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Abstract: In the paper, we introduce some subclasses of harmonic mapping, the analytic part
of which is related to general starlike (or convex) functions with a symmetric conjecture point
defined by subordination. Using the conditions satisfied by the analytic part, we obtain the
integral expressions, the coefficient estimates, distortion estimates and the growth estimates of
the co-analytic part g, and Jacobian estimates, the growth estimates and covering theorem of the
harmonic function f . Through the above research, the geometric properties of the classes are obtained.
In particular, we draw figures of extremum functions to better reflect the geometric properties of the
classes. For the first time, we introduce and obtain the properties of harmonic univalent functions
with respect to symmetric conjugate points. The conclusion of this paper extends the original research.
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1. Introduction and Preliminaries

Let A denote the class of functions in the following form

h(z) = z +
∞

∑
n=2

anzn, (1)

where h(z) is analytic in the open unit disk U = {z ∈ C : |z| < 1}.
S ,S∗,K are denoted respectively by the subclasses of A consisting of univalent, starlike,

convex functions (for details, see [1,2]).
Let P denote the class of functions p satisfying p(0) = 1 and Rep(z) > 0, where z ∈ U.
The function s is subordinate to t in U, written by s(z) ≺ t(z), if there exists a Schwarz function

σ, analytic in U with σ(0) = 0 and |σ(z)| < 1, satisfying s(z) = t(σ(z))(see [1]). If the function t is
univalent in U and s(z) ≺ t(z), we have the equivalent results as follows,

s(0) = t(0) and s(U) ⊂ t(U).

In 1994, Ma and Minda [3] introduce a class S∗(φ) of starlike functions defined by subordination,
h(z) ∈ S∗(φ) if and only if zh′(z)

h(z) ≺ φ(z), where h ∈ A, φ ∈ P . The corresponding convex class K(φ)
was defined in a similar way.

For φ(z) = 1+Az
1+Bz and −1 ≤ B < A ≤ 1, we denote respectively the subclasses of A by S∗(A, B)

and K(A, B) satisfying (see [4]):
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h ∈ S∗(A, B)⇐⇒ zh′(z)
h(z)

≺ 1 + Az
1 + Bz

(h ∈ A, z ∈ U)

and

h ∈ K(A, B)⇐⇒ (zh′(z))′

h′(z)
≺ 1 + Az

1 + Bz
(h ∈ A, z ∈ U).

It is easy to see that h ∈ K(A, B)⇐⇒ zh′(z) ∈ S∗(A, B) and

K(A, B) ⊂ S∗(A, B), K(A, B) ⊂ K ⊂ S , S∗(A, B) ⊂ S∗ ⊂ S .

Obviously, S∗(1 − 2β,−1) = S∗(β) (0 ≤ β < 1) is a starlike function of order β and
K(1− 2β,−1) = K(β) is a convex function of order β [5]. Especially, S∗(1,−1) = S∗ and K(1,−1) = K
are well-known starlike functions and convex functions respectively.

In 1959, Sakaguchi [6] introduced the class S∗s of starlike functions with respect to symmetric
points, f ∈ S∗s if and only if

Re
z f ′(z)

f (z)− f (−z)
> 0.

In 1987, El-Ashwa and Thomas [7] introduced some classes of starlike functions with respect to
conjugate points and symmetric conjugate points satisfying the following conditions

Re
z f ′(z)

f (z) + f (z)
> 0 and Re

z f ′(z)
f (z)− f (−z)

> 0.

In 1933, Fekete and Szegö [8] introduced a classical Fekete-Szegö problem for f (z) = z +
∞
∑

n=2
anzn ∈ S as follows,

|a3 − µa2
2| ≤


3− 4µ, µ ≤ 0,
1 + 2 exp(−2µ

1−µ ), 0 ≤ µ ≤ 1,
4µ− 3, µ ≥ 1.

The result is sharp.
In 1994, Ma and Minda [3] studied the Fekete-Szegö problem of the classes of S∗(φ) and K(φ).

Many authors studied the problem of Fekete-Szegö and obtained many results (see [9–11]).
A harmonic mapping in U is a complex valued harmonic function, which maps U onto the domain

f (U). The mapping f has a canonical decomposition f (z) = h(z) + g(z) and h and g are analytic in U.
h is called the analytic part and g is called the co-analytic part of f . Let SH denote the class of harmonic
mappings with the following form (see [12,13])

f = h + g, z ∈ U, (2)

where

h(z) = z +
∞

∑
k=2

akzk and g(z) =
∞

∑
k=1

bkzk, |b1| = α ∈ [0, 1). (3)

In 1936, Lewy [14] proved that f is univalent and sense-preserving in U if and only if J f (z) > 0,
that is, the second complex dilatation ω(z) = g′(z)/h′(z) of f (z) satisfying |ω(z)| < 1 in U (see [12,13]).

Many authors further investigated various subclasses of SH and obtained some important results.
In [15], the authors studied the subclass of SH with h ∈ K. Also, Hotta and Michalski [16] studied
the properties of a subclass of SH with h is starlike and obtained the coefficient estimates, distortion
estimates and growth estimates of g, and Jacobian estimates of f . Zhu and Huang [17] studied
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some subclasses of SH with h is convex, or starlike functions of order β and some sharp estimates of
coefficients, distortion, and growth are obtained.

According to the principle of subordination, we introduce the following general subclasses of SH
of harmonic univalent starlike and convex functions with a symmetric conjecture point.

Definition 1. Let A, B ∈ R,−1 ≤ B < A ≤ 1. We denote the function f be in the class HS∗,αsc (A, B) of
harmonic univalent starlike functions with a symmetric conjecture point if and only if f ∈ SH and h ∈ S∗cs(A, B),
that is

2zh′(z)
h(z)− h(−z)

≺ 1 + Az
1 + Bz

. (4)

Also, we denote the function f be in the class HKα
sc(A, B) of harmonic univalent generalized convex functions

with a symmetric conjecture point if and only if f ∈ SH and h ∈ Ksc(A, B), that is

2(zh′(z))′

(h(z)− h(−z))′
≺ 1 + Az

1 + Bz
, (5)

we know that h ∈ Kcs(A, B)⇐⇒ zh′ ∈ S∗cs(A, B). Additionally, we define the classes

HS∗sc(A, B) =
⋃

α∈[0,1)

HS∗,αsc (A, B) and HKsc(A, B) =
⋃

α∈[0,1)

HKα
sc(A, B). (6)

It is clear HKα
sc(A, B) ⊂ HS∗,αsc (A, B) and HKsc(A, B) ⊂ HS∗sc(A, B). Especially, let S∗cs(1,−1) =

S∗cs, Kcs(1,−1) = Kcs, HS∗,αsc (1,−1) = HS∗,αsc , HKα
sc(1,−1) = HKα

sc, S∗cs(1, 1− 2β) = S∗cs(β), Kcs(1, 1−
2β) = Kcs(β), HS∗,αsc (1, 1− 2β) = HS∗,αsc (β), HKα

sc(1, 1− 2β) = HKα
sc(β), β ∈ [0, 1).

In order to prove our results, we need the following Lemmas.

Lemma 1. [18] If the function ω(z) = c0 + c1z + . . . + cnzn + . . . is analytic with |ω(z)| ≤ 1 in U, then

|cn| ≤ 1− |c0|2, n = 1, 2, . . . , (7)

and
|c2 − γc2

1| ≤ max{1, |γ|}. (8)

Lemma 2. Let − 1 ≤ B < A ≤ 1 , n = 2, 3, · · · . (1) If h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc(A, B), then

|a2n| ≤ Fn(A, B) and |a2n+1| ≤ Fn(A, B), (9)

where

Fn(A, B) =

n−1
∏

k=0
(A− B + 2k)

(2n)!!
. (10)

Specially, F1(A, B) = A−B
2 , Fn(1,−1) = 1. The estimate is sharp if

h(z) =
∫ z

0

1 + (A− B− 1)t
(1− t)(1− t2) A−B

2
dt.

(2) If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), then

|a2n| ≤
Fn(A, B)

2n
and |a2n+1| ≤

Fn(A, B)
2n + 1

, (11)
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where Fn(A, B) is defined by (10). The estimate is sharp if

h(z) =
∫ z

0

1
η

∫ η

0

1 + (A− B− 1)t
(1− t)(1− t2) A−B

2
dtdη.

Especially, if A = 1, B = −1, we have the following results. (i) If h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc, then

|a2n| ≤ 1 and |a2n+1| ≤ 1. (12)

The estimate is sharp if h(z) = z
1−z . (ii) If h(z) = z +

∞
∑

n=2
anzn ∈ Ksc, then

|a2n| ≤
1

2n
and |a2n+1| ≤

1
2n + 1

. (13)

The estimate is sharp if h(z) = − log(1− z).

Proof. Let h(z) = z+
∞
∑

n=2
anzn ∈ S∗sc(A, B), there exists a positive real function p(z) = 1+

∞
∑

k=1
pkzk ∈ P

with |pk| ≤ A− B, satisfying
2zh′(z)

h(z)− h(−z)
= p(z). (14)

Comparing the coefficients of the both sides of the equation (14), we have

2na2n = p2n−1 + a3 p2n−3 + · · ·+ a2n−1 p1, (15)

and
2na2n+1 = p2n + a3 p2n−2 + · · ·+ a2n−1 p2. (16)

It is easy to verify that

|a2n| ≤
(A− B)

2n
(1 + |a3|+ · · ·+ |a2n−1|) (17)

and

|a2n+1| ≤
(A− B)

2n
(1 + |a3|+ · · ·+ |a2n−1|). (18)

Let φ(n) = 1 + |a3|+ · · ·+ |a2n−1|, from (18), we have

φ(n + 1) ≤

n
∏

k=1
(A− B + 2k)

(2n)!!
. (19)

According to (17)–(19), we can obtain (9).

If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), then zh′(z) ∈ S∗sc(A, B). Using the results in (1), we can obtain

(11) easily.

Lemma 3. Let A, B ∈ R,−1 ≤ B < A ≤ 1. (1) If h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc(A, B), µ ∈ C, then

|a3 − µa2
2| ≤

A− B
2

max
{

1,
∣∣∣∣B +

µ(A− B)
2

∣∣∣∣} . (20)
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(2) If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), µ ∈ C, then

|a3 − µa2
2| ≤

A− B
6

max
{

1,
∣∣∣∣B +

3µ(A− B)
8

∣∣∣∣} . (21)

Proof. Let h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc(A, B). By definition 1 and the relationship of subordination,

we have
2zh′(z)

h(z)− h(−z)
=

1 + Aν(z)
1 + Bν(z)

, (22)

where ν(z) = c1z + c2z2 + · · · is analytic in U satisfying ν(0) = 0 and |ν(z)| < 1.
Comparing the coefficients of the both sides of (22), we obtain

a2 =
A− B

2
c1 and a3 =

A− B
2

c2 −
(A− B)B

2
c2

1.

Therefore, we have

a3 − µa2
2 =

A− B
2

{
c2 −

(
B +

µ(A− B)
2

)
c2

1

}
.

By an application of (8) in Lemma 1, we obtain (20).
The bound is sharp as follows,

h(z) =
∫ z

0
(1 + Aξ)(1− Bξ)

A−B
2B (1 + Bξ)

A−3B
2B dξ

or
h(z) =

∫ z

0
(1 + Aξ2)(1 + Bξ2)

A−3B
2B dξ.

If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), then zh′(z) ∈ S∗sc(A, B). It is easy to obtain (21) and the bound

is sharp as follows,

h(z) =
∫ z

0

1
η

∫ η

0
(1 + Aξ)(1− Bξ)

A−B
2B (1 + Bξ)

A−3B
2B dξdη

or
h(z) =

∫ z

0

1
η

∫ η

0
(1 + Aξ2)(1 + Bξ2)

A−3B
2B dξdη.

Lemma 4. Let h(z) ∈ A, 0 ≤ β < 1, |z| = r ∈ [0, 1). (1) If h(z) ∈ S∗(β), then

(1− (1− 2β)r)(1 + r)2β−3 ≤ |h′(z)| ≤ (1 + (1− 2β)r)(1− r)2β−3, (23)

and ([4], Theorem 4 with A = 1 − 2β, B = −1)

r(1 + r)2β−2 ≤ |h(z)| ≤ r(1− r)2β−2, (24)

(2) If h(z) ∈ K(β), then ([19], Theorem 1 with b = 1, A = 1 − 2β, B = −1)

(1 + r)2β−2 ≤ |h′(z)| ≤ (1− r)2β−2, (25)

and ([19], Theorem 2 with b = 1, A = 1 − 2β, B = −1)
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r(1 + r)β−1 ≤ |h(z)| ≤ r(1− r)β−1. (26)

Proof. It suffices to establish the estimate of (23). If h(z) ∈ S∗(β), then

1− (1− 2β)r
1 + r

≤
∣∣∣∣ zh′(z)

h(z)

∣∣∣∣ ≤ 1 + (1− 2β)r
1− r

,

that is,
1− (1− 2β)r

1 + r
|h(z)| ≤ |zh′(z)| ≤ 1 + (1− 2β)r

1− r
|h(z)|.

According to (24), it is not difficult to verify the estimate of (23).
Using the same argument as in the proof of Lemma 2 in [20], we obtain immediately a Lemma

as follows.

Lemma 5. If h(z) ∈ S∗sc(β), 0 ≤ β < 1, then h(z)−h(−z)
2 ∈ S∗(β). Especially for β = 0, we get the results of

Lemma 2 in [20].

Lemma 6. If h(z) ∈ Ksc(β), 0 ≤ β < 1, then h(z)−h(−z)
2 ∈ K(β).

Lemma 7. Let h(z) ∈ A, 0 ≤ β < 1, |z| = r ∈ [0, 1). (1) If h ∈ S∗sc(β), then

1− (1− 2β)r
(1 + r)3−2β

≤ |h′(z)| ≤ 1 + (1− 2β)r
(1− r)3−2β

. (27)

(2) If h ∈ Ksc(β), then
1

(1 + r)2−2β
≤ |h′(z)| ≤ 1

(1− r)2−2β
. (28)

Proof. Suppose h(z) ∈ S∗sc(β), we have

1− (1− 2β)r
1 + r

∣∣∣∣∣h(z)− h(−z)
2

∣∣∣∣∣ ≤ |zh′(z)| ≤ 1 + (1− 2β)r
1− r

∣∣∣∣∣h(z)− h(−z)
2

∣∣∣∣∣ . (29)

According to Lemmas 4 and 5, we have

r
(1 + r)2−2β

≤
∣∣∣∣∣h(z)− h(−z)

2

∣∣∣∣∣ ≤ r
(1− r)2−2β

. (30)

By (29) and (30), we can obtain (27).
If h(z) ∈ Ksc(β), then

1− (1− 2β)r
1 + r

∣∣∣∣∣ (h(z)− h(−z))′

2

∣∣∣∣∣ ≤ |(zh′(z))′| ≤ 1 + (1− 2β)r
1− r

∣∣∣∣∣ (h(z)− h(−z))′

2

∣∣∣∣∣ . (31)

According to Lemmas 4 and 6, we have

(1 + r)2β−2 ≤
∣∣∣∣∣ (h(z)− h(−z))′

2

∣∣∣∣∣ ≤ (1− r)2β−2. (32)

By (31) and (32), we get

[1− (1− 2β)r](1 + r)2β−3 ≤ |(zh′(z))′| ≤ [1 + (1− 2β)r](1− r)2β−3. (33)
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By (33), integrating along a radial line ξ = teiθ , we obtained immediately,

|zh′(z)| ≤
∫ r

0
[1 + (1− 2β)t](1− t)2β−3dt =

r
(1− r)2−2β

For the left-hand side of (28), we note first that zh′(z) is univalent. Let H(z) := zh′(z), Γ = H({z :
|z| = r}) and let ξ1 ∈ Γ be the nearest point to the origin. By a rotation we suppose that ξ1 > 0. Let γ

be the line segment 0 ≤ ξ ≤ ξ1 and assume that z1 = H−1(ξ1) and L = H−1(γ). If ς is the variable of
integration on L, we have that dξ = H′(ς)dς on L. Hence

ξ1 =
∫ ξ1

0
dξ =

∫ z1

0
H′(ς)dξ =

∫ z1

0
|H′(ς)||dξ| ≥

∫ r

0
|H′(teiθ)|dt

≥
∫ r

0
[1− (1− 2β)t](1 + t)2β−3dr =

r
(1 + r)2−2β

.

So we complete the proof of Lemma 7.

2. Main Results

Theorem 1. If f = h + g ∈ HS∗,αsc (A, B), then F = H + G ∈ HKα
sc(A, B), where H(z) and G(z) satisfy the

conditions zH′(z) = h(z) and zG′(z) = g(z), z ∈ U.

Proof. Let f ∈ HS∗,αsc (A, B). According to Definition 1 and Alexander’s Theorem ([1], p. 43),
the function H(z) ∈ Ksc(A, B). Also, H(0) = 0, H′(0) = lim

z→0

h(z)
z = h′(0) = 1, and |G′(0)| =

| lim
z→0

g(z)
z | = |g′(0)| = α. Let Γ := [0, h(z)] ⊂ h(U), z ∈ U− {0}, then

|g(z)| =
∣∣∣∣∫Γ

d(g ◦ h−1(ω))

∣∣∣∣ ≤ ∫Γ

∣∣∣∣d(g ◦ h−1(ω))

dω

∣∣∣∣ |dω| <
∫

Γ
|dω| = |h(z)|.

Hence,

|G′(z)| = lim
t→z

∣∣∣∣ g(t)t

∣∣∣∣ < lim
t→z

∣∣∣∣h(t)t

∣∣∣∣ = |H′(z)|.
It shows that F is a locally univalent and sense-preserving harmonic function in U.

Finally, appealing to ([15], Corollary 2.3), we conclude that F = H + G ∈ HKα
sc(A, B).

Corollary 1. If f = h + g ∈ HS∗sc(A, B), then F = H + G ∈ HKsc(A, B), where H(z) and G(z) satisfy the
conditions zH′(z) = h(z) and zG′(z) = g(z), z ∈ U.

Next, we give the integral expressions for functions of these classes.

Theorem 2. If f = h + g ∈ HS∗,αsc (A, B), then we have

f (z) =
∫ z

0
ϕ(ξ)dξ +

∫ z

0
ω(ξ)ϕ(ξ)dξ, (34)

where

ϕ(ξ) =
1 + Aν(ξ)

1 + Bν(ξ)
exp

∫ ξ

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dt, (35)

and ω and ν are analytic in U satisfying |ω(0)| = α, ν(0) = 0, |ω(z)| < 1, |ν(z)| < 1.
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Proof. Let f = h + g ∈ HS∗,αsc (A, B). According to Definition 1 and the relationship of subordination,
we have

g′(z) = ω(z)h′(z), (36)

and
2zh′(z)

h(z)− h(−z)
=

1 + Aν(z)
1 + Bν(z)

, (37)

where ω and ν are analytic in U satisfying ω(0) = b1, ν(0) = 0, |ω(z)| < 1, |ν(z)| < 1. Substituting z
by −z in (37), we get

−2zh′(−z)
h(−z)− h(z)

=
1 + Aν(−z)
1 + Bν(−z)

. (38)

It follows from (37) and (38) that

2z(h(z)− h(−z))′

h(z)− h(−z)
=

1 + Aν(z)
1 + Bν(z)

+
1 + Aν(−z)
1 + Bν(−z)

. (39)

After integrating the both sides of the equality (39) and calculating it simply, we have

h(z)− h(−z)
2

= z exp
∫ z

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dt. (40)

From (37) and (40), we have

h′(z) =
1 + Aν(z)
1 + Bν(z)

exp
∫ z

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dt. (41)

Integrating the both sides of the equality (41), we have

h(z) =
∫ z

0

1 + Aν(ξ)

1 + Bν(ξ)
exp

∫ ξ

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dtdξ. (42)

By (36) and (41), we can obtain

g(z) =
∫ z

0
ω(ξ)

(
1 + Aν(ξ)

1 + Bν(ξ)

)
exp

∫ ξ

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dtdξ.

So, we complete the proof of Theorem 2.

According to Theorem 2 and h ∈ Ksc(A, B) if and only if zh′(z) ∈ S∗sc(A, B), we obtain easily the
following result.

Theorem 3. Let f ∈ HKα
sc(A, B), then we have

f (z) =
∫ z

0

1
η

∫ η

0
ϕ(ξ)dξdη +

∫ z

0

ω(η)

η

∫ η

0
ϕ(ξ)dξdη. (43)

where φ(ξ) defined by (35), ω and ν are analytic in U satisfying |ω(0)| = α, ν(0) = 0, |ω(z)| < 1, |ν(z)| < 1.

In the following, we will get the coefficient estimates of the classes.

Theorem 4. Let f = h+ g, where h and g are given by (3) and Fk(A, B) is defined by (10). If f ∈ HS∗,αsc (A, B),
then

|b2n| ≤


1−α2

2 + (A−B)α
2 , n = 1,

(1−α2)
2n

{
1 +

n−1
∑

k=1
(4k + 1)Fk(A, B)

}
+ αFn(A, B), n ≥ 2,

(44)
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and

|b2n+1| ≤


1−α2

3 (1 + A− B) + (A−B)α
2 , n = 1,

(1−α2)
2n+1

{
1 +

n−1
∑

k=1
(4k + 1)Fk(A, B) + 2nFn(A, B)

}
+ αFn(A, B), n ≥ 2.

(45)

The estimate is sharp and the extremal function is

f α
0 (z) =

∫ z

0

1 + (A− B− 1)t

(1− t)(1− t2)
A−B

2
dt +

∫ z

0

(α + (1− α2 − α)t)(1 + (A− B− 1)t)

(1− t)2(1− t2)
A−B

2
dt. (46)

Specially, if f ∈ HS∗,αsc , then

|bn| ≤
(n− 1)(1− α2)

2
+ α. (47)

The estimate is sharp and the extremal function is

f α
1 (z) =

z
1− z

+
αz + 1

2 (1− α2 − 2α)z2

(1− z)2 = z +
∞

∑
n=2

zn +
∞

∑
n=1

(
(n− 1)(1− α2)

2
+ α

)
zn. (48)

Especially, let α = 0 and α = 1
2 in (48) respectively, we have (i) If f ∈ HS∗,0sc , then

|bn| ≤
n− 1

2
.

The estimate is sharp and the extremal function is

f 0
1 (z) =

z
1− z

+
z2

2(1− z)2 = z +
∞

∑
n=2

zn +
∞

∑
n=1

n− 1
2

zn.

(ii) If f ∈ HS∗,
1
2

sc , then

|bn| ≤
3n + 1

8
.

The estimate is sharp and the extremal function is

f
1
2

1 (z) =
z

1− z
+

4z− z2

8(1− z)2 = z +
∞

∑
n=2

zn +
∞

∑
n=1

3n + 1
8

zn.

In the following Figure 1, we draw the graph of f 0
1 (z) and f

1
2

1 (z) respectively.
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Figure 1. Three dimensional coordinates plus color, the z-axis represents the real part of the function,
and the color represents the imaginary part of the function. (a) The graph of f 0

1 (z); (b) The graph

of f
1
2

1 (z).

Proof. By using the relation g′ = ωh′, where h and g are given by (3) and ω(z) = c0 + c1z + c2z2 + · · ·
is analytic in U, we obtain

2nb2n =
2n

∑
p=1

papc2n−p (a1 = 1, n ≥ 1) (49)

and

(2n + 1)b2n+1 =
2n+1

∑
p=1

papc2n+1−p (a1 = 1, n ≥ 1). (50)

It is easy to show that

2n|b2n| ≤ |c2n−1|+ 2|a2||c2n−2|+ . . . + (2n− 1)|a2n−1||c1|+ 2n|a2n||c0| (51)

and
(2n + 1)|b2n+1| ≤ |c2n|+ 2|a2||c2n−1|+ . . . + (2n)|a2n||c1|+ (2n + 1)|a2n+1||c0|. (52)

Since g′ = ωh′, it follows that c0 = b1. By (7), it can easily be verified that |ck| ≤ 1− α2, k =

1, 2, · · · , 2n. Therefore,

|b2n| ≤


1−α2

2 + |a2|α, n = 1,

(1−α2)
2n (1 +

2n−1
∑

k=2
k|ak|) + α|a2n|, n ≥ 2,

(53)

and

|b2n+1| ≤


1−α2

3 (1 + 2|a2|) + |a3|α, n = 1,

(1−α2)
2n+1 (1 +

2n
∑

k=2
k|ak|) + α|a2n+1|, n ≥ 2.

(54)

According to Lemma 2, (53) and (54), by simple calculation, we can obtain (44), (45) and (47). We
also obtain the extreme function. Thus, the proof is completed.

Using the same methods in Theorem 4, we have the following results.
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Theorem 5. Let −1 ≤ B < A ≤ 1, f = h + g, where h and g are given by (3) and Fk(A, B) is defined by
(10). If f ∈ HKα

sc(A, B), then

|b2n| ≤


1−α2

2 + α(A−B)
4 , n = 1,

(1−α2)
2n

(
1 + 2

n−1
∑

k=1
Fk(A, B)

)
+ α

2n Fn(A, B), n ≥ 2,

and

|b2n+1| ≤


(1−α2)

3 (1 + A−B
2 ) + α(A−B)

6 , n = 1,

(1−α2)
2n+1

(
1 + 2

n−1
∑

k=1
Fk(A, B) + Fn(A, B)

)
+ α

2n+1 Fn(A, B), n ≥ 2.

Specially, if f ∈ HKα
sc, n = 3, 4, · · · , then

|bn| ≤
(n− 1)(1− α2)

n
+

α

n
.

The estimate is sharp and the extremal function is

f α
2 (z) = − log(1− z) + (1− α2)

z
1− z

− (α2 + α− 1) log(1− z)

= z +
∞

∑
n=2

1
n

zn +
∞

∑
n=1

(
(n− 1)(1− α2)

n
+

α

n

)
zn.

Especially, let α = 0 and α = 1
2 respectively, we have (i) If f ∈ HK0

sc, then

|bn| ≤
n− 1

n

and the estimate is sharp and the extremal function is

f 0
2 (z) = − log(1− z) +

z
1− z

+ log(1− z) = z +
∞

∑
n=2

1
n

zn +
∞

∑
n=1

n− 1
n

zn.

(ii) If f ∈ HK
1
2
sc, then

|bn| ≤
3n− 1

4n
and the estimate is sharp and the extremal function is

f
1
2

2 (z) = − log(1− z) +
3z

4(1− z)
+

1
4

log(1− z) = z +
∞

∑
n=2

1
n

zn +
∞

∑
n=1

3n− 1
4n

zn.

In the following Figure 2, we draw the graph of f 0
2 (z) and f

1
2

2 (z) respectively.
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Figure 2. Three dimensional coordinates plus color, the z-axis represents the real part of the function,
and the color represents the imaginary part of the function. (a) The graph of f 0

1 (z); (b) The graph of

f
1
2

1 (z).
From Theorems 4 and 5, we have

Corollary 2. Let f = h + g, where h and g are given by (3) and Fk(A, B) is defined by (10). (1) If f ∈
HS∗sc(A, B), then

|b2n| ≤


1
2 + (A−B)2

8 , n = 1,

(1+
n−1
∑

k=1
(4k+1)Fk(A,B))2+n2F2

n (A,B)

2n(1+
n−1
∑

k=1
(4k+1)Fk(A,B))

, n ≥ 2,

and

|b2n+1| ≤


16+32(A−B)+25(A−B)2

48(1+A−B) , n = 1,

4(1+
n−1
∑

k=1
(4k+1)Fk(A,B)+2nFn(A,B))2+(2n+1)2F2

n (A,B)

4(2n+1)(1+
n−1
∑

k=1
(4k+1)Fk(A,B)+2nFn(A,B))

, n ≥ 2.

Especially, if f ∈ HS∗sc, then |bn| ≤ (n−1)2+1
2(n−1) . (2) If f ∈ HKsc(A, B), then

|b2n| ≤


1
2 + (A−B)2

32 , n = 1,

4(1+2
n−1
∑

k=1
Fk(A,B))2+F2

n (A,B)

8n(1+2
n−1
∑

k=1
Fk(A,B))

, n ≥ 2,

and

|b2n+1| ≤


16+16(A−B)+5(A−B)2

24(2+A−B) , n = 1,

4(1+2
n−1
∑

k=1
Fk(A,B)+Fn(A,B))2+F2

n (A,B)

4(2n+1)(1+2
n−1
∑

k=1
Fk(A,B)+Fn(A,B))

, n ≥ 2.

Especially, if f ∈ HKsc, then |bn| ≤ 4(n−1)2+1
4n(n−1) .

Also, we give the Fekete-Szegö inequality for functions of these classes.
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Theorem 6. Let f = h + g, where h and g are given by (3), for µ ∈ C,−1 ≤ B < A ≤ 1, Fn(A, B) is defined
by (10). (1) If f ∈ HS∗,αsc (A, B) , then

|b3 − µb2
2| ≤

(1−α2)
3

{
1+ 3|µ|(1−α2)

4 + (A−B)
2 |2− 3µb1|

}
+ (A−B)α

2 max
{

1, |B + µb1
2 (A− B)|

}
, (55)

|b2n − b2n−1| ≤


1
2(1− α2) + (1+ A−B

2 )α, n = 1,

(1− α2)

{
( 1

2n + 1
2n−1)(1+

n−1
∑

k=1
(4k + 1)Fk(A, B))− Fn−1(A, B)

}
+

α(Fn(A, B) + Fn−1(A, B)), n ≥ 2,

(56)

and

|b2n+1 − b2n| ≤ (1− α2)

{
( 1

2n+1 + 1
2n )(1 +

n−1
∑

k=1
(4k + 1)Fk(A, B)) + 2n

2n+1 Fn(A, B)
}

+2αFn(A, B), n ≥ 1.
(57)

(2) If f ∈ HKα
sc(A, B), then

|b3 − µb2
2| ≤

(1−α2)
3

{
1 + 3|µ|(1−α2)

4 + (A−B)
4 |2− 3µb1|

}
+ (A−B)α

6 max
{

1, |B + 3(A−B)b1µ
8 |

}
, (58)

|b2n − b2n−1| ≤


1
2 (1− α2) + (1 + A−B

4 )α, n = 1,

(1− α2)

{
( 1

2n + 1
2n−1 )(1 + 2

n−1
∑

k=1
Fk(A, B))− Fn−1(A,B)

2n−1

}
+

α( Fn(A,B)
2n + Fn−1(A,B)

2n−1 ), n ≥ 2,

(59)

and

|b2n+1 − b2n| ≤ (1− α2)

{
( 1

2n+1 + 1
2n )(1 + 2

n−1
∑

k=1
Fk(A, B)) + 1

2n+1 Fn(A, B)
}
+

αFn(A, B)( 1
2n+1 + 1

2n ), n ≥ 1.
(60)

Proof. From the relation (49) and (50), we have

2b2 = c1 + 2a2c0, 3b3 = c2 + 2a2c1 + 3a3c0,

and

2nb2n =
2n

∑
p=1

papc2n−p, (2n + 1)b2n+1 =
2n+1

∑
p=1

papc2n+1−p (a1 = 1, n ≥ 1).

By (7), we have

|b3 − µb2
2| ≤

1− α2

3

{
1 +

3|µ|(1− α2)

4
+ |a2||2− 3µb1|

}
+ α

∣∣∣a3 − µb1a2
2

∣∣∣ ,

|b2n − b2n−1| ≤


1
2 (1− α2) + α(1 + |a2|), n = 1,

(1− α2)

(
1

2n

2n−1
∑

p=1
p|ap|+ 1

2n−1

2n−2
∑

p=1
p|ap|

)
+ α(|a2n|+ |a2n−1|), n ≥ 2,

and

|b2n+1 − b2n| ≤ (1− α2)

(
1

2n + 1

2n

∑
p=1

p|ap|+
1

2n

2n−1

∑
p=1

p|ap|
)
+ α(|a2n+1|+ |a2n|), n ≥ 1.

According to Lemmas 2 and 3, we can compete the proof of Theorem 6.

Especially, we let A = 1, B = −1, we obtain the following results.
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Corollary 3. Let f = h + g, where h and g are given by (3), for µ ∈ R. (1) If f ∈ HS∗,αsc , then

|b3 − µb2
2| ≤

(1− α2)

3

{
1 +

3|µ|(1− α2)

4
+ |2− 3µb1|

}
+ α max {1, |b1µ− 1|} , (61)

and

|bn+1 − bn| ≤
(2n− 1)

2
(1− α2) + 2α, n ≥ 1. (62)

Especially, for f 0
1 (z) ∈ HS∗,0sc given by Theorem 4, we have |bn+1 − bn| ≤ 1

2 . And for f
1
2

1 (z) ∈ HS∗,
1
2

sc given by
Theorem 4, we have |bn+1 − bn| ≤ 3

8 . (2) If f ∈ HKα
sc, then

|b3 − µb2
2| ≤

(1− α2)

3

{
1 +

3|µ|(1− α2)

4
+

1
2
|2− 3µb1|

}
+

α

3
max

{
1, |3b1µ

4
− 1|

}
, (63)

|bn+1 − bn| ≤ (1− α2)(
n

n + 1
+

n− 1
n

) + α(
1

n + 1
+

1
n
), n ≥ 1. (64)

Especially, for f 0
2 (z) ∈ HK0

sc given by Theorem 5, we have |bn+1 − bn| ≤ 1
n(n+1) . And for f

1
2

2 (z) ∈ HK
1
2
sc

given by Theorem 5, we have |bn+1 − bn| ≤ 1
4n(n+1) .

From Corollary 3, it is easy to obtain the following results.

Corollary 4. Let f = h + g, where h and g are given by (3). (1) If f ∈ HS∗sc, then

|bn+1 − bn| ≤
{

2, n = 1,
4n2−4n+5

4n−2 , n ≥ 2.
(65)

(2) If f ∈ HKsc, then

|bn+1 − bn| ≤
{

3
2 , n = 1,
16n4−12n2+4n+5
4n(n+1)(2n2−1) , n ≥ 2.

(66)

Inspired by Zhu et al. [17], we obtain the distortion estimates and growth estimate of the
co-analytic part g, Jacobian estimates, growth estimate and covering theorems of the classes of harmonic
mapping with symmetric conjecture point defined by subordination as follows.

Theorem 7. Let f = h + g ∈ SH , |z| = r ∈ [0, 1). (1) If f ∈ HS∗,αsc (β), then

max{α− r, 0}[1− (1− 2β)r]
(1− αr)(1 + r)3−2β

≤ |g′(z)| ≤ (α + r)[1 + (1− 2β)r]
(1 + αr)(1− r)3−2β

. (67)

Especially, let β = 0, for f 0
1 (z) ∈ HS∗,0sc given by Theorem 4, we have

|g′(z)| ≤ r
(1− r)3 .

(2) If f ∈ HKα
sc(β), then

max{α− r, 0}
(1− αr)(1 + r)2−2β

≤ |g′(z)| ≤ (α + r)
(1 + αr)(1− r)2−2β

. (68)

Especially, let β = 0, for f 0
2 (z) ∈ HK0

sc given by Theorem 5, we have

|g′(z)| ≤ r
(1− r)2 .
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Proof. According to the relation g′ = ωh′, |ω(0)| = |g′(0)| = |b1| = α, it is easy to see ω(z) such
that (see [21]): ∣∣∣∣ ω(z)−ω(0)

1−ω(0)ω(z)

∣∣∣∣ ≤ |z|, (69)

that is, ∣∣∣∣ω(z)− ω(0)(1− r2)

1− |ω(0)|2r2

∣∣∣∣ ≤ r(1− |ω(0)|2)
1− |ω(0)|2r2 . (70)

From (70), we get
max{α− r, 0}

1− αr
≤ |ω(z)| ≤ α + r

1 + αr
, z ∈ U. (71)

Applying (71) and (27), we get (67). Similarly, applying (71) and (28), we get (68). So the proof is
completed.

By using the same method in proof of Lemma 7, it is easy to obtain the following results.

Theorem 8. Let f = h + g ∈ SH , |z| = r ∈ [0, 1). (1) If f ∈ HS∗,αsc (β), then

∫ r

0

max{α− t, 0}[1− (1− 2β)t]
(1− at)(1 + t)3−2β

dt ≤ |g(z)| ≤
∫ r

0

(α + t)[1 + (1− 2β)t]
(1 + αt)(1− t)3−2β

dt. (72)

Especially, let β = 0, for f 0
1 (z) ∈ HS∗,0sc given by Theorem 4, we have

|g(z)| ≤ r2

2(1− r)2 .

(2) If f ∈ HKα
sc(β), then

∫ r

0

max{α− t, 0}
(1− αt)(1 + t)2−2β

dt ≤ |g(z)| ≤
∫ r

0

(α + t)
(1 + αt)(1− t)2−2β

dt. (73)

Especially, let β = 0, for f 0
2 (z) ∈ HK0

sc given by Theorem 5, we have

|g(z)| ≤ r
(1− r)

+ log(1− r).

In the following, we can obtain the Jacobian estimates and growth estimates of f .

Theorem 9. Let f = h + g ∈ SH , |z| = r ∈ [0, 1). (1) If f ∈ HS∗,αsc (β), then

[1− (1− 2β)r]2(1− α2)(1− r2)

(1 + r)6−4β(1 + αr)2 ≤ J f (z) ≤


[1+(1−2β)r]2(1−α2)(1−r2)

(1−r)6−4β(1−αr)2 , r < α,
[1+(1−2β)r]2

(1−r)6−4β , r ≥ α.

(2) If f ∈ HKα
sc(β), then

(1− α2)(1− r2)

(1 + r)4−4β(1 + αr)2 ≤ J f (z) ≤


(1−α2)(1−r2)

(1−r)4−4β(1−αr)2 , r < α,
1

(1−r)4−4β , r ≥ α.

Proof. We know that the Jacobian of f = h + g is in the following form

J f (z) = |h′(z)|2 − |g′(z)|2 = |h′(z)|2(1− |ω(z)|2), (74)

where ω(z) is the dilatation of f (z).
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Let f ∈ HS∗,αsc (β), applying (27) and (71) to (74), we obtain

J f (z) ≥
[1− (1− 2β)r]2

(1 + r)6−4β
· (1− α2)(1− r2)

(1 + αr)2 ,

and

J f (z) ≤
[1 + (1− 2β)r]2

(1− r)6−4β

(
1− (max{(α− r), 0})2

(1− αr)2

)
=


[1+(1−2β)r]2

(1−r)6−4β ·
(1−α2)(1−r2)

(1−αr)2 , r < α,
[1+(1−2β)r]2

(1−r)6−4β , r ≥ α.

Therefore, we complete the proof of (1). Applying (28) and (71) to (74), (2) of Theorem 9 can be
proved by the same method in the same way as shown before.

Theorem 10. Let f = h + g ∈ SH , |z| = r, 0 ≤ r < 1. (1) If f ∈ HS∗,αsc (β), then

∫ r

0

(1− α)(1− ξ)[1− (1− 2β)ξ]

(1 + αξ)(1 + ξ)3−2β
dξ ≤ | f (z)| ≤

∫ r

0

(1 + α)(1 + ξ)[1 + (1− 2β)ξ]

(1 + αξ)(1− ξ)3−2β
dξ. (75)

(2) If f ∈ HKα
sc(β), then

∫ r

0

(1− α)(1− ξ)

(1 + αξ)(1 + ξ)2−2β
dξ ≤ | f (z)| ≤

∫ r

0

(1 + α)(1 + ξ)

(1 + αξ)(1− ξ)2−2β
dξ. (76)

Proof. For any point z = reiθ ∈ U, let Ur = U(0, r) = {z ∈ U : |z| < r} and denote

d = min
z∈Ur
| f (Ur)|, (77)

and then U(0, d) ⊆ f (Ur) ⊆ f (U). Hence, there exists zr ∈ ∂Ur such that d = | f (zr)|. Let L(t) =

t f (zr), t ∈ [0, 1], then `(t) = f−1(L(t)), t ∈ [0, 1] is a well-defined Jordan arc. For f = h + g ∈
HS∗,αsc (β), using (27) and (71), we have

d = | f (zr)| =
∫

L
|dω| =

∫
`
|d f | =

∫
`
|h′(η)dη + g′(η)dη̄|

≥
∫
`
|h′(η)|(1− |ω(η)|)|dη|

≥
∫
`

(1− α)(1− |η|)
1 + α|η| · [1− (1− 2β)|η|]

(1 + |η|)3−2β
|dη|,

=
∫ 1

0

(1− α)(1− |`(t)|)
1 + α|`(t)| · [1− (1− 2β)|`(t)|]

(1 + |`(t)|)3−2β
dt,

≥
∫ r

0

(1− α)(1− ξ)

1 + αξ
· [1− (1− 2β)ξ]

(1 + ξ)3−2β
dξ

Applying (27) and (71) with a simple calculation, we can obtain the right side of (75).
The remainder of the argument is analogous to that in (76) and so is omitted.

According to (75) and (76), we have the following covering theorems of f .

Corollary 5. Let f = h + g ∈ SH . (1) If f ∈ HS∗,αsc (β), then U(0, R1) ⊂ f (U), where

R1 =
∫ 1

0

(1− α)(1− ξ)[1− (1− 2β)ξ]

(1 + αξ)(1 + ξ)3−2β
dξ.

(2) If f ∈ HKα
sc(β), then U(0, R2) ⊂ f (U), where
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R2 =
∫ 1

0

(1− α)(1− ξ)

(1 + αξ)(1 + ξ)2−2β
dξ.

Note: In this paper, the geometric properties of the co-analytic part g is obtained by using the analytic part h
satisfying certain conditions. Furthermore, the geometric properties of harmonic functions are obtained (see
Figures 1 and 2). Using the concepts dealt with in the paper, we can study the geometric properties of the
co-analytic part and harmonic function when the analytic part satisfies other conditions. So as to enrich the
research field of univalent harmonic mapping.
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