare Equations (24)–(27) to show that our estimation of the converge rate of Equation (24)
is very accurate when n is big enough after five iterations.
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To estimate which factor influences the converge rate, we consider πD− hQ∗ ≈ πD, and then we
simplify our result of Equation (24) as,√

πD/h
Q∗

σ
4Q∗

= 0.049685 (28)

with √πD/h
Q∗

σ
4Q∗

/ π2D2σ

4((πD− hQ∗)Q∗)1.5h0.5
= 0.049685/0.056464 = 0.88, (29)

to indicate
√
πD/h

Q∗
σ

4Q∗ can interpret 88% of the converge rate such that we claim that the main factors

for the convergence rate are (i) σ, (ii)
√
(πD/h)/Q∗ and (iii) Q∗.

Finally, three related papers of Braglia et al. [53,54] and Castellano et al. [55] are worth mentioning.

6. Conclusions

Our paper provides a patchwork for the Gallego’s iterative method since its convergence has not
yet been proven. Moreover, we showed that there are three possible conditions for convergence which
is a generalization of Lin [45].
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