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Abstract: In this paper, we study the semilocal convergence of the multi-point variant of Jarratt
method under two different mild situations. The first one is the assumption that just a second-order
Fréchet derivative is bounded instead of third-order. In addition, in the next one, the bound of the
norm of the third order Fréchet derivative is assumed at initial iterate rather than supposing it on
the domain of the nonlinear operator and it also satisfies the local ω-continuity condition in order to
prove the convergence, existence-uniqueness followed by a priori error bound. During the study, it is
noted that some norms and functions have to recalculate and its significance can be also seen in the
numerical section.

Keywords: Banach space; semilocal convergence; ω-continuity condition; Jarratt method; error bound

MSC: 65J15; 65H10; 65G99; 47J25

1. Introduction

The problem of finding a solution of the nonlinear equation affects a large area of various fields.
For instance, kinetic theory of gases, elasticity, applied mathematics and also engineering dynamic
systems are mathematically modeled by difference or differential equations. Likewise, there are
numerous problems in the field of medical, science, applied mathematics and engineering that can
be reduced in the form of a nonlinear equation. Many of those problems cannot be solved directly
through any of the methods. For this, we opt for numerical procedure and are able to find at least
an approximate solution of the problem using various iterative methods. In this concern, Newton’s
method [1] is one of the best and most renowned quadratically convergent iterative methods in Banach
spaces, which is frequently used by the authors as it is an efficient method and has a smooth execution.
Now, consider a nonlinear equation having the form

L(m) = 0, (1)

where L is a nonlinear operator defined as L : B ⊆ ∇1 → ∇2, where B is a non-empty open convex
domain of a Banach space ∇1 with values in a Banach space ∇2 which is usually known as the
Newton–Kantorovich method that can be defined as{

m0 given in B,

mn = mn−1 − [L′(mn−1)]
−1L(mn−1), n ∈ N,
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where L′(mn−1) is the Fréchet derivative of L at mn−1. The results on semilocal convergence have been
originally studied by L.V. Kantorovich in [2]. In the early stages, he gave the method of recurrence
relations and afterwards described the method of majorant principle. Subsequently, Rall in [3] and
many researchers have studied the improvements of the results based on recurrence relations. A large
number of researchers studied iterative methods of various order to solve the nonlinear equations
extensively. The convergence of iterative methods generally relies on two types: semilocal and
local convergence analysis. In the former type, the convergence of iterative methods depends upon
the information available around the starting point, whereas, in the latter one, it depends on the
information around the given solution.

In the literature, researchers have developed various higher order schemes in order to get better
efficiency and also discussed their convergence. Various types of convergence analysis using different
types of continuity conditions viz. Lipschitz continuity condition has been studied by Wang et al.
in [4,5], Singh et al. in [6], and Jaiswal in [7], to name a few. Subsequently, many authors have studied
the weaker continuity condition than Lipschitz namely Hölder by Hernández in [8], Parida and
Gupta in [9,10], Wang and Kou in [11] are some of them. Usually, there are some nonlinear equations
that neither satisfy Lipschitz nor Hölder continuity conditions; then, we need a generalized form
of continuity condition such as ω-continuity, which has been studied by Ezquerro and Hernández
in [12,13], Parida and Gupta in [14,15], Prashanth and Gupta in [16,17], Wang and Kou in [18–20], etc.

The algorithms having higher order of convergence plays an important role where the quick
convergence is required like in the stiff system of equations. Thus, it is quite interesting to study
higher order methods. In this article, we target our study on the semilocal convergence analysis
using recurrence relations technique on the multi-point variant of Jarratt method when the third order
Fréchet derivative becomes unbounded in the given domain.

2. The Method and Some Preliminary Results

Throughout the paper, we use the below mentioned notations:
B ≡ non-empty open subset of ∇1; B0 ⊆ B is a non-empty convex subset; ∇1, ∇2 ≡ Banach

spaces, U(m, b) = {n ∈ ∇1 : ‖n−m‖ < b}, U(m, b) = {n ∈ ∇1 : ‖n−m‖ ≤ b}.
Here, we consider the multi-point variant of the Jarratt method suggested in [21]

nn = mn +
2
3 (pn −mn),

on = mn − ΥL(mn)℘nL(mn),
mn+1 = on −

[ 3
2 L′(nn)−1ΥL(mn) + ℘n

(
I − 3

2 ΥL(mn)
)]

L(on),
(2)

where ΥL(mn) = [6L′(nn)− 2L′(mn)]−1[3L′(nn)+ L′(mn)], ℘n = [L′(mn)]−1, pn = mn−℘nL(mn) and
I is the identity operator. In the same article for deriving semilocal convergence results, the researchers
have assumed the following hypotheses:

(A1)‖℘0L(m0)‖ ≤ κ,
(A2)‖℘0‖ ≤ λ,
(A3)‖L′′(m)‖ ≤ P, m ∈ B,
(A4)‖L′′′(m)‖ ≤ Q, m ∈ B,
(A5)‖L′′′(m)− L′′′(n)‖ ≤ ω(‖m− n‖), ∀ m, n ∈ B,

where ω : R+ → R+, is a continuous and non-decreasing function for m > 0 such that ω(m) ≥ 0 and
satisfying ω(εz) ≤ φ(ε)ω(z), ε ∈ [0, 1] and z ∈ [0,+∞) with φ : [0, 1] → R+, is also continuous and
non-decreasing. One can realize that, if ω(m) = Lm, then this condition is reduced into Lipschitz
and when ω(m) = Lmq, q ∈ (0, 1] to the Hölder. Furthermore, we found some nonlinear functions
which are unbounded in a given domain but seem to be bounded on a particular point of the domain.
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For a motivational example, consider a function h on (−2, 2) . We can verify the above fact by
considering the following example [22]

h(m) =

{
m3ln(m2)− 6m2 − 3m + 8 m ∈ (−2, 0) ∪ (0, 2),

0, m = 0.
(3)

Clearly, we can see this fact that h′′′(m) is unbounded in (−2, 2). Hence, for avoiding the
unboundedness of the function, we replace the condition (A4) by the milder condition since the given
example is bounded at m = 1. Thus, here we can assume that the norm of the third order Fréchet
derivative is bounded on the initial iterate as:

(B1)‖L′′′(m0)‖ ≤ A, m0 ∈ B0,
where m0 be an initial approximation. Moreover, we also assume
(B2)‖L′′′(m)− L′′′(n)‖ ≤ ω(‖m− n‖) ∀ m, n ∈ B(m0, ε),
where ε > 0. For now, we choose ε = κ

τ̃0
, where τ̃0 will be defined later and the rationality of this

choice of such ε will be proved. Moreover, some authors have considered partial convergence
conditions. The following nonlinear integral equation of mixed Hammerstein type [23]

m(s) = 1 +
∫ 1

0
G(s, t)

(
1
2

m(t)
5
2 +

7
16

m(t)3
)

dt, s ∈ [0, 1], (4)

where m ∈ [0, 1], t ∈ [0, 1], G(s, t) is the Green function defined by

G(s, t) =

{
(1− s)t t ≤ s,

s(1− t) s ≤ t,

is an example that justified this idea which will be proved later in the numerical application section.
In this study, on using recurrence relations, we first discuss the semilocal convergence of the
above-mentioned algorithm by just assuming that the second-order Fréchet derivative is bounded. In
addition, next, we restrict the domain of the nonlinear operator and consider the bound of the norm
of the third-order Fréchet derivative on an initial iterate only rather than supposing it on the given
domain of the nonlinear operator.

We start with a nonlinear operator L : B ⊆ ∇1 → ∇2 and let the Hypotheses (A1)–(A3) be
fulfilled. Consider the following auxiliary scalar functions out of which ∆ and Λ function are taken
from the reference [21] and Γ and Θ have been recalculated:

Γ(θ) = 1 + 1
2

θ
1−θ +

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]
× θ

2

[
1

1−θ +
(

1 + 1
2

θ
1−θ

)2
]

,
(5)

∆(θ) =
1

1− θΓ(θ)
, (6)

Θ(θ) =

[
θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

)
+ θ

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]
+ θ2

2(1−θ)

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]
+ θ

2

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]2

Λ(θ)

]
Λ(θ),

(7)
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where

Λ(θ) =
θ

2

[
1

1− θ
+

(
1 +

1
2

θ

1− θ

)2 ]
. (8)

Next, we study some of the properties of the above-stated functions. Let k(θ) = Γ(θ)θ − 1.
Since k(0) = −1 < 0 and k( 1

2 ) ≈ 1.379 > 0, then the function k(t) has at least one real root in (0, 1
2 ).

Suppose γ is the smallest positive root, then clearly γ < 1
2 . Now, we begin with the following lemmas

that will be used later in the main theorem(s).

Lemma 1. Let the functions Γ, ∆ and Θ be given in Equations (5)–(7), respectively, and γ be the smallest
positive real root of Γ(θ)θ − 1. Then,

(a) Γ(θ) and ∆(θ) are increasing and Γ(θ) > 1, ∆(θ) > 1 for θ ∈ (0, γ),
(b) for θ ∈ (0, γ), Θ(θ) is an increasing function.

Proof. The proof is straightforward from the expressions of Γ, ∆ and Θ given in Relations (5)–(7),
respectively.

Define κ0 = κ, λ0 = λ, τ0 = Pλκ and ζ0 = ∆(τ0)Θ(τ0). Furthermore, we designate the following
sequences as:

κn+1 = ζnκn, (9)

λn+1 = ∆(τn)λn, (10)

τn+1 = Pλn+1κn+1 = ∆(τn)ζnτn, (11)

ζn+1 = ∆(τn+1)Θ(τn+1), (12)

where n ≥ 0. Some important properties of the immediate sequences are given by the following lemma.

Lemma 2. If τ0 < γ and ∆(τ0)ζ0 < 1, where γ is the smallest positive root of Γ(θ)θ − 1 = 0, then we have

(a) ∆(τn) > 1 and ζn < 1 for n ≥ 0,
(b) the sequences {κn}, {τn} and {ζn} are decreasing,
(c) Γ(τn)τn < 1 and ∆(τn)ζn < 1 for n ≥ 0.

Proof. The proof can be done readily using mathematical induction.

Lemma 3. Let the functions Γ, ∆ and Θ be given in the Relations (5)–(7), respectively. Assume that α ∈ (0, 1),
then Γ(αθ) < Γ(θ), ∆(αθ) < ∆(θ) and Θ(αθ) < α2Θ(θ), for θ ∈ (0, γ).

Proof. For α ∈ (0, 1), θ ∈ (0, γ) and by using the Equations (5)–(7), this lemma can be proved.

3. Recurrence Relations for the Method

Here, we characterized some norms which are already derived in the reference [21] for the
Method (2) and some are recalculated here.

For n = 0, the existence of ℘0 implies the existence of p0, n0 and further, we have

‖p0 −m0‖ ≤ κ0, ‖n0 −m0‖ ≤
2
3

κ0, (13)
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i.e., p0 and n0 ∈ U(m0, ρκ), where ρ = Γ(τ0)
1−ζ0

. Let R(m0) = ℘0[L′(n0)− L′(m0)] also; since τ0 < 1, we have

‖R(m0)‖ ≤
2
3

τ0 ,

∥∥∥∥∥
[

I +
3
2

R(m0)

]−1
∥∥∥∥∥ ≤ 1

1− τ0
. (14)

Moreover,

‖ΥL(m0)‖ =

∥∥∥∥∥I − 3
4

[
I + 3

2 R(m0)

]−1

R(m0)

∥∥∥∥∥
≤ 1 +

∥∥∥∥∥ 3
4

[
I + 3

2 R(m0)

]−1
∥∥∥∥∥ ‖R(m0)‖

≤ 1 + 1
2

τ0
1−τ0

.

(15)

From the second sub-step of the considered scheme, it is obvious that

‖o0 −m0‖ ≤
[

1 +
1
2

τ0

1− τ0

]
κ0. (16)

It is similar to obtain

‖o0 − p0‖ ≤
[

1
2

τ0

1− τ0

]
κ0. (17)

Using the Banach Lemma, we realize that L′(n0)
−1 exists and can be bounded as

‖L′(n0)
−1‖ ≤ λ0

1− 2
3 τ0

. (18)

From Taylor’s formula, we have

L(o0) = L(m0) + L′(m0)(o0 −m0)

+
∫ 1

0
[L′(m0 + θ(o0 −m0))− L′(m0)]dθ(o0 −m0). (19)

From the above relation, it follows that

‖L(o0)‖ ≤ Λ(τ0)
κ

λ
. (20)

Though in the considered reference [21] the norm ‖m1 − o0‖ has already been calculated, here
we are recalculating it in a more precise way such that the recalculated norm becomes finer than the
given in the reference [21] and its significance can be seen in the numerical section. The motivation for
recalculating this norm has been also discussed later. From the last sub-step of the Equation (2),

m1 − o0 = −
[

3
2

L′(n0)
−1ΥL(m0) + ℘n

(
I − 3

2
ΥL(m0)

)]
L(o0)

= −
[
℘0 +

3
2
[L′(n0)

−1 + L′(n0)
−1]

]
ΥL(m0)L(o0).

On taking the norm, we have

‖m1 − o0‖ ≤ κ0
2

[
1 + τ0

1− 2
3 τ0

(
1 + 1

2
τ0

1−τ0

) ]
×
[

τ0
1−τ0

+ τ0

(
1 + 1

2
τ0

1−τ0

)2
]

,
(21)
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and thus we obtain

‖m1 −m0‖ ≤ ‖m1 − o0‖+ ‖o0 −m0‖ ≤ Γ(τ0)κ0. (22)

Hence, m1 ∈ U(m0, ρκ). Now, since the assumption ζ0 < 1
∆(τ0)

< 1, notice that τ0 < γ hence
Γ(τ0) < Γ(γ) and it can be written as

‖I − ℘0L′(m1)‖ ≤ τ0Λ(τ0) < 1. (23)

Thus, ℘1 = [L′(m1)]
−1 exists and, by virtue of Banach lemma, it may be written as

‖℘1‖ ≤
λ0

1− τ0Γ(τ0)
= λ1.

Again by Taylor’s expansion along on, we can write

L(mn+1) = L(on) + L′(pn)(mn+1 − on)

+
∫ 1

0 [L
′(on + θ(mn+1 − on))− L′(pn)]dθ(mn+1 − on),

(24)

and

L′(pn) = L′(mn) +
∫ 1

0
L′′(mn + θ(pn −mn))dθ(pn −mn). (25)

On using the above relation and, for n = 0, Equation (24) assumes the form

L(m1) = L(o0) + L′(m0)(m1 − o0)

+
∫ 1

0
L′′(m0 + θ(p0 −m0))dθ(p0 −m0)(m1 − o0)

+
∫ 1

0
[L′(o0 + θ(m1 − o0))− L′(p0)]dθ(m1 − o0).

Using the last sub-step of the Scheme given in the Equation (2), the above expression can be
rewritten as

L(m1) =
3
2
[L′(n0)− L′(m0)]L′(n0)

−1ΥL(m0)L(o0)

+
∫ 1

0
L′′(mn + θ(pn −mn))dθ(pn −mn)(mn+1 − on)

+
∫ 1

0
[L′(on + θ(mn+1 − on))− L′(pn)]dθ(mn+1 − on).

In addition, thus,

‖L(m1)‖ ≤ Θ(τ0)
κ

λ
. (26)

Hence,
‖p1 −m1‖ ≤ ∆(τ0)Θ(τ0)κ0 = κ1.

In addition, because Γ(τ0) > 1 and by triangle inequality, we find

‖p1 −m0‖ ≤ ρκ,

and

‖n1 −m0‖ ≤ ‖m1 −m0‖+
∥∥∥∥2

3
(p1 −m1)

∥∥∥∥ ≤ (Γ(τ0) + ζ0)κ0 < ρκ,
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which implies p1, n1 ∈ U(m0, ρκ). Furthermore, we have

P‖℘1‖‖℘1L(m1)‖ ≤ ∆2(τ0)Θ(τ0)τ0 = τ1. (27)

Moreover, we can state the following lemmas.

Lemma 4. Under the hypotheses of Lemma 2, let σ = ∆(τ0)ζ0 and ς = 1
∆(τ0)

, we have

ζi ≤ ςσ3n
, (28)

n

∏
i=0

ζi ≤ ςn+1σ
3n+1−1

2 , (29)

κn ≤ κςnσ
3n−1

2 , (30)

n+m

∑
i=n

κi ≤ κςnσ
3n−1

2

1− ςm+1σ
3n(3m+1)

2

1− ςσ3n

 , (31)

where n ≥ 0 and m ≥ 1.

Proof. In order to prove this lemma, first, we need to derive

ζn ≤ ςσ3n
.

We will prove it by executing the induction. By Lemma 3 and since τ1 = στ0, hence for n = 1,

ζ1 = ∆(στ0)Θ(στ0) < σ2ζ0 < ςσ31
.

Let it be true for n = k, then

ζk ≤ ςσ3k
, k ≥ 1.

Now, we will prove it for n = k + 1. Thus,

ζk+1 < ∆(στk)Θ(στk) < ςσ3k+1
.

Therefore, ζn ≤ ςσ3n
is true for n ≥ 0. Making use of this inequality, we have

k

∏
i=0

ζi ≤
k

∏
i=0

ςσ3i
= ςk+1

k

∏
i=0

σ3i
= ςk+1σ

3k+1−1
2 , k ≥ 0.

By making use of the above-derived inequality in the Relation (9), we have

κn = ζn−1κn−1 = ζn−1ζn−2κn−2 = · · · = κ0

n−1

∏
i=0

ζi ≤ κςnσ
3n−1

2 , n ≥ 0.

With the evidence that 0 < ς < 1 and 0 < σ < 1, we can say that κn → 0 as n→ ∞. Let us denote

v =
k+m

∑
i=k

ςiσ
3i
2 , k ≥ 0, m ≥ 1.
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The above equation may also be rewritten in the following form

v ≤ ςkσ
3k
2 + ςσ3k

k+m−1

∑
i=k

ςiσ
3i
2

= ςkσ
3k
2 + ςσ3k

(
v− ςk+mσ

3k+m
2

)
,

and then it becomes

v < ςkσ
3k
2

1− ςm+1σ
3k(3m+1)

2

1− ςσ3k

 .

Moreover,

k+m

∑
i=k

κi ≤
k+m

∑
i=k

κςiσ
3i−1

2 ≤ κςkσ
3k−1

2

1− ςm+1σ
3k(3m+1)

2

1− ςσ3k

 .

Lemma 5. Let the hypotheses of Lemma 2 and the conditions (A1)–(A3) hold; then, the following conditions
are true for all n ≥ 0:

(i)℘n = [L′(mn)]−1exists and ‖℘n‖ ≤ λn,
(ii)‖℘nL(mn)‖ ≤ κn,
(iii)P‖℘n‖‖℘nL(mn)‖ ≤ τn,
(iv)‖pn −mn‖ ≤ κn,
(v)‖mn+1 −mn‖ ≤ Γ(τn)κn,
(vi)‖mn+1 −m0‖ ≤ ρκ, where ρ = Γ(τ0)

1−ζ0
.

(32)

Proof. By using the mathematical induction of Lemma 4, we can prove (i)− (v) for n ≥ 0 . Now,
for n ≥ 1, by making use of Relation (31) and the above results, we get

‖mn+1 −m0‖ ≤
n

∑
i=0
‖mi+1 −mi‖ < ρκ.

Lastly, the following lemma can be proved in a similar way of the article by Wang and Kou [22].

Lemma 6. Let ρ = Γ(τ0)
1−ζ0

and ∆(τ0)ζ0 < 1 and τ0 < γ, where γ is the smallest positive root of Γ(θ)θ− 1 = 0;
then, ρ < 1

τ0
.

4. Semilocal Convergence When L′′′ Condition Is Omitted

In the ensuing section, our objective is to prove the convergence of the Algorithm mentioned in
the Equation(2) by assuming the Hypotheses (A1)–(A3) only. Furthermore, we will find a ball with
center m0 and of radius ρκ in which the solution exists and will be unique as well together with which
we will define its error bound.

Theorem 1. Suppose L : B ⊆ ∇1 → ∇2 is a continuously second-order Fréchet differentiable on B.
Suppose the hypotheses (A1)–(A3) are true and m0 ∈ B. Assume that τ0 = Pλκ and ζ0 = ∆(τ0)Θ(τ0)

satisfy τ0 < γ and ∆(τ0)ζ0 < 1, where γ is the smallest root of Γ(θ)θ − 1 = 0 and Γ, ∆ and Θ are defined
by Equations (5)–(7), respectively. In addition, suppose U(m0, ρκ) ⊆ B, where ρ = Γ(τ0)

1−ζ0
. Then, initiating
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with m0, the iterative sequence {mn} creating from the Scheme given in the Equation (2) converges to a zero
m∗ of L(m) = 0 with mn, m∗ ∈ U(m0, ρκ) and m∗ is an exclusive zero of L(m) = 0 in U(m0, 2

Pλ − ρκ) ∩ B.
Furthermore, its error bound is given by

‖mn −m∗‖ ≤ Γ(τ0)κςnσ
3n−1

2

(
1

1− ςσ3n

)
, (33)

where σ = ∆(τ0)ζ0 and ς = 1
∆(τ0)

.

Proof. Clearly, the sequence {mn} is well established in U(m0, ρκ). Now,

‖mk+l −mk‖ ≤ ∑k+l−1
i=k ‖mi+1 −mi‖

≤ Γ(τ0)κςkσ
3k−1

2

(
1−ςlσ

3k(3l−1+1)
2

1−ςσ3k

)
,

(34)

which shows that {mk} is a Cauchy sequence. Hence, there exists m∗ satisfying

lim
k→∞

mk = m∗.

Letting k = 0, l → ∞ in Equation (34), we obtain

‖m∗ −m0‖ ≤ ρκ,

which implies that m∗ ∈ U(m0, ρκ). Next, we will show that m∗ is a zero of L(m) = 0. Because

‖℘0‖ ‖L(mn)‖ ≤ ‖℘n‖ ‖L(mn)‖,

and in the above inequality by tending n → ∞ and using the continuity of L in B, we find that
L(m∗) = 0. Finally, for unicity of m∗ in U(m0, 2

Pλ − ρκ) ∩ B, let m∗∗ be another solution of L(m) in
U(m0, 2

Pλ − ρκ) ∩ B. Using Taylor’s theorem, we get

0 = L(m∗∗)− L(m∗) =
∫ 1

0
L′((1− tθ)m∗ + θm∗∗)dθ(m∗∗ −m∗).

In addition,

‖℘0‖
∥∥∥∥∫ 1

0
[L′((1− θ)m∗ + θm∗∗)− L′(m0)]dθ

∥∥∥∥
≤ Pλ

∫ 1

0
[(1− θ)‖m∗ −m0‖+ θ‖m∗∗ −m0‖]dθ

≤ Pλ

2

[
ρκ +

2
Pλ
− ρκ

]
= 1,

which implies
∫ 1

0 L′((1− θ)m∗ + θm∗∗)dθ is invertible and hence m∗∗ = m∗.

5. Semilocal Convergence When L′′′ Is Bounded on Initial Iterate

In the current section, we establish the existence and uniqueness theorem of the solution based on
the weaker conditions (A1)–(A3), (B1) and (B2). Define the sequences as

κ̃n+1 = ζ̃nκ̃n, (35)

λ̃n+1 = ∆(τ̃n)λ̃n, (36)
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τ̃n+1 = Pλ̃n+1κ̃n+1 = ∆(τ̃n)ζ̃nτ̃n, (37)

µ̃n+1 = Qλ̃n+1κ̃2
n+1 = ∆(τ̃n)ζ̃2

nµ̃n, (38)

ν̃n+1 = λ̃n+1κ̃2
n+1ω(κ̃n+1) ≤ ∆(τ̃n)φ(ζ̃n)ζ̃

2
nν̃n, (39)

ζ̃n+1 = ∆(τ̃n+1)Θ′(τ̃n+1, µ̃n+1, ν̃n+1), (40)

where n ≥ 0 and Q = A + ω
(

κ
τ̃0

)
. Here, we assign κ̃0 = κ, λ̃0 = λ, τ̃0 = Pλκ, µ̃0 = Qλκ2,

ν̃0 = λκ2ω(κ) and ζ̃0 = ∆(τ̃0)Θ′(τ̃0, µ̃0, ν̃0). From Lemma (5), it is known that

‖mn −m0‖ < ρκ <
κ

τ̃0
.

Therefore, mn ∈ U(m0, κ
τ̃0
). Similarly, for t ∈ [0, 1] and n ≥ 1 and using Lemma (6), we get

‖mn + st(pn −mn)−m0‖ ≤ ‖mn −m0‖+ ‖pn −mn‖

≤
n−1

∑
i=0
‖mi+1 −mi‖+ κ̃n

≤ Γ(τ̃0)
n

∑
i=0

κ̃i ≤ ρκ <
κ

τ̃0
.

Therefore, {mn + st(pn − mn)} ∈ U(m0, κ
τ̃0
). This shows that the choice for ε = κ

τ̃0
is relevant.

Assume that there exists a root τ̃0 ∈ (0, γ) of the equation

m =

[
A + ω

( κ

m

) ]
λκ2.

It is obvious that µ̃0 = Qλκ2, where Q = A + ω
(

κ
τ̃0

)
. Notice that here we don’t define τ̃0 as the

root of the following equation:

m =

[
A + ω

(
Γ(m)κ

1− ∆(m)Θ′(m, µ̃0, ν̃0)

) ]
λκ2.

It would be remembered that, for all m ∈ U(m0, κ
τ̃0
), we have

‖L′′′(m)‖ = ‖L′′′(m0)‖+ ‖L′′′(m)− L′′′(m0)‖
≤ A + ω(‖m−m0‖)
≤ A + ω

(
κ
τ̃0

)
= Q.

Here, we include two auxiliary scalar functions taken from the reference [21]

Θ′(θ, η, ξ) =

[
5
6 η + (3θ+η)(6θ+2η)

27−18θ + (2θ+η)(3θ+η)
6−4θ

+ (2+2θ+η)(3θ+η)θ
(12−8θ)(1−θ)

]
Λ̃(θ, η, ξ)

+ 1
2

θ2

1−θ

[
9

6−4θ

(
1 + 1

2
θ

1−θ

)
+ 3θ

4(1−θ)
+ 1

2

]
Λ̃(θ, η, ξ)

+ θ
2

[
9

6−4θ

(
1 + 1

2
θ

1−θ

)
+ 3θ

4(1−θ)
+ 1

2

]2

Λ̃(θ, η, ξ)2,

(41)
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where

Λ̃(θ, η, ξ) =
1
8

θ3

(1− θ)2 +
1

12
θη

1− θ
+

(
D1 +

1
3

D2

)
ξ. (42)

D1 =
∫ 1

0

∫ 1
0 φ(sθ)θ(1− θ)dsdθ and D2 =

∫ 1
0

∫ 1
0 φ

( 2
3 sθ
)

θdsdθ.

Using the property of the induction and from the conditions (A1)–(A3), (B1) and (B2), the
following relations are true for all n ≥ 0 :

(i)℘n = [L′(mn)]−1exists and ‖℘n‖ ≤ λ̃n,
(ii)‖℘nL(mn)‖ ≤ κ̃n,
(iii)P‖℘n‖‖℘nL(mn)‖ ≤ τ̃n,
(iv)Q‖℘n‖‖℘nL(mn)‖ ≤ µ̃n,
(v)‖℘n‖‖℘nL(mn)‖2ω(‖℘nL(mn)‖) ≤ ν̃n,
(vi)‖mn+1 −mn‖ ≤ Γ(τ̃n)κ̃n,
(vii)‖mn+1 −m0‖ ≤ ρ̃κ, where ρ̃ = Γ(τ̃0)

1−ζ̃0
.

(43)

The second theorem of this article is based on the weaker assumptions, which is stated as:

Theorem 2. Suppose L : B ⊆ ∇1 → ∇2 is a continuously third-order Fréchet differentiable on a non-empty
open convex subset B0 ⊆ B. Suppose the hypotheses (A1)–(A3), (B1) and (B2) are true and m0 ∈ B0.
Assume that τ̃0 = Pλκ, µ̃0 = Qλκ2, ν̃0 = λκ2ω(κ) and ζ̃0 = ∆(τ̃0)Θ′(τ̃0, µ̃0, ν̃0) satisfy τ̃0 < γ

and ∆(τ̃0)ζ̃0 < 1, where γ is the smallest root of Γ(θ)θ − 1 = 0 and Γ, ∆ and Θ′ are defined by
Equations (5), (6) and (41). In addition, suppose U(m0, ρ̃κ) ⊆ B0, where ρ̃ = Γ(τ̃0)

1−ζ̃0
. Then, initiating

with m0, the iterative sequence {mn} created from the Scheme given in the Equation (2) converges to a zero
m∗ of L(m) = 0 with mn, m∗ ∈ U(m0, ρ̃κ) and m∗ is an exclusive zero of L(m) = 0 in U(m0, 2

Pλ − ρ̃κ) ∩ B.
Furthermore, its error bound is given by

‖mn −m∗‖ ≤ Γ(τ̃0)κς̃nσ̃
5n−1

4

(
1

1− ς̃σ̃5n

)
, (44)

where σ̃ = ∆(τ̃0)ζ̃0 and ς̃ = 1
∆(τ̃0)

.

Proof. Analogous to the proof of Theorem 1.

6. Numerical Example

Example 1. Consider nonlinear integral equation from the reference [23] already mentioned in the introduction
is given as

m(s) = 1 +
∫ 1

0
G(s, t)

(
1
2

m(t)
5
2 +

7
16

m(t)3
)

dt, s ∈ [0, 1], (45)

where m ∈ [0, 1], t ∈ [0, 1] and G is the Green’s function defined by

G(s, t) =

{
(1− s)t t ≤ s,

s(1− t) s ≤ t.
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Proof. Solving Equation (45) is equivalent to find the solution for L(m) = 0, where L : B ⊆ C[0, 1]→
C[0, 1] :

[L(m)](s) = m(s)− 1−
∫ 1

0
G(s, t)

(
1
2

m(t)
5
2 +

7
16

m(t)3
)

dt, s ∈ [0, 1].

The Fréchet derivatives of L are given by

L′(m)n(s) = n(s)−
∫ 1

0
G(s, t)

(
5
4

m(t)
3
2 +

21
16

m(t)2
)

n(t)dt, n ∈ B,

L′′(m)no(s) = −
∫ 1

0
G(s, t)

(
15
8

m(t)
1
2 +

21
8

m(t)
)

n(t)o(t)dt, n, o ∈ B.

Using the max-norm and taking into account that a solution m∗ of Equation (45) in C[0, 1] must satisfy

‖m∗‖ − 1
16
‖m∗‖

5
2 − 7

128
‖m∗‖3 − 1 ≤ 0,

i.e., ‖m∗‖ ≤ s1 = 1.18771 and ‖m∗‖ ≥ s2 = 2.54173, where s1 and s2 are the positive roots of the

real equation t− t
5
2

16 −
7

128 t3 − 1 = 0. Consequently, if we look for a solution m∗ such that ‖m∗‖ ≤ s1,
we can consider U(0, s) ⊆ C[0, 1], where s ∈ (s1, s2), as a non-empty open convex domain. We choose,
for example, s = 2 and therefore B = U(0, 2). If m0 = 1, then

‖℘0‖ =
128
87

= λ, ‖℘0L(m0)‖ ≤
15
87

= κ, ‖L′′(m)‖ ≤ 15
√

2
64

+
21
32

= P.

Thus, τ0 ≈ 0.2505. Hence, τ0Γ(τ0) = 0.4068 < 1 and ∆(τ0)ζ0 = 0.790 < 1 (It is noticeable that, if
we choose the function Γ(m) from the reference [21], then we get ∆(τ0)ζ0 = 1.280 > 1 which violates
one of the assumed hypotheses considered in Theorem 1 and hence this motivates us to recalculate
the function Γ(m)). In addition, U(m0, ρκ) = U(1, 0.5270) ⊆ U(0, 2) = B. Thus, the conditions of
Theorem 1 of Section 4 are satisfied and the nonlinear Equation (45) has the solution m∗ in the region
{u ∈ C[0, 1] : ‖u− 1‖ ≤ 0.5270}, which is unique in {u ∈ C[0, 1] : ‖u− 1‖ < 0.8492} ∩ B. Hence,
we can deduce that the existence ball of solution based on our result is superior to that of Wang and
Kou in [23], but our uniqueness ball is inferior.

Example 2. Now, consider another example discussed in [22] and also mentioned in the introduction, is given by

h(m) =

{
m3ln(m2)− 6m2 − 3m + 8, m ∈ (−2, 0) ∪ (0, 2),

0, m = 0.
(46)

Proof. Taking U(0, 2) = B. Let m0 = 1 be an initial approximation. The derivatives of h are given by

h′(m) = 3m2ln(m2) + 2m2 − 12m− 3,

h′′(m) = 6mln(m2) + 10m− 12,

h′′′(m) = 6ln(m2) + 22.

Clearly, h′′′ is unbounded in B and does not satisfy the condition (A4) but satisfies assumption
(B1), and we have

‖℘0‖ =
1

13
= λ, ‖℘0h(m0)‖ =

1
13

= κ, ‖h′′(m)‖ ≤ 12ln(4) + 32 = P.
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‖h′′′(m0)‖ = 22, ‖h′′′(m)− h′′′(n)‖ ≤ 12
1− 13

32+12log(4)
|m−n|, for all m, n ∈ U

(
1, 13

32+12ln(4)

)
. Here, ω(z) =

12
1− 13

32+12log(4)
z and φ(ε) = 1. Here, τ0 ≈ 0.2878 and since τ0Γ(τ0) = 0.51440 < 1, ∆(τ0)ζ0 = 0.01742 < 1.

Thus, the assumptions of Theorem 2 of Section 5 are satisfied. In addition, thus, the solution lies in the
ball m ∈ U(1, 0.13867), which is unique in U(1, 0.39592) ∩ B. Table 1 shows the comparison of error
bounds for the considered Algorithm mentioned in the Equation 2 but with two different values of
function Γ(m) (One is given in the reference [21] and the other is recalculated here). This table also
confirms that the value of the recalculated function is prominent.

Table 1. Comparison of the error bounds for Method 2.

n With Recalculated Γ(m) With Γ(m) Calculated in [21]

1 0.00085294 0.0019139
2 1.4091×10−13 2.7117×10−11

3 3.1182×10−61 2.0135×10−48

4 2.9759×10−298 5.9108×10−232

7. Conclusions

In this contribution, we have analyzed the semilocal convergence of a well defined multi-point
variant of the Jarratt method in Banach spaces. This iterative method can be used to solve various
kinds of nonlinear equations that satisfy the assumed set of hypotheses. The analysis of this method
has been examined using recurrence relations by relaxing the assumptions in two different approaches.
In the first approach, we have softened the classical convergence conditions to the prove convergence,
existence and uniqueness results together with a priori error bounds. In another way, we have assumed
the norm of the third order Fréchet derivative on an initial iterate, so that it never gets unbounded on
the given domain and, in addition, it satisfies the local ω-continuity condition as well. Two numerical
applications are mentioned that sustain our theoretical consideration.
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Hölder continuous second derivative. Non. Anal. Theo. Meth. Appl. 2008, 69, 4163–4173. [CrossRef]

11. Wang, X.; Kou, J. Convergence for modified Halley-like methods with less computation of inversion. J. Diff.
Eqn. Appl. 2013, 19, 1483–1500. [CrossRef]

12. Ezquerro, J.A.; Hernández, M.A. On the R-order of the Halley method. J. Math. Anal. Appl. 2005, 303, 591–601.
[CrossRef]

13. Ezquerro, J.A.; Hernández, M.A. A generalization of the Kantorovich type assumptions for Halley’s method.
Int. J. Comput. Math. 2007, 84, 1771–1779. [CrossRef]

14. Parida, P.K.; Gupta, D.K. Semilocal convergence of a family of third-order Chebyshev-type methods under
a mild differentiability condition. Int. J. Comput. Math. 2010, 87, 3405–3419. [CrossRef]

15. Parida, P.K.; Gupta, D.K.; Parhi, S.K. On Semilocal convergence of a multipoint third order method with
R-order (2 + p) under a mild differentiability condition. J. Appl. Math. Inf. 2013, 31, 399–416. [CrossRef]

16. Prashanth, M.; Gupta, D.K. Convergence of a parametric continuation method. Kodai Math. J. 2014, 37, 212–234.
[CrossRef]

17. Prashanth, M.; Gupta, D.K. Semilocal convergence for Super-Halley′s method under ω-differentiability
condition. Jpn. J. Ind. Appl. Math. 2015, 32, 77–94. [CrossRef]

18. Wang, X.; Kou, J. Semilocal convergence of multi-point improved Super-Halley-type methods without the
second derivative under generalized weak condition. Numer. Algor. 2016, 71, 567–584. [CrossRef]

19. Wang, X., Kou, J. Semilocal convergence analysis on the modifications for Chebyshev–Halley methods under
generalized condition. Appl. Math. Comput. 2016, 281, 243–251. [CrossRef]

20. Wang, X.; Kou, J. Semilocal convergence on a family of root-finding multi-point methods in Banach spaces
under relaxed continuity condition. Numer. Algor. 2017, 74, 643–657. [CrossRef]

21. Wang, X.; Kou, J. Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under
general continuity condition. Numer. Algor. 2012, 60, 369–390. [CrossRef]

22. Wang, X.; Kou, J. Convergence for a class of improved sixth-order Chebyshev–Halley type method.
Appl. Math. Comput. 2016, 273, 513–524. [CrossRef]

23. Wang, X.; Kou, J. Convergence for a family of modified Chebyshev methods under weak condition.
Numer. Algor. 2014, 66, 33–48. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0898-1221(00)00286-8
http://dx.doi.org/10.1016/j.jmaa.2008.03.064
http://dx.doi.org/10.1016/j.na.2007.10.044
http://dx.doi.org/10.1080/10236198.2012.761979
http://dx.doi.org/10.1016/j.jmaa.2004.08.057
http://dx.doi.org/10.1080/00207160701331335
http://dx.doi.org/10.1080/00207160903026626
http://dx.doi.org/10.14317/jami.2013.399
http://dx.doi.org/10.2996/kmj/1396008256
http://dx.doi.org/10.1007/s13160-014-0158-0
http://dx.doi.org/10.1007/s11075-015-0010-x
http://dx.doi.org/10.1016/j.amc.2016.01.035
http://dx.doi.org/10.1007/s11075-016-0165-0
http://dx.doi.org/10.1007/s11075-011-9519-9
http://dx.doi.org/10.1016/j.amc.2015.07.058
http://dx.doi.org/10.1007/s11075-013-9722-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Method and Some Preliminary Results
	Recurrence Relations for the Method
	Semilocal Convergence When L''' Condition Is Omitted
	Semilocal Convergence When L''' Is Bounded on Initial Iterate
	Numerical Example
	Conclusions
	References

