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Abstract: The beauty of the proportional-integral-derivative (PID) algorithm for feedback control
is its simplicity and efficiency. Those are the main reasons why PID controller is the most common
form of feedback. PID combines the three natural ways of taking into account the error: the actual
(proportional), the accumulated (integral), and the predicted (derivative) values; the three gains
depend on the magnitude of the error, the time required to eliminate the accumulated error, and the
prediction horizon of the error. This paper explores the new meaning of integral and derivative
actions, and gains, derived by the consideration of non-integer integration and differentiation orders,
i.e., for fractional order PID controllers. The integral term responds with selective memory to the
error because of its non-integer order λ, and corresponds to the area of the projection of the error
curve onto a plane (it is not the classical area under the error curve). Moreover, for a fractional
proportional-integral (PI) controller scheme with automatic reset, both the velocity and the shape of
reset can be modified with λ. For its part, the derivative action refers to the predicted future values of
the error, but based on different prediction horizons (actually, linear and non-linear extrapolations)
depending on the value of the differentiation order, µ. Likewise, in case of a proportional-derivative
(PD) structure with a noise filter, the value of µ allows different filtering effects on the error signal to
be attained. Similarities and differences between classical and fractional PIDs, as well as illustrative
control examples, are given for a best understanding of new possibilities of control with the latter.
Examples are given for illustration purposes.

Keywords: fractional; control; PID; parameter; meaning

1. Introduction

The proportional-integral-derivative (PID) controller is distinguished as the most common form
of feedback. In process control today, more than 95% of the control loops are of PID type, but these
controllers can be found in all areas where control is used.

Despite its straightforward structure, the popularity of PID controllers lies in the simplicity of
the design procedures and in the effectiveness obtained to the system performance [1]. Those are
the main reasons why PID controllers have survived many changes in technology, from mechanics
and pneumatics to microprocessors via electronic tubes, transistors, integrated circuits, among others.
Actually, practically all PID controllers made today are based on microprocessors, so this electronic
element has had a dramatic influence on this kind of control providing PIDs additional advances
features, such as gain scheduling, continuous adaptation, and automatic tuning [2].

From the control engineering point of view, improving system behavior is the major concern.
To that end, the generalization of classical PID controllers to non-integer orders of integration and
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differentiation was firstly proposed in [3]. Intuitively, with this extension of classical PIDs there are
more tuning parameters and, consequently, more flexibilities in adjusting time and frequency responses
of the control system. This also translates in more robustness in designs.

However, the first step when applying an existing or new controller is to understand exactly
what their actions can do in closed-loop in order to take full advantage of the possible effects on the
system response. In the case of integer order, the interpretation of the three actions of PIDs seems to be
clear [4–6]:

• the proportional action is simply proportional to the current control error;
• the integral action is related to the past values of the control error, so represents the accumulated

error, i.e., the area under the error curve;
• the derivative action predicts future values of the error or, in other words, corrects based on the

rate of change of the deviation from the set-point.

Since the pioneering work of Podlubny, there is ample evidence that supports that fractional
order PIDs (FOPIDs) have been extensively studied and applied in many fields. Undoubtedly, the lists
that are reported below are quite far from aiming at completeness, failing to mention literal hundreds
of other published texts related to FOPIDs; relevant and recent papers were selected for giving the
reader an idea of the development volume on this topic that can be found in the specialized literature.
Fundamentals of FOPIDs can be found in, e.g., [7–10]. In what concerns design methods, among the
reported, the following can be highlighted: Ziegler–Nichols-type rules [11–14], optimal tuning [15–18],
tuning for robustness purposes [19–21], auto-tuning [22,23], and tuning based on reducing the number
of parameters [24]. Likewise, numerous advanced control schemes based on FOPID controllers
were proposed, such as, Smith predictors structures [25–27], internal mode control [28–30], hybrid
control [31], gain scheduling [32–34], gain and order scheduling [35,36], among others. Current reviews
in the development of FOPIDs can be found in [37–42]; likewise, few current examples of application
in industry are described in [43–50].

Despite so many variations and applications of the FOPID algorithm, as well as design and
tuning methods, up to now a detailed description of the meaning of the parameters of such controllers
cannot be found in the literature. Nevertheless, although few, studies on the geometric and physical
interpretation of integrals and derivatives of arbitrary (not necessary integer) order have been
published [51,52], but it still remains as an open problem.

These circumstances make the understanding of the meaning of the parameters of FOPIDs
a priority. With so much in play, this paper explores the new meaning of integral and derivative
actions, and gains, derived by the consideration of non-integer integration and differentiation orders.
Similarities and differences between classical and fractional PIDs, as well as illustrative control
examples, are given for a best understanding of new possibilities of control with the latter.

The remainder of this paper is organized as follows. Section 2 describes the control algorithm
of classical PID and its generalization to non-integer order. Section 3 explains the meaning of the
parameters of non-integer PIDs. Section 4 discusses similarities and differences between classical and
fractional PIDs. Illustrative examples are given in Section 5. Main conclusions of this paper are drawn
in Section 6.

2. Generalities

This section describes the control algorithm of classical PIDs and its generalization to
non-integer order.

2.1. Classical PID Controller

The use of PID control consists of applying properly the combination of three types of corrective
actions to the error signal, which represents how far or near is the desired output from the actual
output. As widely known, these three control actions are proportional, integral and derivative.
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The key aspect when tuning PID controllers is in deciding how to best combine those three terms
to achieve the most efficient regulation of the process variable for the considered problem. As well
known, the most obvious way is to use a simple weighted sum where each term is multiplied by
a tuning constant or gain, and the results are then added together as follows:

u(t) = Kp

(
e(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

)
, (1)

where u(t) is the control signal, e(t) is the control error (e = ysp − y, i.e., the difference between the
desired set-point, ysp, and the measured process variable, y), and Kp, Ti, and Td are the controller
parameters: proportional gain, integral time constant, and derivative time constant, respectively.

Control law (1) guarantees that the present (due to the proportional action), the past (by means
of the integral action) and the future of the error (by the derivative action) are taken into account,
as shown in Figure 1. Two main observations can be made to (1): (1) the controller needs only compute
the current error between the measured process variable and the desired set-point to calculate how
much and how fast that difference has been changing over time, and (2) the relative contributions of
each term then can be then adjusted by choosing appropriate values of the controller parameters.

Present

Past Future

e

te(t) e(t+ Td)

e(t) + Td
de(t)

dt

Figure 1. Evolution of the error (classical proportional-integral-derivative (PID) controllers).

2.2. Fractional Order PID Controller

The generalization to non-integer orders of (1) leads to the typical algorithm of a FOPID
controller, i.e.,

u(t) = Kp

(
e(t) +

1
Ti
D−λe(t) + TdDµe(t)

)
, (2)

where and λ, µ ∈ R+ are the non-integer orders of the integral and derivative terms, respectively,
and D is the fractional operator defined as Riemann–Liouville as [10,53]

D−n f (t) =
1

Γ(n)

∫ t

0
f (y)(t− y)n−1dy, (3)

(n is a general non-integer order, and Γ(−), the gamma function).
Similarly to the classical version, control law (2) combines the three natural ways of taking into

account the error: current, accumulated, and predicted error. However, in contrast to the integer
counterpart, fractional operators are non local, which results in new meaning of the integral and
derivative actions, and gains. In particular, the fractional integration of the error is not already the
area under its curve; it can be viewed as the area of the projection of the curve onto a plane. Hence,
what the integration order λ is doing is a selection of the history of the error or, what is the same,
the integral term responds with selective memory to the past values of the error. For its part, the action
of a controller with proportional and fractional derivative action may be interpreted as if the control
is made proportional to the predicted process output, where the prediction is definitively different
from the classical case: it is made by extrapolating the error by a straight line that is not tangent to the
error curve at the current value of the error, or by a curve (i.e., linear and non-linear extrapolations).
More details of these and other possibilities will be explained in Section 3.
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Figure 2 is an attempt to illustrate these effects. It should be remarked that, in this figure, the error
was considered as the function e(t) = t + 0.5 sin(t) (taken from [51]). To show the integral and
derivative effects for non-integer orders, it must be said that:

• For integral action, left-side Riemann-Liouville fractional integral of the error was considered as:

0 Iλ
t e(t) =

∫ t

0
e(τ)dgt(τ), (4)

where
gt(τ) =

1
Γ(λ + 1)

(
tλ − (t− τ)λ

)
. (5)

Then, taking the axes τ, gt and e, function gt(τ) was plotted in the plane (τ, gt) for 0 ≤ τ ≤ t.
Along the obtained curve, a “fence” was plotted varying e(τ), so the top edge of the “fence” is
a 3D line (τ, gt(τ), e(τ)) for 0 ≤ τ ≤ t. The area of the projection of this “fence” onto the plane
(τ, e) corresponds to the value of the integer order integral of the error (i.e., the classical area
under the curve), whereas that of the projection onto the plane (gt, e) corresponds to the value of
fractional order integral (4). All this reasoning was adapted from [51].

• For derivative action, straight lines that pass through the point e(t) and whose slope matches the
value of the differentiation of order µ of the error curve at that point were plotted.

The following values of the orders were taken for simulations: λ = 0.75, µ1 = 1.4, µ2 = 1,
and µ3 = 0.4.
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Figure 2. Evolution of the error (fractional PID controllers).

3. Going Into Detail About Parameters

This section contains the explanation of the meaning of the parameters of FOPID controllers,
in comparison with those classical of integer order. It should be remarked that, despite the fact
the proportional action is not affected by a fractional order, it is also included for completeness
of information.
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3.1. Proportional Action

The proportional action increases the deviation between the set-point value ysp and the system
output y (i.e., the error) with the proportional gain Kp. The main drawback of using a pure proportional
control action is that it produces a steady-state error, which motivates that it can be also considered as:

u(t) = Kpe(t) + ub, (6)

where ub is a bias or reset [4]. Indeed, when e = 0, the control signal reduces to u(t) = ub.
The parameter ub usually takes the value (umax + umin)/2, where umax and umin are the maximum and
minimum limits of the actuator, respectively. However, sometimes ub can be adjusted manually to
a value that ensures that the steady-state error is zero at a given set-point.

Likewise, the proportional gain can be specified in terms of its inverse proportional band,
Pb, which represents the percentage of change in the error signal necessary to cause a full-scale
change in the proportional action. As can be observed in Figure 3, the tendency of y to oscillate
increases as Pb decreases. The large oscillations occurring with a small Pb are due to the fact that
the power is reduced very quickly when the system output enters the proportional band, meaning
a balanced state cannot be established immediately.

Indeed, confusing “proportional band” with “proportional gain” leads to a decreased proportional
action when the control engineer wants more, and vice-versa.

Pb PbSmall

t

PbLarge

t

ysp

y

ysp ysp

yy

Medium

t

Figure 3. System response for different Pb.

3.2. Integral Action

The main function of the integral action is to guarantee that the steady-state error is zero, i.e.,
the output of the controlled system is equal to the desired set-point in steady-state. The following
simple explanation proves this affirmation. Let us consider a system controlled by a fractional order
proportional-integral (PI) controller in steady-state where both the control signal (uss) and the error
(ess) are constant. If this is the case, the control signal will be given by [3]

uss = Kp

(
ess +

ess

Ti

tλ

Γ(λ + 1)

)
. (7)

While ess 6= 0, this clearly contradicts the hypothesis that the control signal uss is constant.
Thus, similarly to the integer case, a controller with integral action of fractional order will always give
zero error in steady-state.

Integral action was known originally as a device that automatically resets the bias ub of
a proportional controller. Figure 4 shows the scheme of the extension to non-integer orders of a PI
controller with automatic reset. As can be observed, the first order filter in the feedback loop is replaced
by its fractional version of order λ. From the block diagram, the control signal can be obtained as

u = Kpe + I, (8)



Mathematics 2019, 7, 530 6 of 16

with

I = U(s)
1

1 + Tisλ

⇒ I + Ti
dλ I
dt

= e,

⇒ TiDλ I = Kpe

⇒ I = Kp
1
Ti
D−λe(t). (9)

Substituting (9) in (8), the control signal is given by

u(t) = Kp

(
e(t) +

1
Ti
D−λe(t)

)
, (10)

thus the control scheme of the figure is equivalent to a fractional order PI controller. Figure 5 shows
unit step responses of the fractional system in the feedback loop in Figure 4. Unlike the integer order
case (see Figure 5a), both the velocity and the shape of resetting can be controlled by the integration
order, λ, as shown in Figure 5b. It can be observed that it is even possible to obtain underdamped
responses when λ > 1.

1

1 + Tisλ

ue
+
+KP

I

Figure 4. Fractional proportional-integral (PI) controller scheme (classical implementation with
automatic reset).

It is important to remark that function fode_sol() was taken from [10] to obtain the step responses
in MATLAB.
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Figure 5. Effects of the automatic reset of the integral action when changing: (a) integral time constant
Ti (integer case) (b) integration order λ (fractional case).
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3.3. Derivative Action

The objective of the derivative action is to improve the system stability in closed-loop. Classical
derivative controllers give responses to changing error signals but do not, however, respond to constant
error signals, since with a constant error the rate of change of error with time is zero. Because of this,
the derivative term is combined with, at least, the proportional term. By contrast, fractional derivative
controllers do response to constant error signals; the differentiation of fractional order of a constant is
different from zero.

The derivative action of a proportional-derivative (PD) controller can be viewed as a crude
prediction of the error in future, where the prediction is made by extrapolating the error by the tangent
to the error curve at time t, being Td the prediction horizon (see Figure 1). (Actually, the derivative
action uses linear extrapolation, not prediction.) For the fractional case, the basic structure of the
controller is

u(t) = Kp (e(t) + TdDµe(t)) . (11)

Analogously to the classical case, an approximation of e(t + Td) may be

e(t + Td) ≈ e(t) + TdDµe(t). (12)

The control signal is then proportional to an estimation of the error at time Td ahead over
a straight line that, in general, is not tangent to the error curve, and whose slope matches the value of
the differentiation of µ-th order of the error curve at the point e(t) [52], as shown in Figure 2. Likewise,
another way of viewing the prediction is from fractional Taylor series for fractional derivatives. In this
case, the prediction horizon is done over a curve (i.e., non-linear extrapolation). More details about
prediction can be found in Appendix A.

Therefore, different prediction horizons (in fact, linear and non-linear extrapolations) for the error
can be obtained choosing accordingly the value of µ.

The classical implementation of a fractional derivative action is illustrated in Figure 6. From this
figure, the following relation can be obtained

U(s) =
(

1− 1
1 + Tdsµ

)
E(s) =

Tdsµ

1 + Tdsµ E(s), (13)

which corresponds to a derivative action of fractional order with noise filter. It is well known that the
derivative part of the PID controller requires low-pass filtering to limit the high-frequency gain.

−1

1 + Tdsµ

ue

1

+

+

Figure 6. Fractional order derivative action scheme (classical implementation).

Let us focus only on the noise filter of (13), i.e.,

G f (s) =
1

1 + Tdsµ . (14)
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Notice that: (1) it has the property G f (0) = 1 to ensure that the process output equals the set-point
in steady-state; (2) as usual, it has a low-pass character; and (3) the order of the filter is µ.

In the literature, the classical filters to reduce noise effects in PID controllers are up to second
order, usually given as follows [54]:

G f 1(s) =
1

1 + Tf s
, (15)

G f 2(s) =
1

1 + Tf s + T2
f /2s2

, (16)

where Tf is the filter time constant. Note that filter (16) has complex poles with damping ratio
δ = 0.707.

Figure 7 shows Bode plots of the filters, of both integer and fractional order, for Td = Tf = 0.1.
As can be seen in Figure 7b, changes in the order µ allow to have different frequency responses ranged
between those of the two integer filters (Figure 7a), and consequently, different filtering effects on
the error signal can be attained. Another issue to take into account is that most design methods for
classical PIDs do not consider noise. Due to this fact, the filter time constant is often suggested to
be chosen as a fraction of the derivative time, i.e., Tf = Td/N. However, this solution has severe
drawbacks, as reported in [55]. On the contrary, this is not necessary for the fractional case because
there is an only parameter to be tuned, µ, and it is included in the controller design.
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Figure 7. Frequency response of the noise filter: (a) first and second order low-pass filters (integer case)
(b) fractional filter for different values of µ (fractional case). For simulations, the following values were
taken: Td = Tf = 0.1.

4. Classical Versus Fractional PIDs

This section discusses the similarities and differences between classical and fractional PIDs.
In particular, only integral and derivatives parts are compared— the proportional part is similar for
both kinds of controllers. The properties described below are summarized in Table 1.
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Table 1. Similarities and differences between classical and fractional proportional-integral-derivatives
(PID) controllers.

Action Domain Effect on Integer Fractional

I

Time

Steady-state error Elimination

u with respect
to the sign of e

If e > 0, u grows linearly with time The same but the growing or
the decrease is not linear with timeIf e < 0, u decreases linearly with time

Automatic reset The velocity of reset can be changed
Both the velocity and the shape of
reset can be changed

Frequency Frequency
response

The magnitude curve decreases with
a slope of 20 dB/dec

The magnitude curve decreases with
a slope of 20λ dB/dec

Decrease of π/2 rad in the phase
curve

Decrease of (πλ)/2 rad in the phase
curve

D

Time

Constant errors
Does not response, so the derivative
term needs to be combined with, at
least, the proportional term

Does response, so the derivative term
can be used individually

Prediction
horizon

Time Td ahead over the tangent to
the error curve at e(t)

Time Td ahead over a curve (non-linear
extrapolation) or over a straight line (linear
extrapolation) that passes through the point
e(t) and whose slope matches the
value of the fractional differentiation of
order µ of the error curve at that point

Frequency

Frequency
response

The magnitude curve grows with
a slope of 20 dB/dec

The magnitude curve grows with a slope
of 20λ dB/dec

Increment of π/2 rad in the phase
curve

Increment of (πλ)/2 rad in the phase
curve

Filtering

Low-pass filters up to second order Low-pass filter of order µ

Usually needs two parameters to be
tuned, i.e., Tf (filter time constant)
and N (ratio between Td and Tf )

Parameter µ allows to have different
frequency responses, ranged between those
of the two integer filters, and consequently,
have different filtering effects on the error
signal.

4.1. Integral Part

As is well known, the main effects of the integral action are those that make the system response
slower, decrease its relative stability, and eliminate the steady-state error for inputs for which previously
had a finite error. These effects can be observed in the different domains of analysis as follows. In the
time-domain, the effects on the transient response cause a decrease of the rising time and an increase of
the settling time and the overshoot. In the complex plane, the integral action causes a displacement of
the root locus of the system towards the right half-plane. Finally, in the frequency-domain, an increase
of −20 dB/dec in the slopes of the magnitude curves and a decrement of π/2 in the phase plots can
be observed.

In the case of a fractional integration order λ ∈ (0, 1), the selection of the value of λ translates
into a certain weighting of the effects mentioned above. In the time-domain, for example, due to the
fact that the integral action only responds to errors other than zero by increasing the control action,
for positive errors, and decreasing it in case of negative, if the error is constant, the control action
can be ramped up with different slopes or velocities, as can be observed in Figure 8a. For a square
error signal (Figure 8b), it can be observed that there is a set of effects of the control action over the
error that range from the pure proportional action (λ = 0) to the classical integral action (λ = 1).
For intermediate values of λ, the control action grows when the error is constant, which results in
a removal of the steady-state error, whereas decreases when the error goes to zero, which reduces the
instability of the system. In the complex plane, it can be seen that the selection of a value of parameter
λ moves the root locus of the system towards the right half-plane. In the frequency-domain, the fact
that λ can vary between 0 and 1 introduces the possibility of adding a constant increment to the slope
of the magnitude curve between 0 and −20 dB/dec (actually, a value of −20λ dB/dec), as well as
a constant lag to the phase curve between 0 and −π/2 rad (specifically, a value of −(πλ)/2 rad).
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Figure 8. Effects of the integral action according to integration order λ on different error signals:
(a) constant (b) square.

4.2. Derivative Part

The derivative action increases the system stability and tends to accentuate the noise effects at
high frequencies. In the time-domain, this is manifested, mainly, by a decrease in both the overshoot
and the settling time. In the complex plane, it produces a displacement of the system root locus
towards the left half-plane. In the frequency-domain, a constant phase lead of π/2 and an increase of
20 dB/dec in the slopes of the magnitude curves.

Following a reasoning parallel to that made for the integral action, it is easy to understand that all
these effects are weighted by choosing an appropriate value of the order of the derivative, µ ∈ (0, 1)
(see Figure 9).
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Figure 9. Effects of the derivative action according to differentiation order µ on a trapezoidal signal.

5. Illustrative Examples

This section provides two examples to illustrate the properties of both integral and derivative
actions, as well the effects of their fractional orders.

Example 1. Let us consider a system given by the following transfer function [4]

G(s) =
1

(s + 1)3 (17)
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controlled by a fractional order PI of the form:

C(s) = Kp

(
1 +

1
Tisλ

)
(18)

To illustrate the properties of the integral action and the effect of its fractional order, Figure 10
shows unit step responses in closed-loop of system (17) controlled by fractional PI controller (18).
The proportional gain is constant, Kp = 1, whereas the integral time Ti and λ are changed individually
in Figure 10a,b, respectively. More precisely, responses for the classical case (λ = 1) are plotted
in Figure 10a. As expected, the steady-state error is removed when Ti takes finite values; the case
Ti = ∞ corresponds to pure proportional control, where the steady-state error is 50 percent. Likewise,
the smaller the values of Ti, the faster the response, but the more oscillatory [4]. The effects of changing
the integration order, λ, can be seen in Figure 10b (Ti is fixed to 2). In this case, the smaller the values of
λ, the slower the response. Unlike Ti, oscillations and system response are not affected by parameter λ.
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Figure 10. Step responses in closed-loop of system (17) controlled by fractional PI controller (18) when
changing: (a) integral time constant Ti (Kp = 1, λ = 1) (b) integration order λ (Kp = 1, Ti = 2).

Example 2. Now, consider the double integrator with unit gain, i.e.,

G(s) =
1
s2 (19)

controlled by a fractional order PD of the form:

C(s) = Kp (1 + Tdsµ) . (20)

The properties of the derivative action and its non-integer order are illustrated in Figure 11,
which shows unit step responses in closed-loop of system (19) controlled by fractional PD controller
(20). Similarly to the previous example, the proportional gain is constant, Kp = 1, whereas the
derivative time Td and µ are changed in an individual way in Figure 11a,b, respectively. In particular,
responses for the classical case (µ = 1) are plotted in Figure 11a. As expected, damping increases
when Td increases. In other words, the higher the values of Td, the faster the response. The effects
of changing µ can be observed in Figure 11b (Td is set to 2). In this case, the smaller the values of µ,
the slower the damping. Unlike Td, µ only affects the overshoot.
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Figure 11. Step responses in closed-loop of system (19) controlled by fractional PD controller (20) when
changing: (a) derivative time constant Ti (Kp = 1, µ = 1) (b) integration order µ (Kp = 1, Td = 2).

It must be said that the function fode_sol() was also used to obtain the step responses of
both examples.

6. Conclusions

Although ample studied and successfully applied to many kinds of control problems,
the extension of classical proportional-integral-derivative (PID) controllers to non-integer orders
presents a main weakness: basis, in terms of understanding of the effects of their parameters on the
system response, is sometimes omitted, and even unknown. This can be explained, in part, because the
geometric and physical interpretation of integrals and derivatives of arbitrary (not necessary integer)
order still remains as an open problem. This paper has focused on the new meaning of integral
and derivative actions, and gains, derived by the consideration of non-integer integration and
differentiation orders, i.e., for fractional order PID (FOPID) controllers. Similarities and differences
between classical and fractional PIDs, as well as illustrative examples were given for a best
understanding of the possibilities of control with the latter.

When the integral term is concerned, it was shown that it responds with selective memory because
of the non-integer order λ. That was also viewed as the area of the projection of the error curve onto
a plane, which is definitively different from the classical area under the error curve. Moreover, taking
into account a fractional proportional-integral (PI) controller scheme with automatic reset, unlike the
integer order case, it was also shown that both the velocity and the shape of resetting can be controlled
by the integration order, λ.

With respect to derivative action, it was illustrated that different prediction horizons (in fact, linear
and non-linear extrapolations) for the error can be obtained for a fractional proportional-derivative
(PD) choosing accordingly the value of the differentiation order, µ. Likewise, in case of an structure
with noise filter, the value of µ allows different filtering effects on the error signal to be attained.
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Appendix A. Analysis of Prediction Horizon

This appendix gives information about the approximation of the prediction of the error at
time Td ahead, i.e., the approximation of e(t + Td) to understand the meaning of a fractional order
derivative action.

Given a continuous function y, the fractional Euler method establishes that [56]

y(ti+1) ≈ y(ti) +Dµy(ti)
hµ

Γ(µ + 1)
((i + 1)µ − iµ) . (A1)

Let assume that the error e(t) is a continuous function, and Td = kh, k ∈ Z+, where h is a fixed
step. Thus, e(t + Td) can be approximated by:

e(t + Td) ≈ e(t) +Dµe(t)
hµ

Γ(µ + 1)

(
Tµ

d − tµ
)

, (A2)

which is referred to as approximation #1. Likewise, analogously with the integer case, the prediction
may be also expressed as

e(t + Td) ≈ e(t) + TdDµe(t), (A3)

It is referred to as approximation #2.
Hence, taking into account approximation #1, the prediction in future of the error is done from

a non-linear extrapolation due to the fact that the term on the right in (A2) is non-linear. In contrast,
the prediction with (A3) is carried out over a straight line (linear extrapolation) that passes for point
t, and whose slope matches the value of the µ-th order differentiation of the error. Thus, the control
signal is proportional to an estimation of the control error at time Td ahead, where that estimation
is obtained by non-linear or linear extrapolation. Both predictions are illustrated in Figure A1 for
different values of µ and Td, namely, µ = {0.4, 0.8, 1, 1.25} and Td = {1, 2, 1.5}, and considering the
error as e(t) = t + 0.5 sin(t) and e(t) = 0.01t2(1− 2 cos(t)). As can be observed, although there are big
differences between the approximations above, the prediction function assumed to the derivative term
is guaranteed at time Td ahead, especially when approximation given by (A2) is taken: it approaches,
to a large extent, the actual curve of the error.
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Figure A1. Prediction horizons of derivative part depending on the order µ: (a) µ = 0.4, Td = 2
(b) µ = 0.8, Td = 1 (c) µ = 1, Td = 1 (d) µ = 1.25, Td = 1.5. Notice that cases (a) and (c) correspond to
the error as the function e(t) = t + 0.5 sin(t), whereas the error is given by e(t) = 0.01t2(1− 2 cos(t))
in cases (b) and (d).
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