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Abstract: We mainly study the transcendental entire solutions of the differential equation
f n(z) + P( f ) = p1eα1z + p2eα2z, where p1, p2, α1 and α2 are nonzero constants satisfying α1 6= α2

and P( f ) is a differential polynomial in f of degree n− 1. We improve Chen and Gao’s results and
partially answer a question proposed by Li (J. Math. Anal. Appl. 375 (2011), pp. 310–319).
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1. Introduction and Main Results

In the past several decades, a great deal of mathematical effort in complex analysis has been
devoted to studying differential equations, differential-difference equations and difference equations.
The essential reason is penetration and application of Nevanlinna theory for the difference operator,
see [1–4]. In this study, we assume readers are familiar with the standard notations and fundamental
results used in the theory such as the characteristic function T(r, f ), the proximity function m(r, f ) and
the counting function N(r, f ), see [5–8]. Moreover, we use the notations ρ( f ) and ρ2( f ) to denote the
order and the hyper-order of f , respectively.

Many scholars recently have had tremendous interest in developing solvability and existence
of solutions of non-linear differential equations and differential-difference equations in the complex
plane, see [9–15].

In 2011, Li [16] considered to find all entire solutions of the following nonlinear
differential equation

f n(z) + P( f ) = p1eλz + p2e−λz (1)

and obtained the following result.

Theorem 1. (see [16]) Let n ≥ 2 be an integer, P( f ) be a differential polynomial in f of degree at most
n− 1 and λ, p1, p2 be three nonzero constants. If f is a meromorphic function of Equation (1) satisfying
N(r, f ) = S(r, f ), then there exist two nonzero constants c1, c2 (cn

i = pi) and a small function c0 of f such that

f = c0 + c1e
λz
n + c2e−

λz
n .

Li [16] also investigated p1eα1z + p2eα2z for two distinct constants α1 and α2 instead of
p1eλz + p2e−λz in the right side of Equation (1) and obtained the following results.
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Theorem 2. (see [16]) Let n ≥ 2 be an integer, P( f ) be a differential polynomial in f (z) of degree at most
n− 2 and α1, α2, p1, p2 be nonzero constants satisfying α1 6= α2. If f (z) is a transcendental meromorphic
solution of the following equation

f n(z) + P( f ) = p1eα1z + p2eα2z (2)

satisfying N(r, f ) = S(r, f ), then one of the following relations holds:

(1) f (z) = c0(z) + c1e
α1z

n ;
(2) f (z) = c0(z) + c2e

α2z
n ;

(3) f (z) = c1e
α1z

n + c2e
α2z

n and α1 + α2 = 0,

where c0(z) is a small function of f and constants c1 and c2 satisfy cn
1 = p1 and cn

2 = p2, respectively.

For further study, Li proposed a related question:

Question 1. How to find the solutions of Equation (2) if deg P( f ) = n− 1?

The question was studied by Chen and Gao [17]. They partially answered it and obtained the
following result.

Theorem 3. (see [17]) Let a(z) be a nonzero polynomial and p1, p2, α1, α2 be nonzero constants such that
α1 6= α2. If f (z) is a transcendental entire solution of finite order of the differential equation

f 2(z) + a(z) f ′(z) = p1eα1z + p2eα2z (3)

satisfying N(r, 1
f ) = S(r, f ), then a(z) must be a constant and one of the following relations holds:

(1) f (z) = c1e
α1z

2 , ac1α1 = 2p2 and α1 = 2α2;
(2) f (z) = c2e

α2z
2 , ac2α2 = 2p1 and α2 = 2α1,

where c1 and c2 are constants satisfying c2
1 = p1 and c2

2 = p2, respectively.

Now, we remove the condition that f (z) is a finite-order function, improve Theorem 3 and obtain
the following result.

Theorem 4. Let a(z) be a nonzero polynomial and p1, p2, α1, α2 be nonzero constants such that α1 6= α2.
Suppose that f (z) is a transcendental entire solution of the differential Equation (3) satisfying N(r, 1

f ) = S(r, f ).
Then a(z) must be a constant and one of the following relations holds:

(1) f (z) = c1e
α1z

2 , ac1α1 = 2p2 and α1 = 2α2;
(2) f (z) = c2e

α2z
2 , ac2α2 = 2p1 and α2 = 2α1,

where c1 and c2 are constants satisfying c2
1 = p1 and c2

2 = p2, respectively.

Next we consider the general case in Question 1 and obtain the following theorem.

Theorem 5. Let n ≥ 2 be an integer. Suppose that P( f ) is a differential polynomial in f (z) of degree n− 1
and that α1, α2, p1 and p2 are nonzero constants such that α1 6= α2. If f (z) is a transcendental meromorphic
solution of the differential Equation (2) satisfying N(r, f ) = S(r, f ), then ρ( f ) = 1 and one of the following
relations holds:

(1) f (z) = c1e
α1z

n and cn
1 = p1;

(2) f (z) = c2e
α2z

n and cn
2 = p2, where c1 and c2 are constants;
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(3) T(r, f ) ≤ N1)(r, 1
f ) + T(r, ϕ) + S(r, f ), where N1)(r, 1

f ) denotes the counting function corresponding
to simple zeros of f and ϕ( 6≡ 0) is equal to α1α2 f 2 − n(α1 + α2) f f ′ + n(n− 1)( f ′)2 + n f f ′′.

Three examples are shown to illustrate the cases (1)–(3) of Theorem 5.

Example 1. Let f (z) = ez be an entire solution of the differential equation

f 2(z) + f ′(z) = e2z + ez,

where c1 = 1 and p1 = 1. It implies the case (1) occurs.

Example 2. Let f (z) = 2e2z be an entire solution of the differential equation

f 2(z) + 1
8 f ′′(z) = e2z + 4e4z,

where c2 = 2 and p2 = 4. It implies case (2) occurs.

Example 3. Let f (z) = ez − 1 be an entire solution of the differential equation

f 2(z) + ( f ′ − 1) = e2z − ez.

We can easily verify the inequality T(r, f ) ≤ N1)(r, 1
f ) + T(r, ϕ) + S(r, f ), where ϕ = 2 f 2 − 6 f f ′ + 2( f ′)2

+2 f f ′′ = 2. It implies that case (3) occurs.

Remark 1. From Theorem 4 and Example 3, we conjecture that case (3) in Theorem 5 can be removed if
N(r, 1/ f ) = S(r, f ).

In [18], Wang and Li investigated the following differential-difference equation

f n(z) + q(z) f (k)(z + c) = aeibz + de−ibz (4)

and obtained the existence of entire solutions when n ≥ 3.
In 2018, Chen and Gao went far to study Equation (4) with n = 2. They obtained the

following theorem.

Theorem 6. (see [17]) Let a(z) be a nonzero polynomial, k ≥ 0 be an integer and p1, p2, λ, c be nonzero
constants. If f (z) is a transcendental entire solution of finite order of the differential-difference equation

f 2(z) + a(z) f (k)(z + c) = p1eλz + p2e−λz, (5)

then a(z) must be a constant and one of the following relations holds:

(1) f (z) = ± i
2 a( λ

2 )
k + c1e

λz
2 + c2e−

λz
2 and eλc = −1, when k is odd;

(2) f (z) = ± 1
2 a( λ

2 )
k + c1e

λz
2 + c2e−

λz
2 and eλc = 1, when k is even and k > 0, where a, c1 and c2 are

constants with 1
64 a4( λ

2 )
4k = p1 p2 and c2

i = pi (i = 1, 2);
(3) f (z) = ± 1

2 a + c1e
λz
2 + c2e−

λz
2 and eλc = 1, when k = 0, where a, c1 and c2 are constants with

1
64 a4 = p1 p2 or 9

64 a4 = p1 p2 and c2
i = pi (i = 1, 2).

For the right side of Equations (4) and (5), a question to be raised is how to find the existence
of solutions if eλz and e−λz can be replaced by a linear combination of eα1z and eα2z for two distinct
constants α1 and α2. We consider the question and obtain the following result.
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Theorem 7. Let α1, α2, p1, p2 and h be nonzero constants satisfying α1 6= α2. Suppose that k ≥ 0 and n ≥ 2
are integers and that q(z) is a nonzero polynomial. If f (z) is a transcendental entire solution with ρ2( f ) < 1 of
the differential-difference equation

f n(z) + q(z) f (k)(z + h) = p1eα1z + p2eα2z, (6)

then we have ρ( f ) = 1, q(z) must be a constant and one of the following relations holds:

(1) f (z) = c1e
α1z

n , qc1
( α1

n
)ke

α1h
n = p2, α1 = nα2 and cn

1 = p1;

(2) f (z) = c2e
α2z

n , qc2
( α2

n
)ke

α2h
n = p1, α2 = nα1 and cn

2 = p2;
(3) If n = 2, we have T(r, f ) ≤ N1)(r, 1/ f ) + T(r, ϕ) + S(r, f ), where N1)(r, 1/ f ) and ϕ are the same as

defined in Theorem 5. If n = 3, we have T(r, f ) = N1)(r, 1/ f ) + S(r, f ). If n ≥ 4, we only have the
cases (1) and (2).

Next we give three examples to show existence of solutions of Equation (6).

Example 4. Let f (z) = ez. Then f is a transcendental entire solution of the following differential-
difference equation

f 3(z) + f ′(z + 2πi) = e3z + ez,

where α1 = 3 = 3α2, c1 = 1, q = 1 and p1 = p2 = 1. Thus, case (1) occurs.

Example 5. Let f (z) =
√

2ez. Then f is a transcendental entire solution of the following
differential-difference equation

f 2(z) +
√

2 f (3)(z + 2πi) = 2ez + 2e2z,

where α2 = 2 = 2α1, c2 =
√

2, q =
√

2 and p1 = p2 = 2. Thus, case (2) occurs.

Example 6. Let f (z) = ez − 1. Then f is a transcendental entire solution of the following equation

f 2(z) + f (z + πi) = e2z − 3ez.

A routine computation yields T(r, f ) ≤ N1)(r, 1
f ) + T(r, ϕ) + S(r, f ), where ϕ = 2 f 2 − 6 f f ′ + 2( f ′)2

+2 f f ′′ = 2. Thus, case (3) occurs.

Example 7. Let f (z) = ez + e−z. Then f is a transcendental entire solution of the following
differential-difference equation

f 3(z) + f ′′(z + πi) = e3z + e−3z.

A routine computation yields T(r, f ) = N1)(r, 1
f ) + S(r, f ).

Remark 2. From Examples 6 and 7, we conjecture that case (3) in Theorem 7 can be removed if
N(r, 1/ f ) = S(r, f ) for n = 2, 3.

Remark 3. In Theorem 3, our result holds for α1 6= α2. However, if α1 + α2 = 0, we just know the solutions
satisfy case (3) for n = 2, 3. The expression of solutions can be obtained when n = 2 in Theorem 6.

2. Some Lemmas

In this section, we introduce several lemmas to prove three theorems.
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Lemma 1. (see [5]) Let f (z) be an entire function and k be a positive integer. Then

m
(

r,
f (k)

f

)
= S(r, f ).

Lemma 2. (see [3]) Letc ∈ C\{0}, ε > 0 and f (z) be a meormorphic function of ρ2( f ) < 1. Then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r, f )

r1−ρ2( f )−ε

)
outside of an exceptional set of finite logarithmic measures.

Lemma 3. (see [8]) Suppose that f1(z), f2(z), · · · , fn(z)(n ≥ 2) are meromorphic functions and that
g1(z), g2(z), · · · , gn(z)(n ≥ 2) are entire functions satisfying the following conditions:

(1) f1(z)eg1(z) + f2(z)eg2(z) + · · ·+ fn(z)egn(z) ≡ 0;
(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) For 1 ≤ j ≤ n and 1 ≤ h < k ≤ n, T(r, f j(z)) = o

(
T(r, egh(z)−gk(z))

)
(r → ∞, r /∈ E),

where E ⊂ [1, ∞) is a finite linear measure or finite logarithmic measure.

Then f j(z) ≡ 0 (j = 1, 2, · · · , n).

Applying Lemmas 1 and 2 to Theorem 2.3 of [19], we get the following lemma, which is a version
of the difference analogue of the Clunie lemma.

Lemma 4. Let f be a transcendental meromorphic solution of ρ2( f ) < 1 of a difference equation of the form

H(z, f )P(z, f ) = Q(z, f ),

where H(z, f ), P(z, f ), Q(z, f ) are difference polynomials in f such that the total degree of H(z, f ) in f and
its shifts is n, and that the corresponding total degree of Q(z, f ) is ≤ n. If H(z, f ) contains just one term of
maximal total degree, then for any ε > 0

m(r, P(z, f )) = S(r, f )

possibly outside of an exceptional set of finite logarithmic measure.

3. Proof of Theorem 4

Proof. Denote P1( f ) := a(z) f ′(z). Suppose f (z) be a transcendental entire solution of Equation (3).
Differentiating Equation (3), we obtain

2 f f ′ + P′1 = α1 p1eα1z + α2 p2eα2z. (7)

Eliminating eα2z from Equations (3) and (7) gives

α2 f 2 − 2 f f ′ + α2P1 − P′1 = (α2 − α1)p1eα1z. (8)

Differentiating Equation (8) yields

2α2 f f ′ − 2( f ′)2 − 2 f ′ f ′′ + α2P′1 − P′′1 = α1(α2 − α1)p1eα1z. (9)

It follows from Equations (8) and (9) that

ϕ = Q,
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where
ϕ = α1α2 f 2 − 2(α1 + α2) f f ′ + 2( f ′)2 + 2 f f ′′

and
Q = −α1α2P1 + (α1 + α2)P′1 − P′′1 .

Here we distinguish two cases below.

Case 1. ϕ 6≡ 0.

Similar to the proof of Theorem 3 [17], we can obtain a contradiction.

Case 2. ϕ ≡ 0.

By taking n = 2, we use the method of Case 1 of Theorem 5 to obtain t1 = α1
2 and t2 = α2

2 ,

where ti =
f ′
f (i = 1, 2).

Now if t1 = α1
2 , then f (z) = c1e

α1z
2 , where c1 is a constant satisfying c2

1 = p1. Substituting these
formulas into Equation (3), we have a(z)c1α1 = 2p2 and α1 = 2α2, where a(z) must be a constant.
Set a := a(z).

Similarly, if t2 = α2
2 , then we have f (z) = c2e

α2z
2 , ac2α2 = 2p1 and α2 = 2α1, where c2 is a constant

satisfying c2
2 = p2.

4. Proof of Theorem 5

Proof. Assume that f (z) is a transcendental meromorphic solution of Equation (2) with
N(r, f ) = S(r, f ).

A differential polynomial P( f ) with deg P( f ) = n− 1 can be written in the following form

P( f ) =
n−1

∑
i=1

ai Mi( f ) = a1M1( f ) + a2M2( f ) + · · ·+ an−1Mn−1( f ),

where ai are the small functions of f and Mi( f ) = f n0i ( f ′)n1i · · · ( f (k))nki are the differential monomials
such that deg Mi( f ) = n0i + n1i + · · ·+ nki = i ≤ n− 1.

We can represent P( f ) as

P( f ) =
a1M1( f )

f
f +

a2M2( f )
f 2 f 2 + · · ·+ an−1Mn−1( f )

f n−1 f n−1.

By Lemma 1, we derive

m
(

r,
ai Mi( f )

f i

)
= m

(
r,

ai f n0i ( f ′)n1i · · · ( f (k))nki

f i

)
= S(r, f )

for 1 ≤ i ≤ n− 1. Furthermore, we have

m(r, P( f )) ≤ (n− 1)m(r, f ) + S(r, f ).

Since N(r, f ) = S(r, f )
T(r, P( f )) ≤ (n− 1)T(r, f ) + S(r, f ) (10)

holds.
By Equation (10), we obtain
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T(r, p1eα1z + p2eα2z) = T(r, f n(z) + P( f ))
≤ T(r, f n(z)) + T(r, P( f )) + O(1)
≤ nT(r, f ) + (n− 1)T(r, f ) + S(r, f )
= (2n− 1)T(r, f ) + S(r, f )

(11)

and
T(r, p1eα1z + p2eα2z) = T(r, f n(z) + P( f ))

≥ T(r, f n(z))− T(r, P( f )) + O(1)
≥ nT(r, f )− (n− 1)T(r, f ) + S(r, f )
= T(r, f ) + S(r, f ).

(12)

It follow from Equations (11) and (12) that

T(r, f ) + S(r, f ) ≤ T(r, p1eα1z + p2eα2z) ≤ (2n− 1)T(r, f ) + S(r, f ),

which implies ρ( f ) = 1.
We next turn to proving conclusions (1)–(3).
Differentiating Equation (2), we have

n f n−1 f ′ + P′ = α1 p1eα1z + α2 p2eα2z. (13)

Eliminating eα2z from Equations (2) and (13) gives

α2 f n − n f n−1 f ′ + α2P− P′ = (α2 − α1)p1eα1z. (14)

Differentiating Equation (14) yields

nα2 f n−1 f ′ − n(n− 1) f n−2( f ′)2 − n f n−1 f ′′ + α2P′ − P′′ = α1(α2 − α1)p1eα1z. (15)

By Equations (14) and (15), we have

f n−2 ϕ = Q,

where
ϕ = α1α2 f 2 − n(α1 + α2) f f ′ + n(n− 1)( f ′)2 + n f f ′′ (16)

and
Q = −α1α2P + (α1 + α2)P′ − P′′.

We still consider two cases below.

Case 1. ϕ ≡ 0.

Dividing with f 2 on both sides in Equation (16) and recalling f ′′
f =

( f ′
f
)′
+

( f ′
f
)2, we get a Riccati

equation
t′ + nt2 − (α1 + α2)t +

α1α2
n = 0

where t = f ′
f . A routine computation yields two constant solutions t1 = α1

n and t2 = α2
n .

Given that t 6= t1 and t 6= t2 hold, we have

1
t1 − t2

(
t′

t− t1
− t′

t− t2

)
= −n.

Integrating it on both sides gives

ln
t− t1

t− t2
= n(t2 − t1)z + C, C ∈ C,
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which is equivalent to
t− t1

t− t2
= en(t2−t1)z+C.

It immediately yields

t = t2 +
t2 − t1

en(t2−t1)z+C − 1
=

f ′

f
.

Note that zeros of en(t2−t1)z+C − 1 are the zeros of f . If z0 is a zero of f with multiplicity k, then

k = Res
[

f ′

f
, z0

]
= Res

[
t2 +

t2 − t1

en(t2−t1)z+C − 1
, z0

]
=

1
n

is a contradiction.
If t1 = α1

2 , then f (z) = c1e
α1z

2 , where c1 is a constant satisfying c2
1 = p1.

Similarly, if t2 = α2
2 , then we have f (z) = c2e

α2z
2 , where c2 is a constant satisfying c2

2 = p2.

Case 2. ϕ 6≡ 0.

Equation (16) can be written as

1
f 2 =

1
ϕ

[
α1α2 − n(α1 + α2)

(
f ′

f

)
+ n(n− 1)

(
f ′

f

)2

+ n
(

f ′′

f

)]
.

Using Lemma 1, we have

2m
(

r,
1
f

)
= m

(
r,

1
f 2

)
≤ m

(
r,

1
ϕ

)
+ S(r, f ). (17)

From Equation (16), if z0 is a multiple zero of f , then z0 must be a zero of ϕ. Thus, it follows that

N(2

(
r,

1
f

)
≤ N

(
r,

1
ϕ

)
+ S(r, f ), (18)

where N(2(r, 1
f ) denotes the counting function of multiple zeros of f . Equations (17) and (18) and the

first fundamental theorem give

T(r, f ) ≤ N1)

(
r,

1
f

)
+ T(r, ϕ) + S(r, f ). (19)

5. Proof of Theorem 7

Proof. Assume that f (z) is a transcendental entire solution with ρ2( f ) < 1 of Equation (6).
Applying Lemmas 1 and 2 to Equation (6), we have

T(r, p1eα1z + p2eα2z) = T(r, f n(z) + q(z) f (k)(z + h))
≤ T(r, f n) + T(r, q(z) f (k)(z + h)) + O(1)

≤ T(r, f n) + m
(

r, q(z) f (k)(z+h)
f (z)

)
+ m(r, f ) + O(1)

≤ T(r, f n) + m
(

r, q(z) f (z+h)
f (z)

)
+ m

(
r, f (k)(z+h)

f (z+h)

)
+ m(r, f ) + O(1)

≤ (n + 1)T(r, f ) + S(r, f ).

(20)



Mathematics 2019, 7, 539 9 of 11

On the other hand, we deduce

T(r, p1eα1z + p2eα2z) = T(r, f n(z) + q(z) f (k)(z + h))
≥ T(r, f n)− T(r, q(z) f (k)(z + h)) + O(1)

≥ nT(r, f )−m
(

r, q(z) f (k)(z+h)
f (z)

)
−m(r, f ) + O(1)

≥ nT(r, f )−m
(

r, q(z) f (z+h)
f (z)

)
−m

(
r, f (k)(z+h)

f (z+h)

)
−m(r, f ) + O(1)

≥ nT(r, f )− T(r, f ) + S(r, f )
= (n− 1)T(r, f ) + S(r, f ).

(21)

Combining Equations (20) and (21), it follows that

(n− 1)T(r, f ) + S(r, f ) ≤ T(r, p1eα1z + p2eα2z) ≤ (n + 1)T(r, f ) + S(r, f ),

which implies ρ( f ) = 1.
Denoting P2( f ) := q(z) f (k)(z + h) and differentiating Equation (6), we have

n f n−1 f ′ + P′2 = α1 p1eα1z + α2 p2eα2z. (22)

Eliminating eα2z from Equations (6) and (22) gives

α2 f n − n f n−1 f ′ + α2P2 − P′2 = (α2 − α1)p1eα1z. (23)

Differentiating Equation (23) yields

nα2 f n−1 f ′ − n(n− 1) f n−2( f ′)2 − n f n−1 f ′′ + α2P′2 − P′′2 = α1(α2 − α1)p1eα1z. (24)

It follows from Equations (23) and (24) that

f n−2 ϕ = Q, (25)

where
ϕ = α1α2 f 2 − n(α1 + α2) f f ′ + n(n− 1)( f ′)2 + n f f ′′

and
Q = −α1α2P2 + (α1 + α2)P′2 − P′′2 .

Next we discuss two cases below.

Case 1. ϕ ≡ 0.

This case can be completed by the same method as employed in Case 1 of Theorem 5. We obtain
f (z) = c2e

α2z
n , where c2 is a constant satisfying cn

2 = p2. Substituting these formulas into Equation (6),
we have

q(z)c2
( α2

n
)ke

α2h
n e

α2
n z − p1eα1z = 0.

According to α1 6= α2 and Lemma 3, we have

α2 = nα1 and q(z)c2
( α2

n
)ke

α2h
n = p1,

which implies that q(z) is a constant. Set q := q(z).

Similarly, we proceed to obtain f (z) = c1e
α1z

n , qc1
( α1

n
)ke

α1h
n = p2, α1 = nα2 and cn

1 = p1.

Case 2. ϕ 6≡ 0.
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For n ≥ 4, we shall derive a contradiction. In fact, Q is a difference-differential polynomial
in f and its degree at most is 1. By Equation (25) and Lemma 4, we have m(r, ϕ) = S(r, f ) and
T(r, ϕ) = S(r, f ). On the other hand, we can rewrite Equation (25) as f n−3( f ϕ) = Q, which implies
m(r, f ϕ) = S(r, f ) and T(r, f ϕ) = S(r, f ). If ϕ 6≡ 0, then T(r, f ) = T(r, f ϕ

ϕ ) = S(r, f ) and this is
impossible.

For n = 3, since Q is a difference-differential polynomial in f and its degree at most is 1, it follows
from Equation (25) and Lemma 4 that m(r, ϕ) = S(r, f ) and

T(r, ϕ) = S(r, f ). (26)

We still use the same method in Case 2 of Theorem 5 to obtain the inequality of Equation (19).
Equations (19) and (26) and the first fundamental theorem result in

T(r, f ) = N1)

(
r,

1
f

)
+ S(r, f ).

For n = 2, we just obtain the inequality of Equation (19).

6. Conclusions

In this study, we consider two questions. Firstly, the first question posed by Li in [16] is how to
find the solutions of Equation (2) if deg P( f ) = n− 1. Since the degree of P( f ) is bigger than n− 2,
one cannot use Clunie’s lemma which is a key in the proof in Theorem 2. It is very difficult to resolve
the question. Chen and Gao considered the entire solution f of Equation (2) with the order ρ( f ) < ∞
and N(r, 1/ f ) = S(r, f ) when n = 2 and partially answered the question. We remove the condition
that the order ρ( f ) < ∞ by a different method and improve the result of Chen and Gao in Theorem 4.
For the general case of Li’s question, we use the method of Theorem 4 and give a partial answer in
Theorem 5.

Secondly, motived by Theorem 2, a question to be raised is how to find the existence of solutions
to Equation (5) if eλz and e−λz can be replaced by a linear combination of eα1z and eα2z for two distinct
constants α1 and α2. We consider the general case by the similar method with Theorem 5 and give the
partial solutions of Equation (6).

For further study, we conjecture that the inequality T(r, f ) ≤ N1)(r, 1
f ) + T(r, ϕ) + S(r, f ) or

T(r, f ) = N1)(r, 1
f ) + S(r, f ) can be removed if N(r, 1/ f ) = S(r, f ) in Theorems 5 and 7.
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